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Abstract

In this paper many various elastic stability
problems, for symmetric angle-ply laminated plates,
are solved using the energy method and finite
difference method. The energy method is applied in
considering the buckling probiem for rectangular
plates that are simply supported along all edges
and subjected to both uniform in-plane Toads in
the X- and Y-direction and constant shear load, si-
multaneously. This paper provides, also, the solu~
tion of buckling problem for simply supported
plate under nonuniform compressive load in X-di-
rection, by using the same method. The finite-di-
fference method is applied in solving the buckling
problem for rectangular plates under combined loa-
ding, with edges that are either simply supported
or clamped. Many computer programs in PASCAL lang-
uage have been developed, which enable calculation
of the critical buckling loads for different sym-
metric angle-ply Taminates and for different a/b
ratios. At the end, the paper presents the compa-
rison between results obtained by two methods for
rectangular simply supported plates. The results
are ingood agreement, but energy method provides
values which converge a little more rapidly for
the acceptable equivalent computing time.

1. Introduction

In this paper we consider stability problem
of symmetrical laminated plates when the coupling
terms vare neglected. In particular the terms which
couple twisting curvatures to normal moment resul-
tants are included in the analyses. In this case,
when the laminate possesses midplane symmetry, we

get an important class of plates.

The stability problem of the symmetrical lami-
nated plates has great interest in structural ele-
ments and very often is present in aeronautical
structures where symmetrical plates have shown many
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advantages in comparison with unsymmetrical. The
presentation of the used theory is based on the
work of Jones(1), Ashton(z) and Whitney(z) and
Agarwa1(3). It is assumed that the general equa-
tions of the theory of laminated plates are known.

2. Stability problem of simply
supported rectangular plate

For laminates such that the Bij are all iden-
tically zero, for mid-plane symmetrical laminates,
the expression for the strain energy can be writ-

ten in the form

2
wa W 32w,
U= D -—-—) + 2D + Doy(——) +
?'jf{ 1A 12 %2 By 22 ay?
32 W 52w w a W,
+ 4D, . Z— + 4D
16 x2 3%3Y 26 2 By X3y
+ 4Dss(axay } dA + C, (1)

where C represents constant strain energy due to

displacement W and VO.

From the theorem of stationary potential
energy we hawe
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Y ax sy
The loads N, Ny and ny, in (2), can be ar-

bitrary functions of coordinates along edges of
the plate. In our case, Fig. 1, they are all
uniform. Solving stability problem of such an an-
isotropic plate, under simultanecus action of
three loads, it is of great importance to investi-



gate the effects of D16 and D26 on the stability
of the plate.
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Figure 1. Combined Loading Nx’ Ny’ ny

The boundary conditions, for simply supported
plate, are

for x=0 and x=a: w= 0, MX =
= =(Dyy L) 2D w) 0
12 3y2 16 53y
for y=0 and y=b: w= 0, My =
%W 3w 3%w
= -(D +D,, —+2D,, —=) =0 (3)
22 5y2 26 5%y

When the deflection function is taken in the form
of a double trigonometrical series

(4)

are unknown coefficients, it is evident
that (4) exactly satisfies the geometrical conditi-
ons W= 0 on the boundaries.

where Aij

To satisfy the boun-
dary conditions of zero moments, one must add a
term corresponding to the unbalanced edge moment.
As it is 3%W/3x? = 3*w/dy? = 0, using the series
(4) the additional term takes form

f206f(——) SELI

sin P12 dx
X3y y=b  3xdy y=o0
J o [

32w
X3y Xx=a

2
- (%) ] BT gip ﬂﬂ% dy.
9xdy x=a (5)

In this paper we have investigate the effect
of the added term (5) in the case when the plate is
submittedonly to the Toad Nx'

In our case, the potential energy is given in
the form

1 1
= (I + 1, +1 +1o6) - 5(1, +I 1 )+C

(6)
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where, for instance, some of the integrals have

values
2 3z
I,, = -16D,, 2~ 2 5 2 % A,.A JpPg ,
16 16& ijpa 13 Pq (iz_pz)(\jz_qz)
126--160265—2—22221\1.qu ijpq’ ,
b2 i paq P (i%- py(§*- q?)
’ (7)

where ixp and j*q are odd numbers.

To find the solution of the problem it is
necessary to form the express1on3fT/BA
must be zero. General system of ]1near s1mu1ta-

,whxch

neous equations in terms of Aij is given by

o 2(Dy, + 2D..) 1232 .\
2 i* 12 66 . i
{T[DHT:T‘L - + Dy €3] - o X -
-joY}A -16 3 ¢ _1ipa __[p «x
7 ij 6
W pq P9(iz- p2) (j2-q?)
, N
2 + p? : X
x TP (37 +a)] - Xbtl-0 (8)
C ™
where 1 = 1,2,3,...m = 1,2,3,...n.

itp and j*q are all odd numbers at the same
time.

The problem was how to solve the system (8)
Ny and NX
act simultaneously. We applied the following pro-

with three unknown loads Nx’ » Which

cess: two of three Toads we expressed by means of
the third
Ny = aNX and ny = BNX (9)

The mathematical solution of the eguations,
represented by (8), gives mxn homogeneous simul-
taneous equations for unknown Wij' In this work we
have given the programme CXYT (Pascal) with four
branches. The concept of the programme is that for
i=1,2,..
smallest values for NX

.7, i.e. 49 equations, we can obtain the
’ Ny or NX
can easily be enlarged. First branch (X), corres-
ponding to load Nx’ the second (Y) to Ny’ the

third (XY) to ny and the fourth to the combined
loads of Nx’ Ny’ and ny
First two branches calculate the critical values
N

xcr
third branch gives two critical values N

and nycr(_)
the shear load.

. The programme

which act simultaneosly.

, when two other loads are zero. The

xycr(+)
, i.e. for different orientations of

In the fourth branch it is

or Nycr



necessary to suppose the shear load and axial load
in one direction, then as a solution we get another
axial load. The obtained critical value with the
two supposed gives the group of three critical va-
Tues for the case of simultaneosly acting loads

Nx’ Ny and ny. Taking into consideration what is
happening in the fourth branch, it can be seen

that it is possible to work also with tension loads.
For very high values of NX and ny we can obtain
small tension for N . Mathematically the results
are correct, but it is the question how much the
obtained results correspond physically. That is,
the laminates of composite material show differen-
cies in elastic modulus when occurs pressure or
extension. This fact, of course, influences the
variation in coefficients of laminates. Due to our
experiance one shouldbe very careful with the ten-
sion load, i.e. it is realistic to work with very
low values of tension load.

In the programme CXYT the starting data were
former defined D11, D12, DZZ’ D16’ D26’ D66’ dimen-
sions of the plate and the thickness of lamenates.

The first case, inwhich we wanted to indicate the
effect of the D16 and D26 terms on the buckling behavi
our is the case of uniformaxial compression NX only.In
this example we have considered simply supported 1ami
nated plate of 20 plies, boron-epoxy composite materi-
a?,E1=2,0684-106bar,E2/E1 = 0,1, G12 = 0,03-E1,
Vi = 0,3, t1 = 0,01 ¢cm, t = 0,2 cm, b = 10 cm,
a=11,3cm, ¢ =1,13. The same example was given
by Ashton and Whitney(z) cosidered the prob-
lem using the term given by (5). In our work we

, who

have neglected the expresion (5) and the results
are shown in the Fig. 2. Our results in the Fig. 2
are given with dotted line and also the numerical
values in the TABLE 1. In this example two
groups of plates are cosidered. The first case is
when the principal material axes are oriented at
(+ 8) to the plate edges. The second case is when
orientation has alternating plies (+ 0) and (- o),
|10 plies have orientation (+ 6) and 10 (- 8)|. As
it can be seen, the second group is not strictly
symmetrical, in fact it is unsymmetrical, but the
coefficients Bij are so small that the case reduces
to the special ortotropic plate.

The coefficient k, proporcional to the criti-
cal load is
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(10)

for different 6, using the branch X of the prog-
ramme CXYT, is given in the Table I.
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Figure 2. Compressive Buckling Coefficients,
Simply-Supported Plates

Table I: Coefficients of flexural rigidities in
|daNcm| , “and the critical values Nxcr

O Dy Dyy Dyp D Dy Dyg Nyp K
0 [1391 139 42 41 0 0 150 1,15
159 11227 143 122 121 295 17,8 159 1,23
30°| 839 212 282 28 410 132 187 1,44
45°| 445 445 362 362 313 313 203 1,57
60°| 212 839 282 282 132 410 172 1,32
0 -0,7629 -0,7125.,

£15° 1227 143 122 121705 220180202 1,56
0 -0,1315 -0,6575

+30°| 839 212 282 2827 %W T 30207258 1,99
0 -0,1643 -0,1643

+45° | 445 445 362 362 %00 T 30207305 2,35
0 -0,6575 -0,263

+60° | 212 838 282 282 20 T 3004 259 2,00

As it is possible to see from the Fig. 2 and
the Table I, the results obtained using the prog-
ramme CXYT, differ very 1ittle (2 %) from those
obtained in (2). That leads to the conclusion that
one does not produce essential mistake by neglec-
ting the expression (5) in the case when the
values for D16 and 026 are not small and when ha-
ving for all plies the same orientation in 6. In
the case of laminates with orientations +6 and -6,
when it is D16 = 026 = 0, the differences do not
exist. The basic influence of the coefficients D16
and D26 is in decreasing the critical values of
bucking loads, what of course must not be neglec-
ted. Points in the Fig. 2 show the experimental



data for laminates (Mande11(15)), and they coin-
cide very well with the theory.

Now we are going to present some application
of our programme CXYT. We have considered the sta-
bility problem of simply supported anisotropic la-
minated rectangular plate under a) Toad NX - the
first branch, b) Toad ny - the third branch and
¢) the case of combined biaxial compression NX and
Ny and ny shear Toad - the fourth branch.

Properties of baoron-epoxy composite material
are:

Ey = 1,38:10° bar, c=a/b=2,0

- - 6 -
E2 = 0,145-10° bar, t]am = 0,0125 cm
612 = 0,058-10° bar, t = 0,3 (total)
Vi = 0,21 24 plies.
b=15c¢m
a = 30 cm.

The directions of the material 6, measured from x,
are:

/05, 30°, 90°, +45%, 30°, 90°, 450, 05/s

where 6 = Og means that the p]iés consist of two
very thin elements, and index s means the symmetry
of 12 plies. The plies are numerated from the ex-
ternal to the mid-plane. Due to given elastic and
geometrical characteristics, for the coefficients
of flexural rigidities of the plate we found

[1988,3 320,28 214,07
D= 320,28 955,99 87,64 | daN/cm? (10a)
214,07 87,64 381,95 |

The results for the cases a) and b) are given in
Table 2.

Table 2: Values of the critical loads NX or NX

1350

y
N N 73 212
¢ X Xy 2,4 212 [344 -257
(NN =00 (=N =0) 1575 1 545
da/on 1 dEN/tT gig g}g 332 -249
NOREYAL 508 —433 12,8 218 323 -244
1,1 213 2,9 221
1,20 211 490 -352 13,0] 219 316 -240
1,3 213 3,11 217 !
1,4 217 427  -31113,2| 215 [311 -238
1,5 224 3,3| 213 |
1,6 0 232 391 -289 | 3,4] 213 1308 -237
1,7 240 3,5, 212 |
1,8 231 370 -278:3,6, 212 1306 -236
1,91 224 3,7 212 !
2,0 219 358 -270 13,8, 213 304 -234
2,1 216 ‘ 13,9, 214
R,2° 213 -268 14,0 215 (303 -231

At the end, in the Table 3 is given the case
c), i.e. the critical values of Nx for supposed

values for Ny and ny.

Then, as we said before,

three values represent the group of critical buc-

kling values (NX, Ny, ny)cr'
Table 3: Critical buckling values (Nx’Ny’ ny)cr
Ny =0 Ny =50 Ny =25 Ny = 65
daN dan dal dan
cm cm cm cm
Xy Nx ny Nx ny Nx ny Nx
daN  daN |daN  daN |daN  daN | daN  daN
cm cm | cm cm | cm cm cm cm
-285 -22 |-150 -~ 8 {-240 -32 |-80 -10
-260 20 {-130 11 |-200 26 | -60 4
~220 80 |-110 28 |-160 77 | -40 10
-180 120 |- 80 50 {-120 118 | -20 17
-140 154 |- 50 66 |- 80 149 0 21
-100 181 |- 20 77 |- 40 170 20 24
- 60 202 0 81 0 181 40 24
- 20 215 20 84 40 184 60 23
20 223 50 84 80 179 80 19
60 223 80 79 | 120 165 | 100 13
100 218 | 110 69 | 160 142 | 120 5
140 206 | 140 55 | 200 110 | 140 -5
180 188 | 170 36 | 240 70
220 165 | 200 12 | 280 23
260 134 | 230 ~16 | 320 -32
300 86
340 28
380 -36
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The results from tha Table 3 are given as a dia~
3.

gramm, Fig.
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Figure 3. Critical buckling values
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2.1. Buckling due to nonuniform
compressive load

Let us now investigate the case when the pla-
te is submitted to the forces their intensity
being given by the equation

N, =T (1 - y/b) (11)

The rectangular plate (Fig. 4) is also simply sup-
ported along all four sides. The load N* is the
intensity of compressive force at the edge y = 0.
By changing o, various particular cases can be ob-
tained. By taking o = 0, we obtained the case when
compressive load NX is constant. As the plate is
simply supported on all sides, the deflection fun-
ction can be taken, as before, in the form (4).

yi

Fugure 4. Buckling due to nonuniform compressive
load

The work done by external forces, duringbuck-
ling of the p]ate, is

?Nxffﬂ-oc-s)( ELIS (12)

Now it is necessary to calculate the integral

(13)

a b .
I =f ,f(z A..T—”cosmxsm*]”y) dxdy -
o 01

z
J
e G p i imX Jjny
‘T{{Y(§§Aij?cosa sin )dxdy

(14)

The value of the integral I° is

"= 1" 4+ " (15)

where
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2 2
I =Li%_z LAz i, (16)
a ijg "
and
2b? i’jq
™ - == LI A.. A, 3 (17)
a i q 1] 19 (JZ _ qz)

for (j*q) odd number.
The final expression for Ia is

p -12ab (1 - ) L% A2, i+
a az 'IJ 1]
s
+a27bZZZAiinq'—1‘]i—2- . (18)
idaq (32 - a%)

for (ptq) odd number.

The partial derivation of (18) is

ol
a

aAij

_’n'zab Ay 22
== (1 - f) i Aij +
ok
+ dob D) Ai ———l—gll——;
3 q (5% - q?)
for (j*q) odd number.

By taking derivatives of the expression (2)
with respect to each coefficient A i and equating
these derivatives to zero, we fana]]y obtain asys-

tem of linear equations in the following form:

3 ab m* . ab " i
=D, = — i*A,. +D,, = — A., j* +
Bﬂij 112 at ij 22 2 pe  1d
ab 2 52 _
+ 2(D12 + 2066) T 55
a“ b
6D, s A (i2+3%)ijpq .
a2 pq P9 (i% - p2)(52 - ¢?)
- 160, 5 T A (2+q2)”pq
26 b2 p g P9 (3% - p2)(3% - q?)
v 7° ab _a 2
- Ux { ;; - ( 2) A1J] *
b i2jr
r 1r(j2_r2)2}
itp, j*q, j*r all odd numbers; i = 1,2, n,
J=12,...n
or
2(D,, + 2D..)
f‘n'z it 12 66 2 12 47
{T£D11;+ = 1J+022c3]




+Dye(3® +a%)] = 0, (20)

where ip, j*q, jtr aresimultaneously odd number,

and i = 1,2,...m3 Jj=1,2,...n

For the solution of this problem we gave the
programme CALFA (Pascal).
mme has only one branche.

In this case the progra-
It is evident that for

= 2 the programme gives the case of pure bending,
for o = 0 we get the first branch of the former
programme CXYT. The application of this programme
is also given by one example. As in previous exam-
ple, the Taminated plate had 24 plies and was of
the same material. In this case for ¢ = 2 the mat-
rix of the flexural rigidity coefficients is given
by (10a}. For o we have taken values -0,5 ¢ ag0,5
with increment of 0,1. In the Table 4 are given the
values for critical forces depending of the coef-
ficient o. It can be seen that for a = 0,
gramme CALFA gives for Nxcr
programme CXYT.

the pro-
the same values as the

Table 4: Critical buckling forces as a function
of the coefficient o

a -0,56-04-0,3-0,2-0,1 0 0,10,20,30,4 0,5
Nxcr
daN 176 183 191 200 209 220 231244 258 274 292
o

3. The application of finite-difference
equations

The problam of determining the critical buck-
ling load can be solved by direct way, using the
differential equation of the problem. In the gene-
ral case of laminated anisotropic plates the dif-
ferential equations are

522 22u° 52y° 92v0
A, — + 27, —5- + A + A +
11 5 x2 16 X9y 66 y 16 3 %2
O 2.0
3%y
+ (A, +A ) —— + A =0,
12 66 X3y 66 5 y?
32u° 3%u a2u° 32v°
A + (A, y 2l A + A +
6
16 2 T o 26 o2 66 5 2
2,,0 2.0
v 2y 2 v n,, 220,
X3y 3 y?
b
Dy QU’; " 4016 AM_y 2(0,, + 20g) 3w,
X ax3dy ax2ay?
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3w N 3%w
+ 4D +D0,,—=qg+N v +2N —_—
26 axdy® 22 3y X ax? X axay
2
sy, 2 (21)
y 3y2

For symmetric laminates it is necessary to solve

only the last of equation (21). By direct solving
of differential equations it is possible to solve
only very few stability problems considering sym-
metric and unsymmetric laminates. In the case of
unsymmétriclaminates, for each side four boundary
conditions must be satisfied. Along the edges we

must satisfy additional following conditions:

for x = 0, and x = a: =0

ny =0 (22)
fory =0, andy = b: W =0

ny =0 (23)

A1l the other cases, which can not be solved in
close mathematical form - finding the solution for
differential equations, can be solved by using
classical method of the finite-difference equati-
ons. In other words, the differential equations of
the problem must be replaced by corresponding equ-
ations with finite increments. As the differential
equations(21),whichdescribetheequilibriumsof
symmetrical anisotropic plate, are linear and homoge-~
nous)apalogous finite-difference equations will also
be Jinear and homogeneous.

By application of the method of finite-diffe-
rences we have solved the stability problem for
symmetric generally ortotropic laminated plate un-
der compressive load NX and shear ny, which are
uniformly distributed along the edges, Fig. 5. In
this part we considered different boundary coditi-
onsof the plate.
ting the finite-differences equations, we used the
expression for the central differences. They give
the best approximation for derivatives which appear
in finite-difference equation of the problem. The
shema for cosidered rectangular plates, with cor-
responding net, is shown in Fig. 6. As it can be
seen the plate has m+1 fields in x and n+1 fields

Apply ing this method for wri-

in y direction. In this way we got mxn nodal
points.

If the plate is submittedonly to uniform com-
pressive load N, and shear load ny, the differen-

tial equation 1is
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Figure 5. Four combinations of boundary conditions
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+4026______3W +022M+NXB—W+NX 32W=0‘
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Introducing the approximative values for partial
derivations in (24), we come to the general form
of the finite-difference equation

D D D

D6 1 16

Pk izt T Mgt S ) Mg gt
D
26, - D16, 20ip * Pgg) D
hk3 i+1 ,,J+1 h3 K h2k2 hk3
N

ey g Dyy 80 + 20g)
2hk i+1,7+1 h h2 K2
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2D

16
i+, 7 [’F

k

N
+ 2w
h2
N
_&]
2hk
- 4(D12 + 2D

Wipg,g-1 0

)
N 667 _

h2k2
8(Dy, + 2Dgg)
h2k?
- 4(D,, + 2D

+

22

66) - Y
K* 1 ’J'Z

* [ hzkz ]Wiaj'1 *

2(D,, + 2D

iy &_6_) W + 66)
hk3 i‘1,j+2

D26 Ly

hk? 2hk

12
h2k?
4Dy, 4Dy, + 20

+

2D
+ 5 16
h3k

)
+ 66”4

]wi-1,j+1 * [- h2k?

2D

hk

2(D,, + 2D

12 * 2Dgg)

h2k?

26
h k?

+

Dy6

;:;)W1-2J+1*

Xy
 a—
hk

2hk

D
o,

hk

Wi1,5-1 t S Wi,z 0

P16
h3k
1,2,...m,

- 25
i-2, * 5 Mi-2,5-1 70 (25)

I

i
i 1,2,...0.

The boundary conditions for four combinations
are given in Fig. 5:

a) A1 four sides are simply supported

Wo,i = me1,3 T Wio T Winer ° 0

W__1’j = -w1 ,j

V2,5 T "n,j

Wi-1 T M

Wine2 T Yk

= 1,2,..m3 3= 1,2,...n. (26)

b) Two sides are simply supported and two are clam-
ped and submitted by compressive load:
"o,5 T Mmr,3 T M0 T Minet 70
M1, T M
"mi2,5 7 Mm, g
Yi-1 T i
Wine2 = Min
i=12,...m3 §=1,2,...n. (27)



net when it is ¢ = m+1/n+1, but we are not sure
that the solution will be the most possible cor-
rect. The applicationsof the programmes WSLOB,

¢) Two sides are clamped and two are simply sup-
ported and submitted by compressive load:

W o =W . s =W, =W, =0
0-J  Tmg 7,0 T WUKOP, WSLOP, WUKLJ is presented ih the short
Y13 T M form. We invéstigated the stability problem of
42,5 T Ym,j symmetric 20-plied HT-S/4617 grafit-epoxy lamina-
Wi g o= We tes submitted to the action of N and ny Toads.
’ ’ The elastic constants are:
w

in+2 T Wi E, = 1,3789-10° bar

i=1,2,...m33=1,2,...n. (28) E, = 0,0896-10° bar
= . 6
d) A1l four sides are clamped: G12 = 0,0448-10° bar
Vip = 0,304
woaj B me &j - wi »0 - w'i 9n+1 =0 = 12 cm
M-1,5 T Mg ty = 0,014 cn
_ t =0,28 cm.
"mi2,3 T ",
= The angles of orientation are:
Mt T 0 0 40 0 A0
= 8 = /0,, 45", 0., +45; 0,/_.
¥i;n-2 = Yin 2 2's
i=12,...m33=1,2,...n. (29) The coefficients of the geometrical charac-

. . teristics are
Using anyone of four combinations for bounda-

ry conditions, the equation (25) becomes the sys- 1919,9 250,29 35,59
tem of mxn homogenous simultaneous linear algebraic (o] = | 250,29 382,35 35,59 | | daNen|
equations with unknown deflections W i 35,59 3,59 282,11
As a result of our work we got four programmes Our results are given in four Tables:
in PASCAL language: . ] Table 5: Critical buckling load (Nx, ny)cr
a) WSLOB - all four sides are simply supported; a) A1 four sides are simply supported.
b) WUKOP - compressive load is acting along Programme WSLOB
the two clamped sides;
€) WSLOP - compressive Joad is acting along c=1 c=15 c=2 c=2,5
the two simply supported sides;
- N N N N N N N
d) WUKLJ - all four edges are clamped. Xy X Xy X Xy X Xy X
. daN  daN | daN  daN |daN daN | daN daN
Each of these programmeshas three branches: o = = = 7w om o on
compressive load, shear load and combined load of Fr—
N, and N, . In the third branch of each programme 575 0 =378 0 |-295 0 | -2 o 100
it is necessary to suppose ny in order to get thé -400 154 -300 113 f-200 121 -igo 198
Toad Nx' In this way we always have the group of -300 201 -200 154 }-100 208 | - o 231
two critical buckling Toad (N, N_ ) .. -200 236 | -100 204} O 242
X owyrer -100 257 0 224 100 224 | 100 213
The data for our programme are former values 0 266 100 214 | 200 154 200 146
0f 1450425 Dpp» Dggs Dygs Dpgs with the same a, 100 263 | 200 175| 300 39 | 298 0
b, ¢ and t. The number of net points is m in x and 200 248 300 109 | 334 0
n in y direction. As it can be seen we could take 300 221 400 19
any number of nodal points in order to form the di- 500 129 419 0
fference equations. This is just necessary due to 400 181
the anisotropy of the plate, because the obtained 643 0
solution has not the character of uniform conver-

gence by increasing the number of nodal points. The
rectangular net corresponds nearly to the square
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Table 6: Critical buckling load (Nx’ ny)cr’ Table 8: Critical buckliing load (NX, ny)cr'
b) Two clamped sides are compressed. d) A1l four edges are clamped.
Programme WUKOP Programme WUKLJ
c =1 c=1,5 c=2 c=2,5 c =1 c=1,5 c=2 c=2,5
ny NX ny NX ny NX Xy NX ny NX ny NX ny NX ny NX
daN  daN | daN  daN | daN daN| daN daN daN  daN |daN  daN | daN daN |daN  daN
cm cm cm cm cm cm | em cm om cm | cm cm cm cm | cm cm
-945 0 -490 0 -343 0 |-284 0O -986 0 |-559 0 -448 0 |-408 0
-800 192 | -400 112 |-300 69 |-200 133 -800 224 | -400 224 | -400 83 |-300 178
-600 382 | -300 218 {-200 186 | -100 248 -600 425 |-200 439 | -300 242 |-200 300
-400 518 | -200 301 |[-100 273 0 297 -400 580 0 534 | -200 367 |[-100 383
-200 602 | -100 357 0 31 100 270 -200 681 | 200 474 | -100 434 0 418
0 635 0 380 100 292 200 175 0 723 | 400 286 0 463 100 402
200 618 100 370 200 221 300 29 200 702 | 600 20 100 451 200 338
400 550 200 322 300 114 317 0 400 621 | 613 0 200 400 300 232
600 434 300 257 381 0 600 487 300 300 450 0
800 268 400 163 800 307 400 154
1034 0 539 0 1070 0 492 0
Table 7: Critical buckling load (N_, N_ )} ,
. X yoer REFERENCES
c) Two simply supported sides are compre-
ssed. 1. Jones, R.M., Mechanics of Composite Materials,
Proaramme WSLOP Scripta Book Company, 1975.
2. Ashton, J.E., Whitney, J.M., Theory of Lamina-
= = ted Plates, Progress in Materi-
c=1 c=15 ¢ =2 ¢=2)5 als Science Series - Vol. IV,
T i icati 1970
N N N N N N N N Technomic Publication, .
Xy X X X X X X 3. Agarwal, B.D., Broutman, L.J., Analysis and
daN daN | daN daN | daN  daN | daN daN Performance of Fiber Composites,
cm cm cm o cm cm cm cn cm John Wiley & Sons, 1980.
_ - _ _ 4. Lehnickij, S.G., Anizotropnie plastinki, Gos-
677 0 47 0 421 0 38 0 udarstvenoe izdateljstvo tehni-
-600 75 -400 103 | -400 40 -300 131 ko-teoretiCeskoj Titeraturi,
1400 235 | -300 233 |-300 173 |-200 257 Moskva, 1957.
R E _ _ 5. Timoshenko, S.P., Gere, J.M., Theory of Elas-
200 338 | -200 339 |-200 270 }-100 340 " ""tic Stability, McGraw-Hill Book
0 379 -100 394 |-100 332 0 374 Company , 1961.
200 356 0 413 0 357 100 358 6. Josifovié, M., lzabrana poglavlja iz elastic-
nosti i plastitnosti, predavanja
400 272 100 406 100 346 200 293 na poslediplomskim studijama,
600 132 200 374 200 298 300 184 Masinski fakultet,Beograd, 1970.
746 0 300 284 300 217 426 O 7. Josifovié, M., Osnovi strukturalne analize
aerotehni€kih konstrukcija, Ma-
:00 167 464 0 §inski fakultet,Beograd, 1979.
20 0 8. Voljmir, A.S., UstoiCivosti deformiruemih sis-
tem, Nauka, Moskva, 1967.
9. Schivakumar,K.N., Whitcomb, J.D., Buckling of
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