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Abstract

The paper presents two feedback appro-—
ximation methods for the optimal control
of an interceptor aircraft in a medium—
range scenario. One method is an advanced
application of forced singular perturbation
techniques, while the other is an updated
version of a first-order differential dyna-
mic programming algorithm. The feedback
approximations are compared to the exact
open—loop optimal control solution obtained
by a multiple shooting algorithm. The com—
parison shows that the accuracy of both
feedback approximations is very satis—
factory. The results emphasize the attrac-—
tiveness of the feedback algorithms for
airborne implementation.

I. Introduction

In the last years several feedback al—
gorithms were developed to approximate the
optimal control strategies in different
types of aircraft maneuvers(1-12) The
motivation behind this effort has been the
need for real-time optimized aircraft con-
trol in critical missions, particularly in
air combat. The task of air-to-air inter-—
ception has received great attention(4-12}
for obvious reasons. UOne of the feedback
algorithms, dealing with the point capture
of a low-flying target(7) was validated
in a pilot-in-the-loop simulation(13) ang
flight tested recently(14) These activi—
ties have provided the encouraging proof
of feasibility for such algorithms. Not
only the real-time computational aspect,
but more importantly the integration of
the guidance commands with the aircraft
display and flight control system was
demonstrated.

The other consideration in evaluating
the usefulness of a near—optimal feedback
algorithm, as of any other type of approxi-
mation, is its accuracy in comparison to
the exact optimal control solution. The
investigation effort in this direction has
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been unfortunately very limited(10,11,15)
for various reasons. In any case, the
facts are that the level of accuracy and
consequently the domain of practical
validity of the alreadx flight tested
feedback algorithm(79l ) is still unknown.

The objective of the present paper,
based on a joint effort, — the result of
voluntary international scientific coopera-
tion, - is a step towards the accuracy
assessments of feedback control approxima—
tions, which are candidates for airborne
implementation. The present investigation
deals, as many others(4‘12), with a time—
optimal interception of another aircraft.
The target is assumed to be detected beyond
visual range and the interceptor is
equipped with guided air—-to-air missiles.

The paper presents two different feed-—
back approximations: One is based on an
advanced application of forced singular
perturbation techniques (FSPT) (11,12) 4ng
the other is an updating version of a
first-order differential dynamic (DDP)
algorithm(lb) Results are compared to
the exact open~loop optimal control
solution obtained by a highly accurate
multiple—shooting algorithm (MSA).

In section 11 the interception problem
is formulated and the necessary conditions
of control optimality are derived. A brief
description of the MSA optimization techni-
que is given in section III. Section IV
presents the most recent version of an ex-
plicit FSPT feedback algorithm while the
DDP updating approach is explained in
section V. The numerical examples of the
comparison are given in section VI and dig-—
cussed subsequently.

11. Problem Formulation

Mathematical Model

The air—to-air interception analyzed
in this paper has the following
characteristics:

a. The target airplane flies in a fixed
altitude and direction at a constant speed.

b. The initial distance of separation is



large compared to the turning radius of the
interceptor, but not large enough for
allowing to reach the interceptor’'s maxi-—
mum speed. This statement defines the
domain of "medium-range" interceptions.

c. The interception terminates when the
distance of separation is reduced to a pre-
scribed value "d", determined by firing and
envelope of the interceptor’'s weapon
system.

The cartesian coordinate system used
for the analysis is centered at the target
airplane, the "x" axis being aligned with
its velocity vector. In these axes the
equations of relative trajectory are
expressed by

.‘=V - ¢ (O) =
w=Vcosy¥ cosX Ve % (Q) yo 1)

§=Vcos¥ cas (2)

=
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y(0)=y0
Ah=h=Vsin¥ 38h (0)=h (0) ~h _=Ah
(3)
The dynamics of the interceptor are
described, assuming flat, nonrotating
earth, point—-mass approximation and thrust

aligned with velocity, by the following
equations of motion:

V = gl(T-D)/W ~ sin¥] H V(0)=V0(4)
¥ = (@/V)L(L/W) cosli-cos¥] ; YO =Y, (5)
X = (g/Vecos¥) L{L/Wsiniil X(0)=xo(6)
The aerodynamic forces (lift and drag)

and the maximum available thrust are-
functions of speed and altitude
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L= o.sp(h)v‘scL (7
2
D = 0.5P{h)V sC,_ (8)
T =AT . h,V) ()

The drag coefficient assumed to be a func—
tion of the Mach number and depending on
the lift coefficient by a parabolic polar

-
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Using the definition of the aerodynamic
load factor

nd ww (11)
The drag force can be expressed as
2
D = DO+ n DI= Dh,V,m) (12)
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where D, is the zero lift drag

O

0.5p (hyv2sC

D_ {13)
O D0

and Dy is the induced drag in level flight
{(n=1)

2 2
2EWT/(PVTE) (14)

DI=

The controls of the airplane in this model
ares:

(i) The throttle parameter %
constrained by

oL ngd (13)
{ii) The bank angle "}" which

determines the direction of the 1ift force.

{iii) The aerodynamic load factor "n"
which is subject to two different types of
constraints: a structural limit which
becomes active only for high velocities
(16)

b

n Nmax
and the limit imposed by the maximum usable
lift coefficient, which is itself Mach
number dependent,

]

e
n % nL(h,M) O.SP(h)V‘SCL My /M (17)

max

The interception has to take place, as
any other aircraft maneuver, in the flight
envelope of the airplane constrained by the
following:

a. minimum altitude limit
h 2 hgip > © (18)
b. maximum speed limit, determined either

by the maximum allowed dynamic pressure
Amax ©r the maximum Mach number

1 94
. -
min{fl 2q ax/P(h)]

.
N

2
v sathoM 3 (19)

c. & combined boundary of maximum altitude
and minimum speed, called the "loft-ceiling"
limit and defined by

o.sp(h)vch 3 (W/S)

max

Optimal Control Problem Formulation

The optimal control problem to be
solved is to determine the control func-
tions, %, li*x,n* that bring the interceptor
airplane from a given set of initial condi-
tions Oig.Yos8bhgsVas ¥y, Xo) to a relative
final position determined by the "firing
envelope" of its weapon system:

2
%

1)
f

-
+ yf+ Ah;g d



in mininum time, i.e.,
J* = min J = min t
§,n, R B,n, R f (22)

The variational Hamiltonian of the problem,
using (11) and (12) is

Ha= —1+Ly(Vcos?cosx—ve)+xchos¥sinx +

+AhV5in7+Av(g/N)(ﬂTm *D0~n20i-Wsin¥)+

an

+L7(g/V)(ncosﬂ*cos?)+Lx(gchDs¥)nsinu+

—VL[nL(h,V)—n]+other constraints (23)

The necessary conditions of optimality in—
clude differential equations
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= - Q. ropy_y b
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_a_ " sinll}
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. { Msinil)
=M, COS¥) + ) gcosy- gg:’n*l ;in- X 5 i
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(275
3 = - Bﬁ= i —
xx 3% V(Akcos¥51nx hycosYcosX) (28)

The terminal conditions of the adjoint vari-

ables are determined by the transversality
conditions.  Since the final time is unkown

Hitg) =0 (29

which leads to the following results

xxf= cassfcaswf/c—k(tf)J (300
xyf= cosefsinwf/£~ﬁ(tf)3 (31)
th= sinaf/c—é(tf)l (32)
Avf= ) (33%)
h7f= o (34)
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where W¥ and 8, are the final line of

f

sight angles and é(tf)

closing speed given by

is the final

R(tf)= Vecose cost -

f
(36)
-V sian]

ftcosafCQSVfcos(xf~wf)+s1n8

f

The optimal control functions which have to
maximize the Hamiltonian, are determined by

¥ = 1/201 + signh,d ;  M# O (37)
tght* = kx/xycnsx (38)
* =
n, = A W/2xvc051 DI (39)
where
2 2 2]1/2 {40)
= +
A My T My cosy)
Eg. (39) is valid only if the constraints
of the load factor (146) and (17) are not
violated. Otherwise
* o o *
nt = mxn(nu, M e ? nL(h,M)] {41)

if the load factor is determined by (17),
i.e., n*=ng

{ .
- R sinit _
V= u MyEest Ay ey

vD, )
JRo—_T |
2 hy T

(42)

Moreover, since time is not explicity

involved

oH* _

ot 8] (43)
which leads, combined with (29) to

H* = H(W*, 1%, n*) = 0 <44)

The optimal control problem to be
solved consists of a nonlinear two—point-—
boundary-value problem (NLTPBVP) deter-—
mined by the set of 12 different equations
(1)=-(&) and (24)~(28) with the respective
boundary conditions.

The natural way for obtaining the
exact solution for such a problem is by
some iterative algorithm which provides,
assuming proper convergence, an open-loop
control. For any specified set of initial
conditions the optimal control variables
are given as a function of time. A new
set of initial conditions requires a new
solution. All numerical optimization al-
gorithms require a considerable amount of
computation., For real-time onboard appli-
cations reasonably accurate sub-optimal
feedback control laws are preferred. In



the present paper two such closed-loop con—
trol algorithms are outlined. Their accu-—
racy is evaluated in comparison with a com—
plex but very accurate optimization method
explained briefly in the next section.

II1, Multiple Shooting Algorithm

The theoretical basis of this numeri-
cal optimization method is described in
detail in Ref. 17 and its implementation is
summarized in a recent report(18’. Here
only a very brief recapitulation of the
method is given. The multiple shooting
algorithm (MSA) solves boundary-—value
problems of the form

z = flz,t) (45)

riz (0, z(tf)] =0 {(46)

where z{(t) is the n-vector of the dependent
variables (state and multipliers), and r
the n-vector of initial and final condi-
tions on z. The basic idea of the MSA is
to solve the two-point boundary-value prob-
lem by solving a sequence of initial-value
problems. To this end the interval is
divided by introducing the grid points

O =¢t3 < tp < ... € bty =ty
resulting in m—1 subintervals. In each
subinterval tE[tj,tj+1], i=1, ...,m1 the
initial-value problem

z = flz, t) (47)
is solved with the initial conditions
z{t ) = Z {48)
3 3

Starting with an initial guess Z;O),
j=1y...ym—1, the problem then consists of
finding values for Z; such that the solu-
tions are continuous across the subinter-—
vals and the boundary conditions are satis—

fied. In other words, the function
o= o, s T (a9)
177227
A, =elt,. ,Z.) — Z. .y i=lge.e,m-2
3 J+17 73 J+1 (50)
xm_1=r[21,z(tm,zm_1)] {31)

must vanish. The components of » are the
jumps across the grid points. Applying the
Newton method for adjusting the Zj the
linear system

_ 4 r 1 . W
6y-1 azy *
82—1 8] AZZ &2

m—2—I Azm—? m—2

A BGm—l AZm-—l m—1

L 4L <

{(52)

has to be solved for Azj with

~ Oz(t.+l,Z.)

Gj- 2z, (53
3
- -
A= 5z@ BT oz 59
and I the unit matrix. Defining
F = A + Bem—lsm—Z"'Gl (55)
U= - me_1+ BGm_lxm_2+...
+ BGm_le_z...GzhlJ (56)
(52) can be written formally as
FAZy = U (57)

After solving for AZy the other corrections
are obtained recursively from

AZj= ‘j—1_35—12j~1 s J=25c..ym=1 (58)

The new values for Zj are computed by
2= 2R 5oz, (59
3 3 3

with § as a relaxation factor of the Newton
method. The choice of § is most important
for the MSA to perfarm efficiently.

The MSA has been applied successfully
to many trajectory optimization problems,
such as in Ref., 19. The method is espe-
cially powerful in connection with "con-
tinuations", that is whenever solutions are
to be expressed as functions of one or
several parameters. In the present paper
it is used as a reference for comparison
in the accuracy assessment of two subopti-
mal feedback algorithms described in the
subsequent sections.

IV, Advanced FSPT Guidance Law

The feedback algorithm described in
this section is the latest version of a
family of analytically derived explicit
control laws based on the approach of
forced singular perturbation. It is the
three—-dimensional synthesis of two improved
planar interception algorithms in the hori-
zontal (11} and the vertical (12) planes.

Applications of singular perturbation
theory to aircraft performance optimization
has been based on observing an actual time-
scale-separation between different state
variables. In simple (linear, time-in-
variant) dynamic system such a time-scale~
separation is expressed by a small para-
meter £, the ratio of the respective eigen-—
values and can be made evident by a scaling
transformation. The scaling transformation
results in multiplying the time derivative
of the “"fast" variable by £. By setting

164



£=0 fast dynamics are neglected and the
order of the dynamic system is reduced.

The solution of the "reduced-order” system
can serve as an approximation of the actual
problem but it cannot satisfy the initial
and eventual terminal conditions imposed on
the "fast" variables. This deficiency is
corrected by initial and terminal "boundary
layer” solutions computed on a stretched
time-scale ({=t/£}. Thus the solution of a
singularly perturbed dynamic problem con-
sists of the "reduced-order" solution with
asymptotically matched "boundary layer"
solutions. In the "reduced-order® solu-
tion the fast variables are considered as
pseudo-controls, while in the "boundary
layer"” solutions the "slow" variables are
kept frozen to their initial (or terminal)
values.

In the strongly nonlinear problems of
flight mechanics the formal identifica—
tion of a small parameter, associated with
the experienced time-scale-separation, can
be very inconvenient., For this reason it
was proposed(l) to insert the perturbation
parameter £ artificially as a multiplier
of the fast time-derivatives. This
approach, called later (5 as "forced s5ingu—
lar perturbation techniqgue" (FSPT) has been
adapted for aircraft performance optimiza-
tion(2-12) (though not in all papers it is
referred to as such).

The particular characteristics of the
advanced FSPT guidance law presented here
can be summarized, in comparison to the
other type of feedback algorithms based on
a similar approach‘4,7’10 s in the follow—
ing points:

a. It is oriented towards a msinimum—
time guided missile firing rather than for
point capture.

b. It expresses the optimal control law
as an explicit function of the state
variables and aircraft performance
parameters.

c. It assumes that horizontal and
vertical turning dynamics belong to the
same time-scale.

d. It includes an asymptotically
matched "terminal boundary layer™ allowing
a "zoom" trajectory for interception of
high flying targets(12),

e. It can be au?mented by first—order
correction terms{11} ¢ higher accuracy or
enlarged domain of validity is needed.

The "reduced-order” model in this algo-

rithm is of three state variables, x,y, and
E (the specific energy) defined by
E=h + V2/2qg {60)

and its rate of change {(the specific power)
is obtained from (3,(4),(9) and {(12)
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£ = ~ 4
E = [ﬂTmax(h,V) D{h,V,n) IV/W Pg (&1)

In this formulation E replaces the speed as
a state variable and V serves merely as a
convenient abbreviation for

Vo= C29(E—h)]1/2 (62)
The dynamics of the reduced-order problem
(where all variables are denoted by the
superscript R) is composed of the differen—
tial equations {(1)-(2) and (61) together
with 3 algebraic constraints obtained by
multiplying (3),(3) and (&) by £ (the
forced singular perturbation parameter) and
then setting £=0. These equations yield

iR =0 (63)

R = o (64)

nR = cosyR (63)
The reduced order optimization problem con—
sists of (24), an equivalent of (26) for

and 3 algebraic equations obtained from the
left had sides of the properly reformul ated
(25), (27) and (28) set to zero. These last
equations

(67)

imply that hR,YR, and XR are to be con-
sidered as new control variables (in
addition te R, pR nR)

The consequence of (24),as well as of

(28) set to zero, together with (30) and
{(31) is
R_ R, R_
tan¥ = )»y//\x— tan¥, (68)

implying that XR=const. This leads to the
conclusion that the reduced-order trajec-
tory is confined to a fixed vertical plane
and therefore results of Refs, 8 and 12 can
be applied yielding

af= (69)
p_(E.h)
hF= arg max ——=%—r = nfeE, e
h Ve -vHeEn
(700

Equations (69)~(70) imply a full thrust
climbing acceleration towards the final

speed Vf s the highest speed attainable at

the final specific energy level Ey. This
variable trajectory is certainly incompat-
ible (physically) with (64). The actual
flight path angle along every smooth part



of the trajectory is given [combining (3)-
(4) and (61)1

R 4R
anf

R Vv

siny® 8 P:/v (1 0+ 9V, 71)

which replaces in the sequel the non—-physi-—
cal prediction of (64). The absolute value
of ¥ is, however, assumed to be suffi-
ciently small so that the approximation

cosYR X1 (72)
can be used in conjunction with (&%5).

horizontal distance covered during the
climbing acceleration is

The

f R R
‘ Vicosy dt 2 I
e e 73

and the time associated with it is given by

V (E)
P (E)

t
f
= dt (74)
J ST
Q

D

If the final point [E¢,hR(Eg)T is in-
side the qpay boundary i.e.

2
i R, R
S POV < q

(75)
then at this point by definition Pi=o,

which makes the integrals in (73),(74)
singular. Such singularity can be avoided
by replacing (73) and (74) with

. f VR(E)

dge B 1 (76)
I P (E) s
D
*
I b, (77)
P <E) s
D
where E:=0.99 Ef. Note that (70) and con—

sequently the entire reduced-order vertical
flight path depends on the parameter V?,
which is a function of Ef itself. For any
given ipnitial specific energy Eg the inte—
grals Ig and I are functions of Ef and can
be precomputed and stored. With the stored
values of Ig(Eg) the solution of the three-
dimensional reduced—order problem can be
completed. The horizontal projection of the
trajectory has to satisfy {(see Fig. 2y (11}

R
(Is+d)cosx = VTIt+ RocasvlD {78)

R 4 .
(Is+d)51nx = R051nva (79)
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where R_=(x2+ y2)1/2 g
is def;ned by (21). S;multaneaus solution
of (78), (79) yields both %R and Ef allowing
to determ1ne the appropriate altitude pro-
file hR(E, Ef) matching the initial condi-
tions of the interception (xg,yg)-

,V5=tan (yalxu) and

Since, in general, hD¢hR(Eo) a “"boun-—
dary layer" correction is needed. The con-
trol variable in this layer is the flight
path angle expressed in a feedback
form 112)

R

cos?c Q VPS

Ve v
-3

sign(hR—h) (802

(P -P_)

R
f 5

This expression equally holds for h=hR(E),
because in this case V=VR(E) and

P_th,v) = P:(E) leading to ¥C=o.

If the initial eorientation of the in-
terceptor velocity vector, expressed by Yos
Xgs does not satisfy the "reduced-order"
solution XR (XgrYa) #Xgr ¥ (hg EQ) #¥ 4, two
initial boundary layers are needed to
define the horizontal and vertical load
factor components. The FSPT method leads
to express these load factor components in
an explicit feedback form

T -D r
n =L 2y (’mgx 2 —1)]1/251n(x—:x)
h TRy, D, 2
f {81)
172
1 _nR_nR___2 R)
! 2VR Tmax Do chos ¥ ] KR‘K
nv== ] R R ! sin( 2 )
lvf-v chosv J
+ cos¥ {(82)
where
X 8 Foy,v) @3
and
= e + e (84)

The structure of (81),(82) guarantees the
asymptotic behavior of both boundary
layers. The total load factor and the res-—
pective bank angle are obtained from (81),
{82) by

2 2,172
m1n[(nh+ nv) M nmax'nL(h’V)J (85)

=
L}

tannl(n

(86)

B /n_)

V'i'h

S8ince the solution presented here is
independent of the target altitude he a
"terminal boundary layer" is needed in the
vertical projection. If he{hR(Ef), the
solution is a line along the qgs, con-
straint as shown in Ref. 7. If hg>hR(Ep),



the final portion of the trajectory has a
"zoom—climb" characteristics. A feedback
approximation based on the assumptions of
negligible specific energy change in this
phase is developed in Ref. 12. It gene—
rates a reference trajectory, asymptotic-
ally matching the reduced-—order altitude
profile h"(E) and associates the required
flight path angle ¥Z with the line of
sight elevation 8. In this terminal phase

the vertical load factor ns is given by

2= 2cosy + 2D, tanlyZ (9)-¥1

n =

(87)

replacing (82).

Eventual discontinuities of the
reduced-order altitude profile, such as the
"transonic jump” are smoothed by a predic—
tion technique described also in Ref. 12.

It can thus be summarized that the FSPT
algorithm provides a uniformly valid expli-
cit feedback control law approximating the
optimal solution. The reduced-order solu-
tion needs some simple iterations to solve
(78), (79) at the beginning. Most of the
computations are in an explicit feedback
form using real-time measurements of the
state variables. The few simple predictive
calculations, such as in the transonic jump
smoothing and in the terminal zoom match-—
ing, are to be carried out in parallel with
real-time guidance law computation without
interference. The same rule applies for
the eventual updating of the reduced-order
solution. Therefore in an airborne im—
plementation of the FSPT guidance law no
special computational effort is required

V. _DDP Algorithm

Open—-Loop Control

Differential dynamic programming (DDP)
is one of the numerical algorithms used in
solving optimal control problems(zo’. it
is essentially an open-loop solution which
is not sensitive to errors in the problem
parameters, but has some difficulties in
convergence. Associated with a conver-—
gence control parameter (CCP) techni-
que(16s21) this algorithm became an effi-—
cient computational tool. The combined
DDFP/CCF computational process can be des—
cribed (referring to the interception for-
mulated in the present paper) by the
following steps:

1. Start by guessing proper nominal
controls np{t) and ny(t). Use these con-
trols together with =1 to integrate the
equations of motion (1)-(6) from to=0 until
(21) is satisfied. _Store this nominal tra-
Jectory Ex(t),y (), h{£), V), ¥ (L), X(t)]
together with the rominal controls. Deter-—
mine J=tgy from (21) and store it.

2. Since satisfying (21) provides 8¢
and ¥¢, the end conditions of all adjoint
variables are given. Integrate (24)-(28)
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backward with the respective end conditions
{30)-(34) along the nominal trajectory.
Define a modified Hamiltonian as

-n 2+ € tn ~h )21

H=H+ O.SECh(nh h vy My

(88)

where Cp and Cy are convergence control
parameters.

Based on (88} compute the optimal
controls

nh=(Chnh+gAx/Vcos¥)/(Ch+2hvg DI/W) (89)

nv=(C +9LV/V)/(CV+2hvg DI/N) (90)

vy

The predicted cost change caused by
using these new controls is obtained by
integrating backwards

bh=g[xv(DI/N)(n +nh)—hx/Vcos¥](nh~nh)

(1)

h

+n,) =) /93, ~n,)  (92)

¥ v v

bv=gCAV(DI/N)(nv

with the end conditions bp(tg)=bylts)=0.

Store the control histories np(),ny(t)
and the predicted cost change
AJ = {(93)

[bh(to) + b (to)]

v

3. Use the stored control histories
np{t),ny{t) to intedrate the state equation
{1)~-({6) generating a new trajectory until
{21) is satisfied. Compute the new cost J.
Compare the difference (J—-J) with AJ of
(?3). If they are of the same order of
magnitude then decrease the value of Cp,Cy
and repeat step 2 until it leads to a
satisfactory convergence. If the compari-
son is not satisfactory the values of the
CCF parameters have to be increased as it
is described in detail in Ref. 21.

Closed—-Loop Near Optimal Control

The above described process provides in
most cases a reasonable accurate open-loop
solution with a small number of iterations.
The idea of a near—-optimal closed-loop con—
trol is based on the trade—off bhetween com—
putational speed and accuracy. It is well
known that any fast converging open—loop
control solution can be applied for the
synthesis of a feedback algorithm by using
only the optimal control functions computed
for the initial state, because the current
state can always be considered as a new
{updated) initial state. Measuring the
current state and using a set of fixed
controls for a short period of time allows
to predict the future state with high accu-
racy. If the control algorithm converges
to a level of acceptable accuracy during
the same period then in the next step this
optimal control can be used. By this
approach an updating closed-loop almost
optimal control scheme is generated. Such



a closed-loop structure is indeed necessary
for real-time control in order to correct
for disturbances, uncertainties and other
errors neglected in an open—loop set-up.

The first initiative to use the DDP
algorithm for this Burpose is to be cre—
dited to Anderson(22) in several aerospace
differential game applications. In the
present paper this method is applied to an
air-tg-—air interception problem. In Ref.
23 it was found that the optimal updating
period is equal to one step of a DDP itera—
tion, which is in any case the shortest
possible period. The time required to com—
plete such an iteration is proportional to
the time-to-go (tg—t)

(At)i = Kcal(tf—t) (74)

where K., can be in the range of 0.05-0.1
for an acceptable accuracy.

Difficulties of Terminal Control

It has been abserved that the combined
(DDF) (CCP) algorithm may have an oscilla—
tory behavior when the pursuer becomes near
the evader. This inconvenience is treat-
able by increasing the CCP values but then
the convergence process becomes slow and
consequently unacceptable for an updating
closed-loop application. This deficiency
can be corrected by combining the DDF with
another control law for the terminal phase
of the trajectory. For a horizontal
engagement(24) the FSPT straight line end
phase can be used, while in a vertical
plane pursuit-evasion game(25) a singular
control is applied. In the present paper
a different approach, based on a fictive
("dummy”) target located well behind the
actual target, is introduced. Since the
oscillatory behavior of the convergence is
mostly felt in the final line of sight
angles 8¢ and ¥ used in the transversality
conditions (30)-(32) a larger dummy target
range

Rd = Rf + (AR)d (AR)d}}Rf {(95)
will lead to smaller variations in these
variables for two subsequent iterations.
Since at the terminal phase the direction
of the closing velocity is very near to the
line of sight, minimizing the time to
reach Ry to the dummy target is equivalent
to reach Rg¢ for the actual target.

Implementation

The implementation of the near-optimal
closed—-loop DDP algorithm was carried out
with a rather simple Euler type integration
with a step size of 1 sec.

The nominal controls Eh,Ev were obtain—
ed from two different sources. The hori-
zontal load factor component np was com—
puted by the zeroth-order FSPT algorithm
(81). For the vertical proiection ny a
simple climb initiated by a gradual pull-up
manuever was used. The value of K_;; used
in the updating process was set to 0.05.
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The initial CCFP values were relatively
large (Cp=10, Cy=25) in order to guarantee
satisfactory convergence. The computations
were perforamed in an ordinary size IBM FC,
which by itself indicates the potential of
on-line implementation.

VI. Numerical Results

In the space limited scope of the pre-—
sent paper two sets of interception exam—
ples were computed by the three different
algorithms (MSA, FSPT, DDF/CCP) described
in sections I1I-V. In all examples an
available interceptor aerodynamic and pro—
pulsion model (an idealized version of an
F4-E) was used. In this model aerodynamic
coefficients are expressed as polynomials
of the Mach number. The maximum thrust
(with afterburner) is given in a similar
polynomial form but with altitutde depen-—
dent coefficients. The general interceptor

data, including the major flight envelope
parameters, is presented in Table 1.

Table 1. Beneral Interceptor Data
Combzi  Weight ] = 20.000 kg
Wing Area 5 = 49,25 m?
Maximum static thrust T = 121271 N

max
at sea level (4]
Limit load factor LR 5.0
Maximum lift coeffcient CL = 1.17

(M£0.6) max

Dynamic pressure limit Dpax = 83850 N/M2

The obijective of the first set of exam—
ples is to evaluate the accuracy of the
latest FSPT version‘12) for vertical inter-
ception. In a previous paper‘lz) it was
demonstrated that a set of improvements,
introduced for the correction of errors
created by identifiable sources(a’, indeed
shortened the interception time. However,
comparison with the exact optimal solution
has not yet been made, and absolute accu-
racy has not been assessed.

The initial conditions of the inter-—
ceptor in all vertical examples are kept
to be the same. Target speed and altitude
varied from one example to the other, but
target direction was always towards to the
interceptor (X,=180°). The different data
is summarized in Table 2.

The main objective of the second set
of examples is to assess the effect of
coupling between horizontal and vertical
turning dynamics in a three—-dimensional
interception for different initial inter—
ceptor velocities as summarized in Table 3.
i.e.

The end results, the interception

)Qd=1km

time for a fixed terminal range R(tf



computed by the different algorithms for
the 6 examples are summarized in Table 4.
These results are discussed in the follow-
ing section.

Table 2. Vertical Interception Data

Initial Rg= 82.8 km, hg= 1 km
Conditions Vo= 250 m/s, ¥g= 0° , Xo= 180°

Target Data X.= 0°,

Example No. 1 2 3
halkml 4.18 7.0 12.0
Valm/s] 300 300 400

Table 3. 3-D Interception Data

v

Target Data hg= 7km s Vo= 250m/s, Xu= O°

Initial Ro= 82.8km, ¥ = 30°,
Conditions

Interceptor hg= 1tkm , ¥5=0°, Xo=180°

Example No. 4 S &

Vgim/s1 220 250 330

VII. Discussion of Results

Comparison of the closed-loop DDP/CCP
updating to the optimal open-loop solution
indicates that this algorithm leads to very
satisfactory results. Based on a reason-
ably good nominal control the pay-off accu-
racy is of the order of 0.5% or better. The
results are not handicapped by the crude
integration, though they are very sensitive
to the selected nominal control. The rela-
tively larger error in Ex. 4 is indeed the
consequence of a less successful choice of
naminal control.

The assessment of the FSFT results is
more complex. The pay-off of FSPT algo—
rithms described in section IV {(denoted
"original” in Table 4) is of the order of
1% and in this respect it can be considered
as a satisfactory approximation. However,
there is a substantial difference between
the optimal and suboptimal (FSPT) trajec—

Table 4. Intercep

tories particularly in the subsonic region.
This discrepancy is illustrated the best by
comparing the flight path angle time histo-
ries for Example No. 1 in Fig. 3.

The optimal trajectory starts with a
gradual pull-up from the horizontal initial
condition and the maximum value of the
flight path angle does not exceed 18°. The
FSPT solution has an initial dive phase to—
wards the reduced-order trajectory, obtain-
ed by the energy-—-state approximation, and
then closely follows it with relatively
high flight path angles (beyond 30°%) until
the transonic-jump domain is reached. At
supersonic speeds (t>30sec) the differences
are rather small.

This observation leads to conclude that
the subsonic segment of the energy-state
reduced-order solution, used in the past in
many studies (Refs. 4,6-10,12) but not yet
tested, is unfortunately very far from
being optimal. The major reason for this
nonoptimality in a interception problem is
the invalid assumption of cos¥¥i. If the
energy-state reduced-order solution is not
adequate then also the corresponding boun-—
dary layer (requiring an initial dive), is
not needed. In order to eliminate the part
of the error which is contributed by this
subsonic climb phase the FSPT algorithm was
modified by limiting the value of ¥C
between —1° and +21°, This modification
reduced the errors in all the vertical
examples (1-3) by approximately 0.5 sec.
The origin of the main part of the
remaining error is most probably in the
zoom phase. The FSPT algorithm predicts a
quasi—-constant specific energy zoom
with a load factor of the order of 2 while
in the optimal solution this value is of
the order of 1.5-1.6. The final result
seems to be, even with the long zoom of
Example No. 3, very satisfactory.

The first step in the analysis of the
coupling between horizontal and vertical
turning dynamics is to compare the flight
path time histories of the optimal solution
(MSA) between examples 2 and 5. As seen in
Fig. 4 the difference is rather minor. In
the 3-D interception (Ex. 5) the aircraft
starts with a small dive (loosing no more
than 5 m) altitude which is compensated by
a slightly higher maximum flight path angle
(19.8° instead of 18.2359%) at M=0.94, where
the transonic phase starts. The reason for

tion time [secl

Example No. 1 2

Open—loop Optimal (MSA) 122.78 124.03

DDP/CCP Updating 122.90 124,35
FSPT (original) 123.56 124.86
FSPT {modified) 122.68 124.24

113.99 139.85 [138.26 |135.12
114.47 140.91 |138.84 | 135.83
115.02 141.49 [ 139.61 |136.24

114,54 140.09 1138.49 ;135.54
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this dive is that in the initial specific
energy level and at the given required
turning rate the optimal speed for accele-
ration is about 270 m/sec reached at the
end of the diving phase (t=4.5sec). . The
effect of this small dive on the optimal
perfaormance index is most probably negli-
gible.

This assertion seems to be confirmed by
the FSPY approximation, which decouples the
optimization of the horizontal and vertical
turning boundary layers. The three-dimen—
sional “original®” version is based on a
non-modified vertical algnrithm(lz’ and a
horizontal algorithm based on a single
reduced—-order direction X wpdating. This
algorithm provides a pay-off error of the
order of 1% which is still marginally
satisfactory. A combination of an improved
horizontal updating process, - which takes
into account the zoom-phase also and conse-—
quently predicts with good accuracy the
optimal value of XF, - as well as the
already used limitations imposed on ¥C,
leads to the “"modified" FSPT result which
is as accurate as in the vertical cases.
Even in examples 4 and &, where character-—
istics of respective low-speed and high—
speed "yo-yo" maneuvers seem to appear, the
decoupled FSPT algorithm does not lose its
accuracy.

In all cases the accuracy of the modi-
fied FSPT approximation is similar and
slightly better than of the updating

PDP/CCP. It does not exceed in many cases
the relative pay—off error of 0.35%4 .
VIiiI. Conclusions

In this paper two feedback approxima—
tions were compared to the open-loop opti-
mal solution of minimum—time air-to-air
interception problems. The comparison
shows that, although the optimal and sub-—
optimal trajectories are different, the
pay—-off accuracy of both closed-loop algo—
rithms is very satisfactory.

Both closed-loop algorithms have a
clear potential for real-time airborne
implementation. Their relative merits can
be compared only qualitatively, because
each algorithm was implemented on a differ-—
ent computer using different codes. 1t has
to be kept in aind that the DDF/CCP version
is essentially a fast updating of an ogpen—
loop algorithm and therefore sensitive to
the selection of nominal control. The FSPT
algorithm is basically in an explicit feed—
back form, but it requires some iterative
computations for improving its accuracy.
Such iterative (updating) computations can
be carried out in parallel with the feed-
back control computations and therefore
have no effect on the real-time potential.
It seems therefore that an eventual com—
bination of the DDF and FSPT algorithms can
be a very successful compromise. This
topic requires, however, a more thorough
future investigation.
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Fig. 1: Geoametry of three—dimensional
interception.
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Fig. 2: Horizontal projecton of the

reduced—order solution.
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