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Abstract

A new theory is presented in this paper which
makes use of acceleration components along with
other parameters in the design of control
systems. This theory is illustrated by designing
an integrated digital flight control system to
suppress flutter in a wind tunnel model. The
understanding of the flutter mechanism, led to an
approach that was based on forced frequency
separation and this method is shown to be very
efficient in delaying the onset of flutter. The
implementational problems were then examined and
a technique 1is presented which enables the
control architecture to be simplified. Digital
similations of transient responses are presented
for two different sensor configurations when the
model is subjected to a discrete gust.

1. Introduction

The application of active control technology
to flutter suppression in aircraft - is
comparatively new, Flutter is an explosive
phenomenon in which the aircraft structure
absorbs excess energy from the aerodynamic forces
through interacting natural modes. if
uncontrolled, flutter instability can rapidly
destroy the aircraft structure. Passive control
of flutter usually results in  expensive
structural modifications along with weight
penalties and reduced speed capabilities. Active
methods incorporating feedback principles may be
used by exploiting existing control surfaces to
improve the dynamic performance with negligible
weight penalties. The artificial stability thus
provided also has the effect of reducing
structural and fatigue loads and results in
greater ride comfort due to the attenuation of
aircraft rigid body and flexural motions.

There has been a clear division between the
theoretical and the implementational aspects of
active flutter suppression. Theoretical work,
although mathematically rigorous, has tended to
be rather too refined for implementation in real
systems. Little consideration has been given by
the theoreticians to the practical implementation
of their theoretical designs. Almost invariably,
the implications of the dynamical characteristics
of the actuators and the sensors are ignored;
control algorithms which require the use of state
observers are proposed; and it has been tacitly
assumed that reliable digital implementation of
complex control algorithms are available. All
these features imply additional phase lags which

significantly affect the performance of the
control system. On the other hand, most of the
successful wind tunnel and flight test
demonstrations have employed techniques based
more on experience and intuition rather than
purely theoretical concepts. As a result,
simpler basic control strategies have been

derived, the implementation of which has bheen
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achieved by the use of standard equipment such as
compensators, phase adjusters and notch filters.
it is also quite common to feed back the rate of
change of the states in practice whereas
theoretical analyses have concentrated almost
entirely on state feedback. This has arisen
chiefly ©because rate feedback automaticaily
introduces phase lead which compensates for the
phase lag of various items of equipment in the
feedback loop and hence gives satisfactory
transient responses. In this paper, a new theory
is presented in which some of the state variable
rates, the accelerations, are fed back for
control purposes.

This paper is concerned with the theoretical
and computational work that was carried out to
derive an integrated digital flight control
system with the following features:

a) use of rate feedback for flutter suppression
and load alleviation with disturbance rejection
gqualities only;

b) use of state feedback for rigid body motion
control with disturbance rejection and set point
tracking capabilies;

and
c) the use of the minimum number of sensors such
that the actual outputs approximate to the
theoretically prescribed values.

The controller design techniques are

illustrated by considering the active control of
the GARTEUR wind tunnel modell in an open-loop
unstable flight mode configuration. This
linearised model of the longitudinal dynamics
includes the first three symmetric elastic modes
in addition to the basic pitch and heave modes of

motion. The active inputs are the angular
deflections of the taileron, the outer wing
flaperon, and the inner wing flaperon. Feedback

information is used to vary the control surface
deflections so that the model is stabilised and
the structural loads reduced in magnitude. The
improvements in performance are demonstrated by
the presentation of the results of a digital
computer study in which the controlled model is
subjected to a simulated discrete gust.

In the studies carried out earlier? (using
state feedback only), the following points were
noted.

In the open-loop stable configurations (i.e.
at lower speeds), the GARTEUR model presented
little problems and the controller could be
configured such that the system was always
stable for any overall gain; the motion
attenuation performance being dictated by
control equipment capabilities.

a)

b) In the open-loop unstable configuration, it

was clear that for system stability, the



minimum control surface deflections required
were rather large (up to 159 deflection for
the inner wing flaperon). This situation
would degrade even further when control
equipment dynamics are introduced in the
feedback loops.

Hence, for this paper, it was decided to
disregard the open-loop stable configurations and
concentrate only on the open-loop unstable
configuration with digital control.

oOne of the classic features of the flutter
phenomenon is that the instability is associated
with the frequency coalescence of two modes (they
can be either structural and/or rigid body
modes). Hence the approach adopted was based on
the separation of the coalescing modes rather
than the 'traditional' feedback of the unstable
modes. This approach is not very successful with
state feedback control but, when the rates of
change of the states are considered for feedback,
the results obtained are excellent. These
results show that there is no need to include all
the inputs in the control structure and
consequently one of the control surfaces (the
inner flaperon) can be deleted from the original
system.

There is also a need to use as few sensors as
possible in order to ease implementation for wind
tunnel testing. This problem can be solved by a
study of the effects of contamination of the
theoretical measurement requirements with
unwanted states and/or their rates. The solution
is then arrived at after an iterative series of
analyses in which the sensors are successively
reconfigured. The use of fewer sensors than the
theoretically ideal number results in a
degradation of the controlled system performance
in some ways. However, the use of the design
technique described in this paper minimises this
degradation and the implementation problem is
greatly eased. Care has been taken to ensure
that all the control surface deflections and
rates are within the specified limits.

2. Theory

The first part of this section is concerned
with the theory for regulation schemes which
employ acceleration feedback. An asymptotic

analysis is developed which reveals the
underlying dynamical structure of such
closed-loop systems. The theory is then extended
to allow the incorporation of position and
velocity measurements in the active control
scheme so that multifunctional control systenms
can be designed which employ acceleration

feedback terms for stabilization and regulation,

and position and velocity terms for command
tracking.
2.1 System Description

The equations of motion of structures
naturally arise in the second-order form3

Mg + Lg + Kg # Nu + d (2.1)

where q e RDN is the vector of generalised
displacements, u € R% is the vector of control
input actions, d € RO is the vector of
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disturbance inputs, M € ROXD i5 the mass matrix,
L « RPXA jg the damping matrix, K e ROXD jg the
stiffness matrix, and N e RUX? is the control

input matrix. For purposes of analysis it is
convenient to recast (2.1) into the form
X = Ax + Bu + Dd (2.2)
where
q
X = e RN
q
0 ) In
A = e RNXn
-M1k . -M1ip
[ O
B = e« RDX?
M1 N
[ O
b = e ghXn
M-t
and where n = 20. Note that the state vector, x,

contains generalised displacements and velocities
and that therefore the state derivative vector,
X, contains velocities and accelerations. For
the purpose of feedback control system design it
is to be assumed that the disturbance

vector, d, cannot be measured.

The object of using feedback control is to
improve the tracking response of a system and so
also to improve its disturbance rejection
qualities. The vector, v « R¥ can be defined so
that it describes the variables being controlled.
The elements of y are known as the outputs and
can be expressed in terms of the state vector by
an equation of the form

y = Cx (2.3)
where C € R¥XM called the output matrix, contains
the necessary relationships between y and x.

special cases? it is
possible to achieve excellent control using
output feedback, in general more information is
required in order to guarantee stability and to
avoid highly oscillatory responses. Additional
feedback information can be incorporated and
described in terms of the state vector by a
feedback equation of the form

Although in certain

w=Fx=y+m (2.4)
where F e R¥XD jg the feedback matrix and m e R%Y

is a vector of extra-measurements such that



iim m=0

e (2.35)

Condition (2.5) can be achieved by using the
purely kinematic relations from within the plant.
For instance, in some cases,

m=y (2.6)
and it follows that, in any
condition (2.5) will be satisfied.

steady-state

When acceleration terms are available for
control purposes, the vector a e R? can be
defined so that it describes the accelerations in
terms of the state derivative vector by an
equation of the form

a = Rx (2.7)
where R e REXD contains the necessary
relationships between a and %x. It then foilows,
using (2.2), that the acceleration vector can be

expressed in the form

a = RAx + RBu + RDd (2.8)

2.2 Regulation Scheme

In a regulation scheme, proportional feedback
of the acceleration vector is used in order to

stabilise the system and to improve its
disturbance rejection characteristics. If a
control-law equation of the form

u = gKa (2.9)
is used, where K e R¥¥? and g & R® then it
follows from (2.8) and (2.9) that

u = {Ip- gkRB)~1 gKR(Ax + Dd) (2.10)
It then follows from (2.2) and (2.10) that the
closed-loop state equation can be expressed in
the form

X = [Ip*B(I¢-gKRB) 1gKR] (Ax + Dd) (2.11)
If a digital control system is to be

implemented in which the acceleration vector is
sampled at rate f and a piecewise constant
control input vector is generated with negligible
delay then the discrete-time closed-loop state
equation can be expressed in the form

X' = [& + % (Ip- gKRB) l1gKRAjx
+[2 + ¥ (Ip- gKRB) 1gKRD]d (2.12)
where
& = exp {(AT) (2.13)
¥ = gT exp (A(T-7)) B dr (2.14)
= T . =
E = g exp (A{(T-7)) D dr {(2.13)
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and

T = 1/f (2.16)

2.3 Asymptotic Analysis

The matricial expression (Ig~gKRB)“1gKR can
be expressed in terms of a power series in 1/g as
follows

(19-gKRB) "1gKR =
- (KRB) " 1{I,+(KRB) 1/g+(KRB) 2/g2+, .. }KR,

(2.17)

provided that rank KRB = #. In such cases it

follows that

~-(KRB)"1KR = -(RB)"1 R
(2.18)

lim (Ig-gKRB) lgkr =

g

The .asymptotic form of the control law (2.10) is
therefore

u = -(RB) "IR(Ax + Dd) (2.19)
and the asymptotic form of +the acceleration
vector (2.8) then becomes

a=20 (2.20)
Evidently, increasingly effective disturbance

rejection characteristics can be expected as g »

0!

It also follows from (2.11) and {2.18}) that the
asymptotic form of the closed-loop state eguation
as g » « is

X = [1Iy - B(RB)"IR](Ax + Dd). (2.21)
Further, by setting g = f it follows that the
asymptotic form of the discrete time state
equation is

x' = {Ip+ T(I - B(RB)“IR)A)}x

+ T(Ip - B(RB)“1R)Dd. (2.22)
Without loss of generality the state egquation

(2.2) can be expressed in the partitioned form
Alr . A2 X1 Y 1

+ u + d
A21 ., A2z X2 B2 D2

(2.23)
and the acceleration vector (2.7) can be expressed
in the conformable form

Ry . Rzl {X1],
X2

where x1 € R1"%, x5 e R? and all the submatrices
are dimensioned conformably. 1If it is assumed
that rank RzBp = ¢ then the partitioned

a =
(2.24)



form of the closed-loop state equation (2.21)
becomes

{31? [ Ayg . A1 ] iXI] F)l }
= + a
4
LXgJ ‘RyIR1A11 "RélRlAIZJ XzJ l~R§1R1DJ
(2.25)

Evidently, as g becomes larger the closed-ioop
poies approach the sets

Zy = {0 : repeated 2 times} (2.26)
and
Za = {x € C: |x\Ip_9~ A1 + Aqp R_% Ryl = 0}
(2.27)
Further, the asymptotic form of the closed-loop

discrete-time state equation is

{Xl ] { In-p + TAp .+ TAgp ] [X1’
ixp | 'T§é1R1A11 , 19~TR§1R1A12_ ij
{TDl
+ ] d (2.28)
L~TR51R191

so that as f becomes large the closed-loop discrete
~-time poles approach the sets

Zy = {1 repeated ¢ times} (2.29)

and

{reC: IXIn_gw]n_pr(A11~A12R'%R1)|=0}
(2.30)

2.4 Tracking Scheme

The acceleration feedback control of the previous
sections can be combined with the regular error-
actuated control function. For convenience the
open-loop state equation is expressed in the form

[ﬁl fA11 . A1z . A3 [Xz) 0 ] {0 i
. o -

1Xa1= A1, Azz . A3 [Xz} + Bz}

k3: lA3: Azz . Ag3: [x3
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Dy
Dol d , (2.31)

D3

the acceleration vector is expressed in the form
a = [Ry , Rz, 0] {x;}

, {2.32)

and the output vector is expressed in the form

y = [Cy, Cg, €3] X1

(2.33)
X3

where x; € R #1792, x5 e R¥1, x3 € R¥2, uy €
R¥1, up « R¥2, d e R4, a « R?1, y e R¥2, and the
submatrices are dimensioned conformably. The
control law equations can then be expressed in

the forms

uy = gKa (2.34)
and

ug = giKge + Kqz] , (2.35)
where

z = € (2.36)
and

e = VvV -y . (2.37)

21X21 12337

and where K € R
g e RV,

Ko € R Ky e R72%%2 ang

The control objectives are to stabilise the
closed-loop system, track command inputs v, and
reject the unmeasured disturbances d.

It follows from (2.10},
that

(2.31), (2.32) and (2.34)

Ajr, Az A3
Ag1. Az2.Az3
Agy. Agz.Agz

-1
up = (Ig;~ gKRaBz) "gK{Ry,Ry.0] {



X1 Dy
X2 + Do d (2.38)
X3 D3
and from (2.33), (2.35) and (2.37) that
uz = gKov- g Ko {Cy, Cp, Cg1 [x1] + £ Ky 2
%2 (2.39)
X3

The closed-loop state equation can then be formed
from (2.31), (2.38) and (2.39), and expressed in
the form

z Iy, © 0 0
5{1 = 0 1“'91—92 0 0| +
X2 0 0 I2y O
L%3) 0 o0 0 Iy
0 1
0 | (Ip;-2KR2Bz) lgK [0,R1,R2,0]
Ba
10 |
0 -C; -Cp -Ca z 0 ]
0 A1 A1z A3 x1] + | D1} d
X
0 A2; Agz Apg X2 D2
0 Az; Azz Ass X3 D3
. ' , , 2
10 , 0 , 0 , 0 Xy
0 , 0 , 0 , 0 X3
lgB3Ky ,-gB3gKoC1 ,-gB3KoCz ,-gB3Kel3 ‘X3J
'z 1g,
X1] + ’0 v (2.40)
X2 0
lx3 gB3Ko

The asymptotic analysis4 of section 2.4 can then be

applied to show that

Z 0 -Cq -C2 -C3

X1 = 0 A1y A1z Aqs

X2 0 -RyIR1A11 -RyMRjAzp -R;IR1A13
X3 gB3K1, -gB3KoCy, -2B3KoC2, -gB3KeCa

x1] + Dy d + 0 v
Xg -R;1R1Dy 0
X3 0 gB3K,
(2.41)

Singular perturbation analysis? can now be applied
to (2.41) to show that as g » » the closed-loop
poles approach the sets

Zy = {0 : repeated 21 times} (2.42)

il

Zn {rxeC: |rIg, + K7IR1] = 0} (2.43)
2 o 1

-1
23 = {xsC: |NIp-g,-¢,~(A11-A13C3 "C1)+
-1 -1
(A12-A13C3 "C2)Rz "Ri{=0} (2.44)
Zg = {xeC: legz + gCaBgKgl = 0} (2.45)

and are independent of K.

These results can be used to select Ry, R, Ky, Kj
and g so that all the closed-loop poles lie in the
left half-plane. Further, if in such cases

Ko = (C3B3)~1 L (2.46)

where £ = diag (01,02,.‘.,092% and o; € R*

(i =1,...,%), then analysis 4 ghows that
excellent tracking behaviour can be expected

since the closed-loop transfer function matrix will
approach the asymptotic form

O9,8
- . o1g 2
r(x\) diag [ srogg x+092g } (2.47)

This analysis can be applied to the case of
sampled-data control® by applying the methods of
section 2.3. The results can also be extended to
cases where rank CgBgz < % by the use of
inner-loop compensators.

An asymptotic analysis has been presented
which can be used to facilitate the selection of
the appropriate feedback and controller matrices
for dynamical systems in which it is feasible to
use acceleration feedback. Provided that a
stable closed-loop system can be obtained the
results indicate that increasingly effective
command input tracking and disturbance rejection
characteristics can be achieved.

3. Control Application

3.1 Description of the System

At an airspeed of 50 m/s, the linearised,



small perturbation equations of motion of ‘the
longifudinal dynamics of the GARTEUR wind tunnel
model* (fiutter speed 43 m/s)includes the first
three symmetric elastic modes in addition to the
basic pitch and heave modes of motion and are as
follows:

[h,e] = [w,.q] (8.1)
W = -22.207 h -80.1775 ® -37.725 e1
+ 90.5775 ep +8.74625 e3 -2.0338 w
-0.502595 q -0.20045 e -0.009835 éo
-0.142645 ¢3 - 15.8407 u¢ - 5.9685 g
-5.105 uj + 1.5638 Vg
(3.2)
G= -5.681 h -59.354 ® - 23,7283 e1 + 64.91e;

+ 34.855e3 -1.22609 w - 0,782411 q
- 0.139265 &3 + 0.115725 €, -0.450655 &g
- 28.075 ug - 6.80575 uy +0.89355 uj

+ 1,10585 Wo
(3.3)
€1 = -293.325 © -1147.3 €1 + 605.55 ep
+ 202.223 eg ~-5.8665 w -0,8695 q -4.4839 éq
~ 0.9778 ép -0.40889é3 + 39.11 u¢ - 82.11 Ug
- 82.89 uj +5.8665 Wg
(3.4)
€2 = -145.98 © -118.445 e1 - 1471.35 ey
+ 87.85 eg -2.9196 W -0.00375265 q
-0.9939 &1 -2.163 €p ~0.223775 é3 +11.014 ut
-20.236 ug -5.55075 uj +2.9196 Wg
(3.5)
€3 = -58.4075 6 +25.3925 e1 + 59.9775 ep
~ 4063.23 eg ~1.1659w -0,7288 q
- 0.482065 ¢7 - 0.455155 €2 —2.89875 eg
-43.7225 uy -21.1323 uyt+12.8925 uj
+1.1659 Wg
(3.6}
NZLT = w +0.330 ¢ +0.814 €1 +0.739 &3 +0.701 &3
(3.7)
NZTT = w +0.400 q +0967 g1 +0.364 &€y +0.620 €3
(3.8)
NZLM = w +0.182 q +0.409 €1 +0.445 &5 +0.230 €3
(3.9)
NZTM = w +0.411 ¢ +0.579 g1 +0.073 &5 +0.101 €g
(3.10)
NZG = w -0.059 &1 -0.310 (=X (3.11)
BMPD = -697.0 e; -877.2 ey — 1390.0 eg (3.12)
BMMD = -247.8 e; ~ 263.0 e ~- 828.1 eg (3.18)
BMTD = -59.58 e1 - 64.36 ep - 282.5 eg (3.14)

In equations (3.1) - (3.14) the symbols have
the meanings defined as follows:

BMPD, BMMD, BMTD

bending moments at wing
pivot, wing mid-span
and wing tip respectively,

e1.e2,e3 - generalised displacements
in the first three
longitudinal symmetric
elastic modes,

h - vertical displacement of
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the aircraft CG,

positive downwards

Normal accelerations
at wing tip leading edge,
wing tip trailing edge,
wing mid-span leading
edge, wing mid-span
trailing edge and fuselage
centre of gravity

NZLT,NZTT,NZLM,NZTM,NZG

respectively,

q - pitch rate of model,
(rad/s)

ut,Up,05 - taileron, outer wing
flaperon and inner
wing flaperon
displacements, (rad.)

w - perturbation vertical
velocity of model

Wy - vertical gust velocity

2] - pitch angle, (rad).

All the three actuators are described by the
transfer function

R 7 N PN T (8.15)
707 707

Gals) =

The maximum deflection of all control surfaces is
to be limited to 0.1 rad. Only high pass filter
dynamics are associated with the accelerometers
and are described by the transfer function

S
+

Gp(s) = 3 (3.186)

The actual accelerometer dynamics are not modelled
since they have a very high bandwidth.

The pitch rate gyro and its low pass filter are
described by the transfer function

1 25
Gals) = 1 e al2ls L[s ]2 s + 25
100 100

The gust model used in the transient simulation
studies is the l1-cosine discrete type which has
the form

(3.17)

wg(t) = ¥V [gg_] [1 - cOS [2# t] ] 0<tg0.2
1§D 0.2
and wg(t) =0 t>0.2
(3.18)
where V is the airspeed in m/s .(ie V = 50), and

Wg corresponds to a gust induced incidence change
of 2 degrees.
Control Configuration

3.2

It is clear, that the system needs to be
stabilised before any fine tuning can be carried
out. To obtain stability, it has been
"traditional’ to feed back the unstable mode(s)
(in this case ep) along with other suitable
states12, But it is well known that flutter
instability is associated with the frequency
coalescence of. two or more modes (either
structural and/er rigid body modes) and in this



case it is the merging of the €1 mode and ey mode
frequencies which is associated with the ea mode
instability. Hence, it is possible to resort to
frequency separation as a means of obtaining
stability for this systenm.

. In order to carry out frequency separation,
?1ther the frequency of the es mode has to be
increased and/or the frequency of the ey mode has
to be decreased. Since acceleration signals are
readily measured (and have phase lead compared to
either velocity or displacement signals) it is
appropriate to feedback €1 in order to increase
the apparent mass of the e1 mode and thereby
re?uce its frequency. This approach is shown, in
this paper, to be very efficient in stabilising
the‘system and hence there is no need to feedback
€2 in order to increase the frequency of the e

mode. This means that only one of the two wing
flaperons is required for flutter control
burposes. Since stability is achieved primarily

by sgppressing the frequency of the e1 mode which
consists mainly of the first bending mode of the
wing, the outer wing flaperon is used as it is
more effective in controlling the wing bending.
As the inner wing flaperon is situated in the
airframe such that it has little effect on the
overall rigid body motion, it has been decided to
gelete completely this control surface from the
%ntegrated control structure. Hence the control
input and output choices for the regulation
scheme are the outer wing flaperon u, and &
respectively, that is o
uj = up and a = &y (3.19)
It is almost certain that the model will
exhibit pitching motion when encountering any
disturbance and also it may become necessary to
manoeuvre the model in the pitch plane. This
requirement results in selecting the taileron ug
and the pitch rate q as the control input and
output parameters (respectively) for the tracking
scheme, that is,
Uz = u¢ and y = q (3.20)
It is now possible to. represent equations (3.1) -~
(3.6) in the form of equations (2.31), (2.32) and
(2.33) where By, Bg, Rg, €2 and Cg are scalars.

It is evident from equations (2.42) - (2.45) that
K can have any nonzero value. However, in order
to increase the apparent mass corresponding to
the e; mode {and thereby reduce the frequency of
the_el mode), it is clear that K must also be
positive. 1In case K = 73.07 x 107 it follows
from (2.34) and (3.19) that the digital control
law is given by

up (kT}

1/T (78.07 x 1078) &y (kT) (3.21)
where T+ is the sampling period of equatioﬁ

(2.16)}.

Also, in case o3 = 0.006 and K; = Ko, it follows
from (2.35), (2.36), (2.37), (2.46) and (3.20)
that the digital control law is given by

uz (kT) = 1/T [-218,71 x 1076 e(kT) -~ 213.71 x
* 1078 z(kT)] (3.22)

268

3.3 Measurement Simplification

Of the two states that have to be obtained,
the pitch rate g is by far the easier to measure
using the pitch rate gyro. However, it is clear
from equations {(3.7) (3.11) that &; can be
deduced as a linear combination of the outputs of
all of the five accelerometers. To ease
implementational problems, it 1is possible to
reconfigure the measurement strategy such that
the number of accelerometers required can be
reduced albeit with reduced accuracy of the &g
estimate.

One way to achieve this objective is to
inspect the measurement equations (3.7) - (3.11)
and determine which of the sensors are to be

deleted and which of the rate of change of states
are to be admitted into the output thereby
contaminating €;. For each accelerometer that is
deleted, at least one of the rate of states must
be allowed into the output.
# .

The following rules were adopted to reduce
the number of permutations in the procedure
discussed above.

1. Since, €1 was the parameter that was
required, the accelerometers which were least
sensitive .to picking up &) were deleted first
from the control structure.

2. Since, feeding back &z would result in the
reduction of frequency of the ey mode (with
its dire consequences), €z was to be the last
to be admitted into the output.

3. Modes with the largest frequency difference

to the e; mode frequency (preferably the
lowest frequency modes) were to be introduced
first into the output o minimise modal
interaction.

In the event, it was found that the number of
sensors required could be reduced to just one,
this wvital sensor being the wing mid-span
trailing edge accelerometer (NZTM). The minimal
contribution from €3 combined with a fairly high

contribution from €; (eqn {3.10)}) makes this
sensor not only very useful but also rather
unique.
To normalise €1 in the output,
a = 1.727 NITM (3.23)
Hence in case K = 73.07 x 1078 it follows
from eqn. (2.34), (3.19) and (3.23) that the

digital control law for the regulation scheme is
given by

up (KT) = 1/T (1.727 x 73.07 x 10°%) NZTM (kT)
(3.24)
of equation

For the tracking schenme, course,

(3.22) remains unchanged.

3.4 Results and Discussion

The plan view of the GARTEUR wind tunnel
model showing the 1locations of the control
surfaces and the sensors is shown in Figure 1.
The open-loop poles for the complete system are



shown in Table 1.1 and the corresponding
discretized version (at T = 1/100) of the open
loop poles are shown in Table 1.2.

Results have been presented for both cases of

outputs in the regulation scheme discussed
previously. For the first case where a = g4(eqn.
(3.19)), tables 2.1 and 2.2 show the system

zeroes and the discretized closed loop poles (at
T = 1/100) and figure 2 shows the associated
closed loop transient responses when the model is
subjected to a discrete gust (eqn. (3.18).

Similarly, for the second case where a =
1.727 NZTM (eqn. (3.23)), tables 3.1 and 3.2 show
the system zeros and the discretized closed loop
poles (at T = 1/100) and figure 3 shows the
associated closed loop transient responses when
the model is subjected to a discrete gust (eqn.
(3.18)).

Examination of the two sets of results
reveals that they are similar which means that
little can be achieved by including in the
feedback, all the other four accelerometers to
the one situated in the wing mid-span trailing
edge.

The changes in the system zeros are very
small and the minimum phase characteristics are
retained even when only NZTM is used.

the
the
and

The transient responses associated with
first case (a = &1) were carried out using
digital control laws in equations (3.21)
(3.22) at an iteration rate of 100 Hz.

The transient response associated with the
second case (a = 1.727 NZTM) were carried out
using the digital control law in egquation (3.24)
for the regulation scheme, all the other control
settings remaining the same.

Comparison of the two sets of transient
responses reveals that the traces of h, o, NZIG
and the taileron deflections are very similar in
shape and magnitude. However, all the other
parameters are (surprisingly) lowered in
amplitude for the case when only NZTM is used.

4. Conclusions

In an attempt to combine the advantages of
both theoretical and experimental approaches, the
following solutions to three fundamental problems
in aeroservoelasticity have been illustred:

1. A theoretical concept has been developed,
which incorporates the use of the rate of
change of state output feedback (with certain
limitations) for regulation schemes along
with the use of 'traditional' output feedback
for tracking schemes, in an integrated
control system.

2. The highly effective method of forcing
frequency separation of frequency coalescing
modes for curing flutter instability has been

demonstrated.
3. A procedure for reducing the number of
sensors to obtain approximations of

parameters which can be difficult to measure
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physically has been presented.

The implementation of the control system has
been greatly simplified with the deletion of the
unwanted control surface uj and sensors (in the
second case). Comparison of results from
previous work? also illustrates that acceleration
feedback is highly effective in terms of
maintaining low magnitudes of control surface
deflections.

There are some other interesting features which
can be readily related to work carried out by
others:

1. The close proximity {(physically) of NZTM to
the outer wing flaperon seems to conform
closely with the layout of control systems
derived using the ILAF approach? 8.

2. The low sensitivity of NZTM to the e2 mode
(which consists mainly of wing torsion) would
indicate that NZTM is situated near the wing
torsional node line. This feature has been
used by other flutter suppression systen
designers in the past to formulate the
control system architecture on the airframe?.

The fuselage CG accelerometer has been widely
used in both wind tunnel and flight test
modelsi0.11 to eliminate rigid body dynamics
whereas this technique was found to be
unneceséary12'13 for the discrete gust
(equation (3.18)) considered in this study.

that in aircraft with FSW
configurations, since the bending mode
frequency decreases with airspeed, it is
inadvisable to feedback the acceleration
component of the appropriate elastic modal
coordinate. A more suitable approach should
invovle either elastic displacement feedback
or rate of pitch rate feedback to pitching
control surfaces (to reduce the fregquency of
the SPO mode)9,1l,

It is clear

It has also been observed that the control
system discussed in this paper exhibits good load
alleviation characteristics.
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~525.300 &i 473.349 ug actuator

~525.8300 +i 473.349 ug actuator

~1.421 +1 63.748 e3 mode

+1.630 +i 37.355 eg mode

-5.035 ] 35.139 e1 mode

-~1.314 +1 8.148 SPO

~-0.021 +i 3.531 LPO

0.000 Integrator

-2.000 HP filter
~25.000 Lp filter
~-53.668 pitch rate gyro
-186.332 pitch rate gyro

TABLE 1.1 OPEN LOOP POLES

Magnitude Arg (deg) mode
0.0052 + 88.79 u¢ actuator
0.0052 + 88.79 ug actuator
0.9859 + 36.52 e3 mode
1.0164 + 21.40 ep mode
0.9507 + 20,18 ej mode
0.9870 + 4.67 SPO
0.9998 + 2.02 LPO
1.0000 0 Integrator
0.9802 0 HP filter
0.7788 0 LP filter
0.5847 0 Pitch rate gyro
0.1552 0 Pitch rate gyro
TABLE 1.2 OPEN LOOP POLES (DISCRETIZED AT
T = 1/100)
-1.035 +i 64.366
~0.940 1 40.260
-0.604 +] 4.301
0.000
0.000
TABLE 2.1 SYSTEM ZEROS FOR a = &1
Magnitude Arg (deg) mode
0.0052 + 88.79 ut actuator
0.9862 + 36.62 e3 mode
0.9931 + 22.36 e2 mode
0.9807 £+ 15.17 e1 mode
0.9845 * 4.80 SPO
0.9994 e 2.08 LPO
1.0000 0 Integrator
0.9802 0 HP filter
0.7903 0 LP filter
0.5783 0 Pitch rate gyro
0.1554 0 Pitch rate gyro
0.0057 0 ug actuator
0.6072 180.0 ug actuator

TABLE 2.2 CLOSED LOOP POLES FOR a =

51
(DISCRETIZED AT T = 1/100)

-1.032 & i 63.957
-0.921 % i 40.048
-0.566 & i 5.284
0.000

0.000

TABLE 3.1 SYSTEM ZEROS FOR a = 1.727 NZTM

270




Magnitude Arg {deg) mode
0.0052 + 88.79 u¢ actuator
0.9860 + 36.39 eg mode
0.9928 + 22.35 €2 mode
0.9821 + 15.17 e1 mode
0.9864 + 4.49 SPO
0.9991 + 2.08 LPO
1.0000 0 Integrator
0.9801 0 HP filter
0.7896 0 LP filter
0.5788 o Pitch rate gyro
0.1554 0 Pitch rate gyro
0.0057 0 ugy actuator
0.7604 180.0 u, actuator

TABLE 3.2 CLOSED LOOP POLES FOR a = 1.727 NZTM
(DISCRETIZED AT T = 1/100)

taileron

Fig.l The GARTEUR Wind Tunnel Model showing the locations of the Accelerometers,

the Pitch Rate Gyro, and the Control Surfaces.
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Fig.3 Transient Responses for the second case (a=1.727NZTM™)
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