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Abstract

This paper is devoted to the formulation of a
simple algorithm allowing the determination, in a
closed form, of the diverygence instability of
advanced composite swept (back and forward) wing
structures. The warping restraint effect is
incorporated into the analysis and its influence
on the associated static instability condition is
put into evidence. In this sense, it is shown
that, in contrast to the case of conventional
metglic wings, when the warpiny restraint effect
has a stabiliziny influence only, in the case of
anisotropic composite wing structures, its
influence becomes more complex. The behaviour in
divergence of swept composite type winygs in which
framework the warpinyg restraint effect is taken
into consideration constitutes the principal yoal
of this study. The numerical examples illustrate
the complex role played by the warpiny restraint
effect on the diveryence instability of composite
wings.

1. Introduction

The expanded utilization of laminated
anisotropic composites in the wodern aircraft
industry has ted, duriny the last few years, to
the development of a new concept in the desiyn of
dgeronautical and space structures . This concept
known as aeroelastic tailoriny is defined as the
technology applied to fliyght vehicle structures
{and to other devices experiencing aeroelastic
instability phenomena as e.y., turbine and
helicopter blades), in which framework the exotic
characteristics of advanced filamentary composite
materials are properly used in order to enhance
their aeroelastic response characteristics. ine
of the best and most efficient applications of
this concept is constituted by the forward swept
wing (FSW) aircraft. As is well known, in the
case of swept-back winygs, the bendiny deformations
tend to reduce the local anyle of attack (and
implicitely the aerodynamic load}, while in the
case of a swept-forward winy the bendiny
deformations have an opposite effect, tendiny to
increase the local anyle of attack.

The above mentioned effects, referred to as
wash-out and wash-in, respectively, result either
in an increase of the aerovelastic diveryence speed
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or, in the second instance, in a low static 1.2
instability speed. In the fundamental works"?
devoted to the study of the divergence instability
of swept metalic winys it was shown that this
behaviour precludes practically the consideration
of FSW aircraft as a possible option, in spite of
its potential advantages of aerodynamic and
performance nature. In an attempt to alleviate
this instability phenomenon jeopardiziny the free
emp]oymegt of FSW aircraft, the atydies prompted
by Krone” continued by Weisshaar™ ' and followed
in a series of gthgr theoretical and experimental
research works, =13 nave revealed, that a
composite forward-swept winy can be
aeroelastically tailored' to overcome this adverse
static instability phenomenon.

Concerning the yeneral framework in which
this problem was modeled and the character of the
solutions obtained thereof, it should be pointed
out that: 1) the concept of a simple anisotropic
commposite Rl9te-beam model oriyginated in the
studies!?»*/ was used throughout these
investiyations and that, ii) the diveryence
instability solutions for composite swept winys
encompass both %1oi§d torm solutions%+0=8 and
numerical ones.Ys As concerns the first
ment1?¥3d6class of solutions, tgey are either
exact' 'Y or approximate ones.® It should also
be mentioned that, as far as the auth053of this
paper is aware, with the exception of,*> the free
warping assumption for the winy twist has been
unanimously adopted in the treatment of th{g 13
problem. However, the results obtained in "
related to the diver§7nﬁf instability, as well as
the ones derived in /7 reveal the yreat
importance of the axial warping restraint effect
(WRE) on the behaviour of cantilevered type
structures. The goal of this paper is two fold:
i) to develop a simple algorithm allowing the
determination in an explicit form of the static
instability conditions for swept composite type
wings, the warping restraint effect beiny
incorporated and ii) to elucidate its implications
in the aeroelastic diverygence problemn of composite
swept winys.

Tne aeroelastic tailorinyg concept applied 1o
composite lifting surfaces in yeneral and to
forward-swept winys in special was daiscussed
recently and thoroughly analyzed in a series of
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**This stabiliziny influence is stronyly manifested in the case of small AR wings and declines for

moderate AR wings.

TThe aeroelastic tailoring concept was also applied in the supersonic panel flutter problews. For a

state of the art of this topic see Chapter 1 of [14].

here the term exact is used in the sense that the divergence instability solution was obtained in the
framework of some assumptions initially stipulated. This means that no other assumptions beyond the

initial ones were used in the treatment of the problem.
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excellent survey-papers, where the state of the
art of the problem is presented. 1In this sense
the reader is referred to references 22-24.

2. Analytical Developments

2.1 Preliminaries. Basic Assumptions

Consider the case of a swept (back or
forward) wing structure, idealized as a box-beam
whose upper and lower faces are constructed of
laminated composite materials. As in references
[5,61, we shall postulate also the existence of a
reference axis (RA), coinciding with the y axis
and located in the reference plane of the box-beam
and at mid-distance between its front and rear
edges.

The anyle of sweep (considered positive for
swept back and negative for swept-forward wings)
is measured in the plane x-y of the wing from the
direction normal to the airflow to the reference
axis. The wing is considered clamped normal to
this RA, its effective length 2 beiny measured
alony this axis. All parameters associated to the
wing sections, such as chord, location of the
aerodynamic center, etc. are based on sections
normal to the RA (see Fig. 1).

The material of each constituent lamina is
assumed to be orthotropic. Without contrary
mentions the orthotropicity angle 8,., of each
laminae is measured in the counterc‘BQwise
direction starting from the rearward normal to the
y axis. In addition to these assumptions, we
shall postulate that the chordwise deformation, as
well as the wing distortions are negligibly small.

2.2 The Governiny Equations

For the sake of completeness, and definition
of the involved gquantities, a short derivation of
the equations governing the aeroelastic
equilibrium of a composite wing structure is
presented in the Appendix. In their deduction,
the above mentioned assumptions are appropriately
used. For the static case considered in the
paper, the aerodynamic terms L and T intervening
in the equilibrium equations and representiny the
1ift and the aerodynamic torsional moment (per
unit length), respectively are expressed as:

L(y) =g ca® ¢e Tly) = qceap .. (1)
where qn(E 00/2 Vi) =g cosZA denotes the dynamic

pressure component normal to the leading edye;
3, (= 2nAR/(AR + 4 cos A)) denotes the Tift curve

slope coefficient, where AR denotes the wing
aspect ratio. (For additional refinements
allowiny to incorporate compressibility effects
see References [25, 26]); Bagg = 0 - ZétanA

where 8 denotes the twist! about the RA while
zé(sdzo/dy) denotes the bendinyg slope of the RA

measured alony this axis. With all these in view,
the equations governing the static aeroelastic

equilibrium of non-uniform composite swept wings
reduce to:

HWAyH ] 11} 2 ]
(D,,Z5)" = (D,0')" = qca cos“A(6 - Z tanh)

2270
(2)
(_c_3_D ell)ll - (D 9)! + (D le)l
12 22 66 2670

B 2 .
= qgcea cos A{9 - ZotanA)

These equations are to be supplemented by the
appropriate boundary conditions (A.14) and {(A.l5),

In the followiny, the equations (2) will be
converted to an inteyral form, having an eneryetic
meaning. Towards this end, the eguations {2) ana
(3) will be multiplied by Z,dy and edy,
respectively and integrated over [0,2]. {In the
terminoloyy of the functional analysis, the above
mentioned operation is referred to as the scalar
multiplication [27}). Introduction of non-
dimensional deflection Z (=Z /2) and spanwise
coordinate n (zy/2), followed by the partial-
integration of the obtained equations, whenever
possible, result in the equilibrium equations
expressed in integral form as well as in some
terms to be evaluated at n = 0, 1 and which vanish
by virtue of the boundary conditions (A.l5) and
(A.16). Under this modified form the equations
are:

1 . 1
{u Dpp(Z 17)7dn - fU Do, 11%,19"
5. 1 1
- q.a o[l coldn - tanA [ cZi ,dn] =0
n-o 0 0 1
(3)
1 . . 1 .
o2y -1 3 2 2
(1227) [U D,C (9,11) dn + fu 066(9,1) dn
1 P S
- 9261,116,1"“ R {{ ceddn
[§] 0
1 ~
- tanA[ cedl pdnd =0
U s

Under this form, the equations (3) express a
balance of eneryies, each term playiny a certain
roie in this balance. The lowest positive value
of the dynamic pressure g for which the elastic
stored energies equal the ones furnished by the
airstream, corresponds to he winy divergence
speed. In other terms, the minimum value of g for
which the balance of eneryies as governed by the
equations (3), vanishes identically, corresponds
to the divergence instability conditons. The
above equations may be used for the approach of
the static instability of variable and uniform
composite swept wings, as well.

2.3 The Case of Geometrically Similar Cross-
Section Wings

In this case, the geometrical and structural
parameters of the composite winy may be expressed
as (see e.y., [1,61):

TThe twistiny anyle 8 is not to be confused with the orthotropicity angle B(J)_



g=1-(1-"f)n while f(ch/cR)

denotes the wing taper ratio (0 < f < 1). Here
the superscript (or subscript) R affecting a
certain quantity identifies its affiliation to the
wing root section.

By virtue of (4), the equations (3) may be
reduced to:

1

4,5 2 4
[z (2,11) an - K[ £ Z’lle’ldn
0 0
1 1
- al[[ EpZdn - tanh [ £77 1dn] =0,
0 0 :
L 2 Loy 2
Se fU £ (9’11) an + [ £ (6,1) dn (5)
0
1
4~
-6 [ £%7 ,.8 .dn
0 L1171
1, . 1.
- a,[f efofan - tann [ &%67 dn] = 0.
0 0 :
where

SR, R . R ,R

define the non-dimensional structural bendiny-
torsion coupling parameters (shown in reference
[4] to satisfy the condition KG < 1, where KG

defines the cross-coupling stiffness parameter),

S R

S = ——E?-—%g (7)
124 Des

stands for the warping stiffness parameter:
_ 3 R
3 = 4Ch7a /D (8)
_ 2 R
3y = net 2o/ Dgs

define two speed parmeters associated to the
bending and torsional deyrees of freedom,
respectively.

Concerning 6(n) agg Z(n), they will be
expressed in the form:

8(n) = ¢, f(n)
< {9)
L(n) = CZW(n)

where f(n) and W(n) stand for the normalized
torsional and bending deflection functions,
(assumed to satisfy the boundary conditions
((A.14) and (A.15)), Zy and z, playing the role of

generalized coordinates. Insertion of (9) in (5)
and invoking the standard requirement of non-
triviality of the solution of the obtained

nomoyeneous equations, result in the divergence
condition expressed in determinantal form as:

A, =A..
2z 2y Ly, (10)
R A
where
1, ) 1
Ay - ru E7(W 19)%dn + a tanh fu EWN ) dn
1, 1
A12 =K [ £ w,llf,ldn +a [ EWfdn
0 0
1 5 2 Vg o2
Aop = Sp [ EN(F 1) %dn + [ £7(F 1)%n
0 0
1
-a, | £20%dn (11)
0
1, 1,
Ay, = G (0 £ w,llf,ld“ - a,tanh (U 3 fw’ldn

Equation (1U) considered together with (11) may be
converted into the form:

2

b Y b ths
Its lowest positive root corresponds to the
diveryence speed of swept composite type-winys.

L Ly, =0 (12)

In (12), the coefficients Ly, depend on the
structural and yeometrical charac%eristics of the
composite wing and on the selected mode shape W
and f. Their expression is yiven by:

1 1,
= AtgA[[ EfWdn [ E°fW ,dn
11 1
0 0
1, ., 1
- P6fan [t Ldn]
0 0

1, 2 1
L., = StanA [ &' (f .,)%n [ ZWW
12 11
0 0
1 2 1
dn [ EWW
0

19"

v tann [ E3(r dn

)
0 1
1, 1
-G [ E'W 11 gdn [ EWfdn (13)
0 i 0

»1

1 1

- AL efan [ £t
0 0 ’

1, 1

- KtanA [ € w’llf’ldn f

2 Eu Ldn]
U s

0

1 1
~ 7 2 4 2
Liz3 =8 IU £ (f,ll) dn fu £ (“,11) dn
1 1

4 2 4
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0 ,1 0 ,11
. Kg[fl TR G

" Wt nl .

In the deduction of (13), use was made of the
relationship:

a2 = alA, where A =

R
2066



Concerning the solution of Eq. (12), it should be
stressed that its accuracy depends essentially on
the appropriate selection of modal functions f{n)
and W(n).

2.4 Special Cases of the General Equation

Several special cases will be considered
next. They result by the appropriate
specialization of the general equation (12).

These cases concern: a) the divergence of swept
wings in pure bending. 1In this case it may be

assumed that the torsional rigidity is very large,
allowing to consider D_. » » , From (12), having
in view (13), (6) and ?9) one obtains:
W

1 2

2 [ Dyp (Wsyg)
a_ tanA fl c(wz) dn
0 0 1

dn

(a,)y 3 (15)

This result coinciding with the one obtained in
[261 shows that only a swept-forward

wing (A > - A) can diverge in bending. In this
case the aeroelastic tailoring reduces to the
increase, as much as possible, of the bendiny
rigidity Uy, However, as it may be inferred from
(A.16), a symmetric laminate (for which the
coupling rigidities Kij > U) is preferable to an
asymmetric one (for which Ki' # 0). For a uniform
wing, by uging fgr w(ﬁ) the @epresentation:

W(n) = (6n° - 4n~ + n 3/3, one obtains readily
that Ay = 6.40 D,,/c2” . The difference occuriny
with rgspect to tg exact one {whose coefficient
is 6.33) is of only 1%. Here A = q_ a, tanA

where A is to be considered a negat?ve angle. It
may be remarked that in the pure bending case the
warping restraint effect is not present, as it is
well evident.

b)Divergence in pure torsion. In this case
it is assumed that the bendiny rigidity %y is a
large quantity while the warpinyg rigidity
parameter remains a finite quantity. Conversion
of the Eq. (12) in terms of ay, with the help of
(8), and employment of (6), result in the
following approximate expression for (qn)D :
1 2
IU 56 ’1) dn

1 2
fo ce f° dn

(f

0

adn

1 3
[U D,, ¢ (f
)

’11)
o2 (1
1205 [ O (F,7)

x (1 + (16)

The last term in the bracket identifies the
contribution of the warping restraint effect. Eq.
(16) shows that the divergence instability in pure
torsion may occur for straight wings only (in this
case (q ), * q.) « Considering the case gf
uniform wings Qnd selecting f(n) = 2n - n°, one
obtains:

2.5 i%G

ce 22 a
Two remarks are in®order: a) In the case of the
free warping (corresponding to S » 0), the exact
solution predicts 2.47 instead of the coefficient
2.5 obtained here, and b) in contrast to the case
of metalic winys where the warping parameter S is

fixed by the isotropicity of the material, in this

q = (1 +35). (17)
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case, this parameter results as a function of ply
orientation and stackinyg sequence. Therefore its
value may be increased by usiny adequately the
tailorinyg concept.

c) The case of uniform swept wings. The
equation (12) of the divergence instability
remains valid in this case, too. Its coefficients
L;; appropriate to this case are obtained by
spgcializing (13) for # > 1.

In such a manner the properties of the
uniform wing will correspond to the ones defined
at the wing root. Having in mind this fact, in
the following the index R will be suppressed.

The two distinct cases, corresponding to the
inclusion (S . # 0) and rejection (S = Q) of WRE
will be considered separately. Associated to
these two cases, the boundary conditions at n
0,1 are in number of four and three, respectively
(see Egs. (A.14), (A.1b) and (A.17), (A.18)). The
modal functions, appropriate to these cases will
be considered in the form: For the free warpiny

case:
f(n) = 3n - 3nd + nj
2 .3 4 (18)
W(n) = (6n° - 4n~ + n")/3
For the restrained warping case:
f(n) = 10n2 - 20n3 + 15n4 - 4n5 (19)
19
W(n) = (6n2 - 4n3 + n4)/3

Employment in (12) and (13), (specialized

for £ > 1), of the representations (18) and (1Y)
for f and W, result in the following expressions
for g (EqD) in divergence:

_ 2.8(1 - KG)

3 2
aocz cos A

- KtanhA

1
ap * 0o/ (a7eY 10, 10557

- 0.4375 (tanA - G)1} (20)

(for the free warpiny case),

_ 2.392(1.4 - KG) + 72.333S

a0c£3coszA

b

1.19347 - KtanA

X {Dzz/[u/e)(v%/vzzi

- 0.45712 (1.144 tanA - G)

- 11.3Stanp} b, (21)

(for the restrained warping case),

The expression (20) is similar to the one
obtained in [6, Eq. 27], by neylecting the warpiny
restraint effect. In spite of the slight
differences in the coefficients (2.8 vs. 2.47 and
0.4375 vs. 0.39 - the last ones belonyging to
Weisshaar's expression of qm), the numerical
applications reveal a difference of only (1-2)% in
the values of g, the ones obtainable from~ being
slightly more conservative than the present
ones. For the case of composite unswept
wings (A + 0), when only the structural coupliny
is present, the employment of the followiny



consistent representation for the modal functions:

f(n) = 2n - n2 ;o W(n) = (3n2 - n3)/2
results in a reduction of the differences of the
two coefficients (i.e., 2.5 vs. 2.47 and 0.4166
vs. 0.39), and implicitely of the predicted
critical vaiues of g. It may be concluded that
the presents analysis may furnish rather accurate
solutions when compared with the available exact

ones {derived for the free warpiny case).

In addition, the present approach could
provide quantitative resuits concerniny the
influence of WRE on the diveryence instability
characteristics of composite swept wings. In this
respect it should be pointed out that the
incorporation of WRE yenerates a series of
qualitative and quantitative differences with
respect to the free warpiny counterpart. While
the qualitative differences consists in the
difference in the order of the equations governing
the instability in divergence of composite swept
wings, and as a result, in the difference of the
associated number of boundary conditions to be
fulfilled, the qualitative ones are not of less
importance. These differences involving the
values of the divergence speed could be of the
order of (20-30)%. In this context it should be
underlined that: 1) in contrast to the case of
metalic unswept wings where the stabilizing
influence of the warping restraint effects for
small-aspect ratio wings declines for large or
moderate AR wings, (see [16]), in the case of
composite swept wings, its influence may be strony
also in the case of large AR winygs, and ii) in
contrast to the case of metalic swept winys in
which context the warping restraint effect has
solely a stabilizing character, in the case of
composite winys its influence could be also
destabiliziny.

In the same context the concept of the
divergence-free sweep angle prompted by
Weisshaar®s0 could be useful in this case, too.
The angle Acp is defined as the minimum (positive)
and maximum {neyative) sweep anyle above and below
which, respectively,the diveryence instability
becomes impossible., Their expressions in each
case are obtainable from (20) and (21), resulting
in:

G+

2.286{e/2)(6/K)
1+ 2.286(e/2)G

(for free warping case)

tanh (22)

and

G + 2.6108(e/5)(G/K)
1.144 + 2.1876{e/2)G + 24.72Se/(2K)

(23)

tanAcr

(for restrained warpiny case).

In addition to the conclusion substantiated
in references [5,6] (and which could be re-
obtained from Eqs. (26) and (27)), according to
which, in the case of swept composite winys there
is possible to determine such sweep angles in the
forward swept range for which the divergence
instability is precluded at any fliyht speed,
another one may be established. This one,
resulting from Eq. (23) concerns the fact that WRE
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may contribute either to the increasing or
decreasing of Acp. However, as it may readily be
seen from Eq. (23), this influence could be
controlled through the appropriate tailoring.
this sense, the sign of the cross-coupling
parameter K may play an important role in this
aeroelastic tailoring control.

In

3. Numerical Illustrations

The accuracy of the present approach will be
tested by comparinyg the results obtainable from
the Eq. (20) with their counterparts derived in
[4,6] in the framework of a free warping model.
Towards this yoal we shall consider the wing
configuration analyzed in [4,6]. It consists of N
= 20 plies of the same thickness (t = 0.,12") and
the same material (boron-epoxyg Its elastic
co stants are x 107 psi; Ep = 3.2 X
107 psi; = 1. 65 X 10 psi; vyp = 0.36. It is
assumed tha the angle of the ply orientation
8,.y is equal for all the constituent layers, and
aﬂé& that the wing is of constant chord, with AR
6, e = 0.1¢; a, = 5.

Table 1 displays several values of (q,]|
obtained on the basis of the present approacR (Eq.
(20)) and of the approach developed in [4 6].

These values are identified as qn,D and (q ID),
respectively.

Table 1
A= -30°

] v° 30° 60° 90°
{an)p x 10'3 278.265 227.270 230.687 1530.564
(an)D X 10'3 272.301 225.060 226,486 1316.314
Relative

Error % 2.2 43 1.85 1.1
Table 1 Cont'd.

] 120° 150° 180°
(an)p x 1073 - 572.070 278.26
(d,)p X 107 - 565,283 272.301
Relative

Error % 1.2 2.2

In F1gures (2)-{4), the variation gf the ratio
vs AR is depicted, where q, and g, denote
tne q of divergence obtained by incorporating WRE
Bl) and by disreyarding it (Eq. 20),
respect1ve1y.

The confiyuration as well as the structural
characteristics, previously considered, are
adopted in these instances, too. Figures (2)-(4)
reveal the stabilizing influence of WRE, which, in
contrast to the conventional metalic wings, is
present in the case of high AR wings, too. For
special ply orientations (as e.y., 6 = 6U°, WKRE
appears to have a strony beneficial 1nf1uence even
for high AR wings.

However, as it may be shown, the WRE
considered in the context of the composite type



wings could be also detrimental. This is shown in
the case of a winy structure in which the plies of
a ygraphite-epoxy material, are arranyged in the
sequence (90°/-4b°/45°/u)5.

The boron-epoxy material is characterized by
the constants: E; = 30 x 10° psi, £, = 0.7 x 10
psis G, = 0.375 x 100 psi; vy, = 0855 t =
0.0us",

We consider the wing of AR = 18 the remaininy
constants beiny the same as in the previous
example. In this instance we obtain for the non-
dimensional coupling parameters K and G the
values: K = -0.13296; G = -0.20782. On the basis
of Eqs. (20) and (21) one obtains:

48.6
* tT e
4y = 55 < q) = (—=5)
n cﬁ3 n c13

which shows that the WRE could be also
detrimental.

These numerical findings enforce the
conclusion that in the case ofcomposite winys the
warping restraint effect is to be taken into
consideration whenever their divergence
instability is investiyated.

Appendix

The winy structure is idealized as a
laminated composite flat plate whose constituent
laminae are characterized by different
orthotropicity angles and different material and
thickness properties. The interface plane between
the contiguous layers (r) and (r + 1), (1 <r <N
where N denotes the total number of constituent
fayers), will be selected as the reference plane
of the composite structure.

The points of the reference plane (defined by
z = 0) will be referred to a Cartesjan system of
coordinates {(x,y) (see Fiy. 1), where the upward
z-coordinate is considered perpendicular to the
{x,y) plane. Adopting the Kirchoff assumptions
for the composite plate as a whole, which yields

V=V - zRV3/3X1 sV, =

2 P zBV3/3x2

(A.1)

where

Vi Valy,z) vy va(kGy) = Vs

representinyg the deflection vy in the form:

valx,y) = Z,(y) - x8{y) (A.2)
where ZO = Z (y) and & = a(y) denote the
deflection afsociated to the reference axis points
and the twist around this axis respectively and
postulating that the chordwise sections of the
wing are rigid which involves:

vy 0 and vy v2(y),

all these result in the followinyg expressions for
the 2-D strain components:

~ = { = = ' .
11 ), 12 v, oy = Vs (A.3)
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Ky =0, Ky =28, Ky
where 3()/dy = {)', while e,  and «. . denote the
stretchiny and the bending {rain c3$ponents,
respectively. In order to obtain the equations
governiny the static equilibrium of the composite
wing and the associated boundary conditions,
(B.C.) the virtual work principle of the 3-D
elasticity theory will be applied. Towards this
end the stationarity condition of the functional

= -(ZO - x8")

J =y - TV a0 (A.4)

Q

3-b

which is to be converted in terms of quantities
depending on the y-coordinate only, are to be
determined. In (A.4) U denotes the strain eneryy
of the 3-D body while T; denotes the external
loads applied on 97 e 0. By selecting the
reference axis located in the reference plane at
the mid-distance between its front and rear edges,
by performing the integration in the expression of
U across the thickness of the composite plate and
in the chordwise direction, and by defining the
anisotropic stiffness quantities:

N —
Gy = 5 w0 M e
A S 2 2
2 lE Wi T e
N
— 2 2 ]
S @) 0y - M) s
o WMo T ey
(A.5)
N
1 = 3 3
bi5 =3 2 @i eo Mo - Meken

(i,J = 1’2’6)

which correspond to stretching, bending-stretching
couplinyg and bending rigidities, regpectively (see
{14]), and where hy,y denotes the distance alqng
the z-coordinate f#o% the reference plane until
the top face of the kth layer; (Qi') K denote the
reduced orthotropic moduli of the ﬁtﬁ iayer
referred to the off-axis system (represented by
the (x,y) coordinates). With all these in view,
the 1-0 counterpart of (A.4) writes

2

=y - L+ LT
R N IOV(YVZ Lz,
- T9)dy (R.6)
where
1 * 2
U = §v(o €Cyy(vy) dy
)
tal (2l
U = fo c(2Kyvaf' - KooV zo)dy
3
1 . 12 2
_ = A + 4D __ (@
Uy = 7 (0 (cLDZZ( o) 66( )



- 40,cB'1%)dy (A.7)

denote the strain energies associated to the
stretching, bending-stretching coupling and
bendiny, respectively, while Y, L and T denote
spanwise, the 1ift and torsional aerodynamic
moment, respectively.

From the stationarity condition

8J 0 {(A.8)

1-D
by takinyg the variation of the involved
quantities; by performing the integration by parts
whenever possible; by collecting terms and by
settinyg the coefficients of 872 , 88 and 8y, in
(A.6) (considered in conJunctiSn with (A.7§ to be
zero, one obtains: 1) the equations yoverniny the
static equilibrium of non-uniform composite wings
given by:

6v2: (chzv2 - CKZZZO + 2cK268 Yo=Y
(A.9)
88 - (C3D 9")" - 4(CD el)l
) 2272 66
+ a(c026z )t 2(cK26v2) +T=40
. wyn [T
GZO. (CDZZZO) 2(c0268 )
- (eKppvp)" = L

and ii) the consistent B.C.:

= = 7' =9 = @8' = =
Vo = Z0 = ZO =0 =8 0aty =10 (A.10)
and
CC22V2 - CKZZZO + 2cK269 =0
CUZZZO - 2c0266 - CKZZVZ =0
H 1 ll=
(CDZZZO - 2c0269 - CK22V2) 0 (A.11)
3 By ' ] "
- (¢ D229 /12) + 4c0666 - 2c026Zo
+ 2cK26v2 =0
c3D 6"/12 = 0
22
at y = 2.,

However, it may easily be seen that in the absence
of the spanwise load Y, the ten order yoverning
equations expressed in terms of v,, Z. and 6 may
exactly be reduced to an eiyht order governing
equation system expressed in terms of 8 and Lys
only. Towards this end, inteyration of (A.9);
(provided Y = 0) and comparison with (A.11);
yields:
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cC 2vé - cKZZZ” + 2cK269' = (A.12)
Substitu€fofi of vi“as it reSults from (A.12) in
the remaining equgtions (A.9)y 5 yields the
appropriate governing equationd®

(02223 - 0269')“ =L (A.13)

3 " " ] nyi
(€30,,0"/12)" = (Dgg0" - Dpg 22)

-T

In a similar way, the B.C. (A.10) and (A.11)
modify as:

ZO =72'"=8=8"=0aty=0 (A14)
and
1] Po_
Dpply = Dppt" = 0
i LIRYE T, .
(1)2210 0269 ) ] (A.15)
—(CBD en/lz)l + D g' - D Zu = Q
22 66 26%0
D c3e“/12 =0 at y = 2
22 y
In (A.13) and (A.1b) 022, 026 and 066 stand for

the coupliny stiffness parameters expressed by:

- 2 .
Dpp = ¢lDyy = Kop/Cap)s
026 = 2C(D26 - K22K26/C22) (A.16)
D, = 4c(D,, - K2./C,.)
66 ~ 66 26" 722
A§ it may easily be observed, the term
c’D,,58'" "' /12 present in Eq. (A.13) identifies the

war%gng restraint effect. When this effect is
iynored, from (A.10), (A.11), (A.13) the pertinent
governing equations result as:

H ] L L N,
(Dzzzo - 26e =t
] T H ) -
(0669 - 2610) T (A.17)
while the associated B.(. read:
Zy=1="9>= Oaty=20 (A.18)
and
it (-
Doty = Dp® =0
1] ] ] =
(t%zlo - 0269 ) 0 (A.19)
0666 - DZGZO =Qaty=2%

(A.18) and (A.1Y) are consistent with the sixth
order governing equation system (A.17). The
equations (A.17) - (A.1Y) coincide to the ones
obtained in [4] while Egs. (A.13)-(A.1b)
specialized for the case of uniform winys are
similar to the ones presented in [12]. At the



same time, for the case of unswept metalic type
wings, Egqs. (A.13)-(A.15) reduce to the ones
obtained in [16] by using the theory of thin
walled beams with warpiny inhibition.
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Figure 1 Geometry of the Swept-Wing Aircraft
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Figure 2 The ratio of the q, in divergence determined for WRE included
(qn*) and for free waring (qn) versus AR for five different
sweep angles and for a laminate with all fibers oriented at an

angle 8(j) = © (%j) indicated on the figure.
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9_"_ Figure 3
Un 2,3]*— The ratio of the q, in divergence determined for WRE included
(qn*) and for free waring (g,) versus AR for five different

2 27k sweep angles and for a laminate with all fibers oriented at an

angle 0(j) = ® (¥j) indicated on the figure.
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Figure 4

The ratio of the g, in divergence determined for WRE included
(qn*) and for free waring (q,) versus AR for five different
sweep angles and for a laminate with ail fibers oriented at an

angle e(j) = 8 (¥j) indicated on the figure.
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