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Abstract

Fuel consumption in range and endurance flight is
considered as an optimal cyclic control problem.
In regard to range cruise, the incompressible and
compressible flight regimes are treated separate-
Ty because each of them shows specific effects
for optimal cyclic flight. The improvements a-
chievable in the incompressible flight regime de-
pend on the altitude range admissible. For the
compressible flight regime, it is shown that drag
rise effects represent a key factor limiting the
improvements possible by optimal cyclic cruise.
Furthermore, results are presented for endurance
flight which is more improved by optimal cyclic
control than range cruise.
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11. Introduction

There are many efforts for reducing the fuel con-
sumption in order to increase the flight efficien-
cy and performance of aircraft. Some of these are
concerned with trajectory optimization. Recent re-
sults show that the well-known steady-state cruise
is not generally optimal but improvements may be
achieved by a non-steady type of cruise (Refs. 1

- 16). This type of cruise consists of a flight
path where the control and state variables behave
in a periodic manner. As a result, the trajectory
of the aircraft is no longer rectilinear but shows
a periodic behavior consisting of repeated cycles.

It is the purpose of this paper to further develop
the understanding of optimal cyclic cruise and its
possible superiority to steady-state cruise. In
particular, it will be shown for the range cruise
problem that optimal cyclic control in the incom-
pressible flight regime may be regarded as a pro-
blem different from the compressible flight regime.
For endurance maximization, the incompressible
flight regime appears to be of predominant impor-
tance.

III. Problem Formulation

The range cruise problem is to find periodic flight
paths where the fuel consumed per range travelled
is smaller than for the best steady-state cruise.
This is equivalent to a periodic control problem
consisting of minimizing the following performance
criterion

3= - ey &
f* cyc

The expressions shown represents the ratio of a
horizontal cycle Tength xcyc and the fuel consu-
med in a cycle mf(xcyc .
For endurance flight, the performance criterion
may be written as

B tcyc

3--——(——7 (2)
Me tcyc

Both criteria are subject to the equations of mo-
tion. Since the expressions developed in the
following are concerned with ontimizing range
cruise, the equations are written in a way suita-
ble for this problem by using the horizontal coor-



dinate x as the independent variable. For opti-
mizing endurance flight, the time may be retai-
ned as the independent variable and similar ex-
pressions not given here may be developed.

The equations of motion and fuel consumption
may be written as

dV _ T-D-mgsiny

dx ~ T mVcosy

dy _ L-mgcosy

dx mV‘cosY

a (3)
x = tany

ETf . ﬁfo+aT
ax ~ Vcosy

The mass of the airplane can be considered con-
stant for one cycle, since the fuel consumed is

small as compared with the total of the mass, i.e.

mf(xcyc (4)

Periodicity of the flight path implies the follo-
wing boundary conditions

) = V(0), vix,

) - me(0) << m

V(x

cyc = Y(O)s h(X ) =

yc)
(5)

The initial condition for the fuel mass may be
written as

mf(O) =0 (6)
The models for thrust, drag and 1ift are
T = Tain(n) 6T () = T (h)]
L = ¢ (or2)V%s (7)
D = Cylo/2)V%s
where
CD = CD(CL,M) (8)

The atmospheric model which is used for air den-
sity, speed of sound and thrust dependence on al-
titude corresponds to the ICAO Standard Atmos-
phere (Ref. 17).

The control variables are the 1ift coefficient CL
and the throttle setting § which are subject to
the following inequality constraints

CL <C

CLnax
1

Lé
0=

min (9)

A

The periodic control problem can now be stated

as to find the control histories C_ and §, the
initial states (V(0), v(G), h(0)) and the perio-
dic cycle length xcye which minimize the perfor-
mance criterion J = -xcyc/mf(xcyc) subject to the
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dynamic system described by Eq.(3), the boundary
conditions given by Eqg.(5) and the inequality con-
straints of Eq.(9) for the control variables.

IV. Optimality Conditions

Necessary conditions for optimality can be deter-
mined by applying the minimum principle. For this
purpose, the Hamiltonian is defined as

: m,+oT
T-D-mgsiny L-mgcosy
H = + + A tany + A0
V mVcosy Y v cosy h f Vcosy
(10)
where the Lagrange multipliers AT =(hy sho shpshg)

h

have been adjoined to the dynamic sys¥emyoi qu(3).

The Lagrange multipliers are determined by

Eﬁ! _, T-D-mgsiny-V(TV-Dv) .
dx v mvzcosy
2(L-mgcosy)-VL o(T-VT,,)
v V
Yy 3 Ay
K mV~cosy VTcosy
dX . L
Y . (B-T)sinysmg ', _Lsiny
EE mVcos’y Y mVLCOSZY
A L (mf0+oT)siny~
coszy £ veos®y
(1)
dx, o DTy, —A Ly N oTy
dx V mVcosy v mvzcosy f Vcosy
dx
f_
w =0
with the following boundary conditions
N xeye) = A(0)s A (xey o) = 2, (00,
>‘h(’v‘cyc) = 4,(0) (12)
B 2
Af(xcyc) - chc/mf(xcyc)

The optimal controls C| and § are such that H is
minimized. For this reason, C| is determined
either by

(13)

or by the constraining bounds of Eq.(9). In re-
gard to throttle setting §, H is considered

*) Partial derivatives of D, H, L, T are denoted
by subscripts, e.qg. DV = 3D/aV.



Tinear in §. Thus, § shows a bang-bang type be-
havior:

§

it

G for H6 >0
(14)
S

i

1 for H(S <0

There may be a singular arc where & takes on inter-
mediate values if H§ = 0 for a finite interval of
time. However, this case was not observed in the
numerical investigation.

The system described by Eq.(3) is autonomous so
that the Hamiltonian H is constant. Since further-
more the cycle length xcyc is considered free, H
is given by

= 1/me(Xcyc) (15)

V. Optimal Flight Paths with Altitude Constraints

There are cases of cyclic range cruise optimiza-
tion, where it is necessary to introduce an upper
bound for the altitude range admissible. Then cy-
clic cruise must be considered as a neriodic opti-
mization problem with a state variable constraint
h < hpax. As a consequence, there are additional
conditions which are nresented in the following
according to Ref. 18.

Basically, two possibilities exist in regard to
the constraint under consideration. One is con-
cerned with the flight path touching the con-
strained altitude boundary at only one point. The
other possibility is characterized by the fact
that the optimal flight path stays on the alti-
tude boundary for a finite interval. Both possi-
bilities have been observed in the numerical in-
vestigation so that the additional conditions for
each of them are presented in the following.

The altitude constraint can be formulated as

G(x) =h-h <0 (16)
Since
(1\(Y) = tany (17a)
6 (v, v, h; ¢) = Ljacosy (17b)
mV cos”y

the state variable constraint is of second order.

In regard to the first possibility described above,
Egs.(16) and (17a) yield the following conditions

h()(1) hmax

il

(18)
Y(X1) =0

with xq denoting the point where the flight path
touches the constraint altitude. At this point,
Xh shows a discontinuous change. Denoting by x7

a point Just before the point under consideration
and by x* immediately after, the following rela-
tion ho]és
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+ -
xh(x1) = Ah(x1) + vy (19)

where vy £ 0.
The other possibility described shows a constrai-
ned arc where the optimal flight path stays on the
altitude boundary. On the constrained arc, the
Hamiltonian is changed to

H o 068 (yhse) (20)

Consequently, the following relations for the
Lagrange multipliers exist

v 3H 3 (2)
@ - ) gy G
dx
=P L el (21)
da
h . 8H 3 A(2)
dx - " on " M) R @

(2)

The equation for A¢ remains unchanged since G
is independent of M.

The relation for u(x) on the constrained arc is

(from Hg = 0 and v = 0)
SCD (22)
uix) = A,V ==— - X 22
v aCL Y

On the unconstrained arc, u(x) = 0.

In regard to the optimal controls on the con-
strained arc, Eq. (17b) yields the following

relation for (with v = 0):
c, = 258 (23)
oV=S

This represents the 1ift equation L = mg for acce-

Terated/decelerated horizontal flight.

In regard to the entry point x1 of the constrai-
ned arc, Egs.(16) and (17a,b) yield the following
conditions

h(xy) = hpay

Y(X1) =0

¢ - -0 (24)
pV©S

with C. corresponding to Eq.(13).

Some of the Lagrange multipliers show discontinu-
ous changes at the entry point. Denoting by x1
a point just before the entry point and by x1

immediately after, the following conditions 'hold

>
=
o~
x
-
~—
i

= (%) + v
(25)

>
<
—
>
Y
—
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= Xy(x1) * vy



where vg and vq represent two additional unknowns.
The Lagrange multipliers Ay and A¢ are continuous
at the entry point.

In the numerical investigation, an optimization
program based on the method of multiple shooting
was applied (Refs. 19, 20).

VI. Basic Characteristics of Optimal Cyclic Flight

In Fig. 1, an optimal cycle for range maximization
per fuel consumed is shown in order to illustrate
the basic characteristics of periodic cruise
flight. As indicated in this figure, an optimal
cycle may be decomposed into two phases which can
be characterized by thrust behavior. In the first
phase, thrust is at its maximum which, due to

Tmax > D, results in an increase of the energy
state of the aircraft. The second phase shows
thrust at its minimum where the energy state in-
crease of the phase before is used to gain as much
range as possible. Corresponding to the thrust be-
havior, speed level in phase 1 is high as compared
with phase 2 and altitude indicating potential
energy level shows an increase in phase 1 and a
decrease in phase 2.

The behavior just described can be used to give a
physical insight into the reasons why cyclic crui-
se can provide a reduction in fuel consumption.
This ig illustrated in Fig. 2 which shows the
senergy added per fuel consumed for optimal cyclic
cruise and for the best steady-state flight in the
altitude range considered. Due to the high speed
level in phase 1, it is possible to reach values
of (dE/dmf)cyc which are considerably better than
the best values of steady-state cruise (dE/dmf)et.

In the following, improvements due to cyclic crui-
se are shown and decisive aircraft factors are
identified and evaluated. For this purpose, it is
suitable to treat the incompressible and compres-
sible flight regimes separately since the physi-
cal effects underlying optimal cyclic flight in
both regimes are quite different.

VII. Optimal Cyclic Cruise in the Incom-
pressible Flight Regime

Maximum thrust Tevel available represents a key
factor as regards cyclic cruise and its possible
improvements. This is already indicated by the
thrust behavior outlined in the description of the
basic characteristics of optimal cyclic cruise as
illustrated in Figs. 1 and 2. From the thrust be-
havior described it follows that the improved fuel
utilization for increasing the energy state is due
to the fact that excess thrust is available. An
example for the effect of maximum thrust available
on the trajectory is shown in Fig. 3. Characteris-~
tically, the higher thrust level results in larger
amplitudes of the changes of speed and altitude,
thus showing a more pronounced oscillatory beha-
vior.

An evaluation of the effect of maximum thrust on
the improvements achievable is shown in Fig. 4.
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From the results presented it follows that the
gains can be significantly increased when more
thrust is available. Fig. 4 also includes the ef-
fect of a non-zero minimum thrust phase. The mini-
mur thrust is related to minimum drag of steady-
state horizontal flight Dpip = mg(CD/CL)pin. Fig.4
shows that the minimum thrust level also has a
significant effect on the gains achievable which
are reduced when minimum thrust is increased.

It may be of interest to note how much the length
of the optimal cyclic trajectory is increased when
compared with the horizontal distance travelled
which also represents the length of the steady-
state cruise trajectory. This is illustrated in
Fig. 5, where scyc is the actual flight path length
of cyclic cruise and xcyc the corresponding hori-
zontal distance travelled. Fig. 5 shows that there
js some length increase which becomes larger when
more thrust is available. This is due to the fact
that a higher thrust level yields an oscillatory
flight profile behavior more pronounced.

In the results presented so far, an altitude con-
straint h < hypax is imposed. This indicates a ten-
dency for the optimal altitude range to be as high
as possible. In regard to steady-state cruise, an
increase of the altitude range admissible usually
also yields an improvement (excluding the compres-
sible flight regime). It is therefore of interest
to know how the optimal cyclic cruise compares to
the best steady-state cruise when increasing the
altitude range admissible. This is illustrated in
Figs. 6 and 7. Fig. 6 shows flight profiles for
various values of hyayx. Fig. 7 presents an evalu-
ation of the effect of the altitude constraint.
From this it follows that the improvements achie-
vable with cyclic cruise are reduced when the-al-
titude range is increased.

The tendency of the curve of Fig. 7 suggests that
the improvement due to cyclic cruise may disappear
if the admissible altitude is high enough. From a
practical standpoint, however, this effect may be
of minor importance when ‘comparing it with the con-
sequences resulting from the fact that the altitu-
de range increase leads to higher speeds which
eventually may approach the compressible flight
regime (as indicated in Fig.7). In such a case, an
altitude constraint changes its meaning for. the
optimal cycle and may even not become active des=
pite sufficient excess thrust since the drag rise
due to compressibility may become of predominant
influence.

VIII. Optimal Cyclic Cruise in the Compressible
FTight Regime-

For steady-state cruise, it is well known that the
drag rise due to compressibility in the high sub-
sonic Mach number range Timits the maximum Mach
number economically usable. It is therefore an
effect of primary importance for all flight ve-
hicles at subsonic speeds. It will be shown in the
following, that the drag rise due to compressibili-
ty also represents a key factor for cyclic cruise
where it acts as a kind of barrier, too.



An example is presented in Fig. 8 which shows an
optimal cylce with the altitude constraint remo-
ved and no other constraint imposed. There is
again a maximum and a minimum thrust phase which
can be considered as basic elements of cyclic
flight as described earlier. However, the oscilla-
tory behavior in terms of maximum changes of Mach
number and 1ift coefficient is reduced. In parti-
cular, the maximum Mach number attained appears
to be limited, despite the fact that no Mach num-
ber constraint is imposed. The reason for this
type of effective Mach number Timitation is due
to aerodynamic characteristics because compressi-
bility effects yield a substantial drag rise in
the Mach number range of interest. As a conse-
quence, the results for cyclic cruise in the com-
pressible Mach number range show only small im-
provements when compared with results for the in-
compressible flight regime as described earlier.

IX. Optimal Cyclic Endurance Flight

For the range cruise problem, the improvements
possible by cyclic control appear to be reduced
when no altitude constraint is imposed or when the
compressible flight regime is approached. By con-
trast, endurance flight may be significantly im-
proved by cyclic control. An example is presented
in Fig. 9 which shows the histories of state and
control variables. There are similarities as re-
gards the maximum and minimum thrust phase and

the corresponding climbing and sinking flight con-
ditions. However, there are also significant diffe-
rences. The speed attained remains within the in-
compressible flight regime. This means for the
aircraft models considered that a separate treat-
ment of the compressible flight regime is not ne-
cessary. Another difference concerns the altitu-
de boundary. In the numerical investigation, it
was observed that the greatest endurance per fuel
consumed was reached for altitudes as Tow as pos-
sible. Therefore, it was necessary to introduce

a lower bound for the admissible altitude range.

The maximum thrust Tevel is again of great influ-
ence. This is illustrated in Fig. 10 which shows
endurance of optimal cyclic flight (teye) as com-
pared to the best steady-state flight {tst) for
the same amount of fuel. From the results presen-
ted it follows that the improvements of optimal
cyclic control are significant even for compara-
tively low thrust levels.

X. Conclusions

Minimization of fuel consumption for a given range
is considered as an optimal cyclic control problem,
partially with a state variable constraint given by
an upper altitude bound. The incompressible and
compressible flight regimes are treated separate-
1y because each of them shows specific effects.

In regard to the basic characteristics of cyclic
cruise, an optimal cycle may be decomposed into
two phases of which one is a maximum-thrust in-
creasing-energy condition and the other a minimum-
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thrust decreasing-energy condition. The improve-
ments of optimal cyclic cruise are due to a better
energy management.

In the incompressible flight regime, the improve-
ments depend on the altitude range admissible. They
are reduced when the thrust level is reduced or the
maximum altitude admissible is increased.

In regard to the compressible flight regime, it is
shown that cyclic cruise can provide an improve-
ment which, however, is comparatively small. The
drag rise due to compressibility is identified as
a key factor limiting the possibilities of cyclic
cruise at high subsonic Mach numbers.

Endurance flight may be more improved by cyclic

control than range cruise. It is shown that the
maximum thrust is again of great influence.
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