ICAS-86-4.7.3

ON THE OPTIMIZATION OF FLUTTSR CHARACISRISTICS
OF LAMINATEZD ANISOTROPIC CYLINDRICAL SHalis

G.
Institute of

Bucharest,

Abstract

The axisymmetrical supersonic flutter
of a simply supported circular cylindri-
cal laminated shell with orthotropic or
isotropic layers is investigated. A
comparative analysis to demonstrate the
influence of geometrical and mechanical
characteristics of the shell on its cri-
tical flutter speed is performed.

The purpose of this investigation is
to perform the optimization of the
flutter characteristics of cylindrical
multilayerxed shells, - important compo-
nents of aeronautical and space structu-
res, -~ by varying their geometrical,
elastical and mechanical parameters.

The solution of the problem is
obtained on the base of the methodology
developed in the papers of Movchan 24 R
Krumhaar [ 1] and Stepanov [3] , extended
on the multilayered and orthotropic
cylindrical shells. This methodology
concerns with the application of the
linearized Timoshenko shell eguations
and linear piston theory, which lead to
a non-selfadjoint eigenvalue problem,
solved without futher approximations.

Complete results of this investiga-
tion may be found in papers (7] , [9

Geometrical and mechanical
relationships

1.

A circular cylindrical shell of
finite length L, simply-supported on its
frontal edges, made up from an odd
number (21-1); 1=1,2... of orthotropic
or isotropic layers, situated symmetric
in respect with the middle surface of the

radius R, is taken into account (Fig.1l.1).
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Fig.1l.1 Geometry of the shell and
coordinate system
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element cut from a
multilayered snedil

Fig.1.2

An

An element cut from tae suell is
shown in Fig.l.2. On tae middle surrace
of the shell is considered tng systea OF
curvilinear coordinates €X- , corres-
ponding to its main curvature lines. ¥ae
principal stress directious of every
layer correspond witn tne directioans orf
coordinate lines of and

The elastical characteristics of tuae
j-th layer of tine spell are:

) 2 i ) @

and its main mass density is §%" .

The index (j) of tne above sSymools
and of tine followiny ones saow tue
current number of the layer, Ac tae inter-
nal layer cut by the middie surgace =1,
and at the external layers =

Following non-dimensional elascical,
mechanical and geometrical parameters
are used ln the computiang process:
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The thickness of tuae j-tin layer Aé,
is expressed in terms of tue non-disean-
sional parameters and §. oy
the formula: J
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The specific weight on the unit

length of the shell has the following
expression:

%, ~
7)' chlze ﬁ n 2.»74,,( G %_i))[fﬁ/(;jf)

In order to characterize the rela-
tionship between the specific weight of
the shell to the critical Mach number
( NG, ), necessary to show the influ-
ence of different parameters to obtain
the best quality after the criterion
weight/critical flutter velocity, the
following parameters (with dimension

[1b/in3 ] ) will be adopted:

- P g P (1.4)
P Vomm

2. Formulation of tae Problem.
Basical Equations

The axisymmetric vibrations with
exponential time factor of the consider-
ed shell submitted externally to a
supersonic uniform stream with the velo-
city U, and internally to a constant
pressure, are investigated.

The governing equation of the aero-
elastic dynamic equilibrium of the shell
is obtained on the base of the Donnell-
-Vlasov’s engineering theory, from the
system of general equations for lami-
nated anisotropic shells. This equation,
with corresponding boundary conditions
on the edges of the shell, forms the
following basical boundary-value problem

for the radial deflections w of the
shell: 3
N 2 ‘
0w w4 )
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(B e (2.1)
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The aerodynamic pressure of the
surface of the shell (Ap) which enters
in the equation (2.1) is appreciated
from tne piston theory:

Qur

Apat) =- e (U5L + SE
and fh

(2.3)
where @y are the velocity of
sound and the mass
density of the un-
distrubed airstream
at the altitude H;
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t = is the tinme

Anotner notations used in tne rela-
tionships (2.1) are presented in
Appendix 1 (see also [ 7], L9] ).

By 1ntroduc1ng new parameters.

A a,H §’H D" (2.4)
called ’‘generalized velocity’)

B"-’-m ) (2.5)

A= 5 (/n CJ—lw(d,:{?Hfé» (2.0)

= -B (2.7)

where 7“; = Lj .

: Ay (2.8)

is the Mach number, and adopting tae
nondimensional varigble

=& (2.9)
we search for tihe solution of tae pasical
problem (2.1) in the rorm-

wi(yt) = E(/“(’Z} (2.10)

which is the product of a real function
of 7 [w(l}]and of a factor variaple
with the time, where @ is the complex
frequency of the variable movemeat
Pp’I‘ne function WX t) is tane solu-
tion of tne initial prooxem only waean
A 7) is the eigenfunction of tae
following boundary-value problem;

T pdw 75 e
W+A7;Z_ -)a/’ O<9<4)

w"(o) w'(,{) (H_L“ /N (2.11)

derived tfrom the initial one; tae para-
meter (or X¥) is the eigenvalue of
the same problem.

For fixed A and A parameters tae
solution of the equation (2.11) is:

}i&w(/uy)

are integration constants.

(2.12)

where C
Substituting in the eguation (2.11),:

— —2
W = e ? (2.13)

we obtain the characteristic equatioa
pohY=2i-Az-A=0 (4>0) ,

whose roots z;...2, satisfy tue equation:

F:(.Z/ ,,_..,24) =0

(see Appendix A2)

(2.15)

only when 2 is the eigenvalue of tae
boundary problem (2.11).
By adopting new parameters:

;%(34“?3»’2); ﬁ:é(z,_zz) (2.16)



(z, and z, being expressed iin terms of
z, "and 22§, we obtain the characteristic
system

F(&f) =0 (2.17)
)~ S22
A=4a(-p),
which posesses the property that, for
fixed parameters A and variable & and
» to every solution corresponds an
eigenvalue and to every A at a
certain A corresponds at least one solu-
tion (W, P ) of the system. _
By eliminating tne parameter p the
system reduceik to the equation:
F&A) = 0 (2.18)
Complete expressions of eguations
(2.15), (2.17) and (2.18) are presented
in Appendix A2.

The eigenvalues } may be expressed
in terms of parameters A and ® by tie

equation: /Qz
-2
e —~ 4(X (2.19)
) 16 &° :

3. The method to determine
the characteristics of
the flutter vibration

The characteristics of the self vi-
brational movement of the shell - i.e.
the critical flutter velocity and fre-
quency may be determined by the examina-
tion of the eigenvalues of the boundary-
value problem (2.11) which are situated
in the external or internal part of the
parabola of stability (Fig.3.1), repre-
sented in the complex plane Re(})-Im(3)
by the equation:

Re(3)+B = C[Im(ﬁ)Jz,
- me D1
(an6y+€)* L *

Ima)}  RelA+B=CIm(A)

i

_B _—\

Fig.3.1

(3.1)

where
(3.2)

]2

o] L

RelR)

The parabola of stability

In the internal part of the parabola
there are situated all eigenvalues n
corresponding to the frequencies (v, ,
which produce the stable vibrational
movement, whereas in its external part -
the unstable vibrational movement,
growing with the time.

The dependence of )n(A) with the
parameter A is investigated, in order to
determine the critical generalized velo-
city Aaz for which the eigenvalues)(Aa
are situated on the stability parabola.
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All real )H(A) are positive and
are situated in tane interaali part of cie
parabola; only tne compliex A, (A) may oe
on its external part.

The egquations of tne cnaracteristic
system (2.17) are representea in tuae
real plane &, § as a newwork orf
curves. Tie intersactions of tnese
curves correspond to real Ag . Ine
smaller value of the critical speed /kt
corresponds to the first complex eigen-
value AffA) and only this value preseuts
importance for our investigation (see Fiy.
Al-1 from Appendix Al).

4. Determination of tne cricical
flutter velocity

The critical flutter velocity may e
determined by solving the eguation (2.12)
for different fixed vaiues of tne para-
metexr A; we determine the complex values
of & and from them - the complex eigyen-
values. It is necessary to determine tae
intersection points of tihe curves Aq (A),
drawn in the complex planefe(A *Lw@ﬂwitn
the stability parabola (Fig.3.2).
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Fig.3.2 Tae intersection of As (A)

curve witia Scabiitity

parapola

I'he ordonates of tae intersection
points are determined from tae eguation:

g:Im[A<A)J=\f___B+CE?e6>) =\ 2

After substituting tne parameters
(1.1) and (1.2) in expressioas (<.4),
(2.5) and (3.2) we obtain followinyg
worxing relationsnips:

A 1255 m( L*)Sr;:'

(3.3)

Ex %ﬁ L—JWI) (3.4)
x4
™M
¥1\3
C= Edfm <%)B {3.6)
120 +87 \L*) —¢
where Erm EB and Ec are

structural parameters (scee Appendix A3)
containing all tue characteristics of
the multilayered shell in non-dimecasivnal



form.

The sequence of computational operations

The computational process is lead to
the following succesion:

1. The intersection point of the
curve :14(A) with the stability parabola
is determined graphically.

2. The value, of the critical genera-
lized velocity Aer of the intersection
point, is established.

3. The critical Mach number W@c&is
determined from its dependence relation-
ship with e (3.1).

In Appendix A2 are presented in a
nondimensional form the expressions of
the coefflclents of the stability para-
bola ( H ), which contain all characte-
ristics of the multilayered shell.

5. Numerical computation

Numerical computations were performed
in order to establish the influence of
the nonuniformity (heterogeneity), ortho-
tropy and geometrical paramters of a
multilayered cylindrical shell on the
values of its critical Mach.

Simply (one-layered) orthotropic and
three layered cylindrical shells with
orthotropic and/or isotropic layers, were
taken into account. Three layeged shells
were taken with the parameter =0,1

(representing the ratio between the mass
densities of internal and external layers)
and variable coefficient £ (0< £<L1) -
(representing the relative thickness of
(See Fig.5.1)

the layers).

Qr

Fig.5.1 The three-layered shell

The influence of all parameters
(1.1) - (1.4) was investigated.

Complete results of this investiga-
tion are described and presented in
Fig.6.1 - 6.10 of ref. [7] and in Fig.
7.1 - 7.2; 8.1 - 8.5 and 9.1 - 9.2 of
ref. [97.

6. The discussion of results

b 3

In every conditions the parameter ﬁ*

has the greatest influence on the criti-
cal flutter velocity.
This influence is evidenced in
Flg 6.1, where it is shown the dependence
e =F(A*) for three-layered isotropic
shell with variable parameter ¥ (C<i<{).

6.1. The influence of the parameter h
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x

qn;z is fast growing with n
especially for shells with tinick exter-
nal ’strong’ layers.
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Fig.6.1 Dependence n@»=f¥ﬁ9ﬁor

three~layered isotropic
siell

6.2. The influence of ortnotropy of
the layers

The ratio between the elasticai
moduli - x and of tne layers is
characterized by the factors £ . ‘

The influence of this parameter 1is
not so clearly evidenced in tne case of
axisymmetrical flutter vibratioas
because doesn’t enter in tihe yover-
ning equation; its influence appears in
th?:terms containing the expressioan
1 /S%hough, the influence of tais
factor is significant as it can pe seea
in the Fig.6.,2, where it is saowa tae
dependence 7ﬂkm= for a one-layered
orthotropic shell.

o
15
B KT X T X
7 - 5) .
Fig.6.2 The dependence”Zfﬂvtor
a one-layered ortaotropic

sneld

6.3. The influence of the relative
thickness of the layers ot tae
snell

Three layered (sandwici) suaells
with orthotropic or isotropic liayers,
characterised by the variaple thickness
of tine layers (0<¥f < 1) and tue para-
meter 7 =0,1, were investigated.



The curves ]Q&@= f(g) show (see
Fig.6.3) that (when other parameters are
fixed) o¢p has a minimal value for

g =1 (the shell consists only of one
infernal ‘weak’ core), and has a fast
growing at =0,9 - 0.7 (with the
appearence of thin external ’strong’
layers); when these layers become thick
enough ( £< 0.7) the growth of My is
much slowér and practically stops at

€< 0.5.

This particularity shows that from
the point of view of the specific weight
the most advantageous are the shells with
exterﬁﬁl 'strong’ very thin layers.
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Fig.6. 3 The dependence W%a;f(é )
for a three-iayered iso-
tropic shell

A
6.4. The influence of the parameter L—
in connection with the parameters

#* . % and T on Yige. .

The curves in graphs Fig.6.4 represent
the dependence 7ZQ5 = f([*) for a one-
layered orthotropic shell at different
values of parameters h* and , and in
Fig.6.5 - for a three-layered shell (with
isotropic layers) at different h* and § .
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for one-layered orthotropic
shell
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Fig.6.5 The dependencenza= (kals)
for tihree-layered isotropic
shell

Tne variation of WZ%; is extremely
fast at certain values of L and n7 . Au
important grewtin of 7ﬂ§m may be oobtained
by the variation of L* towards its dimi-
nuation (at L™ < 2). For L"} 3 ctais
variation guite vanishes.

6.5. The reciprocal infiwence of tie
parameters L*, n* and & _oOn
the parameter V.
I

The parameter was adopted in
order to illustrate tne influeace of dif-
ferent parameters to obtain the shell of
optimal quality i.e. having tne ligntest
structure in connection witn?ﬁ&zas yreac
as possible. )

In order to satisfy this criterioa i//
must be as small as possible.

Further tne influence of tne parame-
ters L*¥ , h* and £ on tnis parameter
is analysed. , R

In Fig.6.6 a family of curves‘f=f%Z:)
for a three-layered shell cnapacteréﬁed
by different values of h* (n® = 1077;
5.10"3; 1072) and (§=1; 0.75; 0.5;
0.25; .0), are represented.

VIR =1 = S w——
}‘74/’%‘55%{%2} R
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Ay R0
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X | AN fwr T %05
// '
AT N e
= %._‘%::1/
g - |
A hEhR B 5 L*
Fic_:(;).G(.))? Dependences YJ =£(L* ,hx ,é)

for a tnree-layered snell

Analysing tnese dependences we arrive
to the following conclusions, regardinyg
the influence of different parameters
on the parameter YI 3



a) Shells with the parameter ?
appropriate to 1 (with very thin exter-
nal layers and with internal light core
predominant in the overall thickness)
are optimal.

b) Studying t&g reci rocal influ-
ence of h* and L g’ (for a
certain value of E’) we conclude that
at small values of the parameter L
(L*¥ = 0.5 - 1) the minimal values of
Y result for greater h* (h* = 1072),
whereas at L* > 2 this situation
inverses ! the optimal V’ results for
smaller h* .

7. Conclusions

The analysis of previous results
allows us to draw some conclusions about
the behaviour of the investigated class
of shells, subjected to the action of a
supersonic aerstream, from the point of
view of the appearance of flutter
vibrations. The final purpose of the
study is to determine the criteria for
obtaining the lightest structure with
the critical flutter limit as great as
possible.

The separate and reciprocal influence
of different geometrical and mechanical
parameters of the shell on its flutter
vibrational characteristics was out-
stended.

This analysis allow:2d us to determine
the optimal shape of the geometrical and
structural characteristics of cylindri-
cal multilayered orthotropic shells used
in aeronautical and aerospace construc-
tions.

So, the most advantageous three-~(or
multilayered) shells result when the
external ’strong’layers are very thin
in comparison with the overall thickness
of the shell, With the growing of the
thicknesses of these layers grow both
the critical Mach and the specific
weight of the shell, but the growing of
the last is faster, so the overall
quality of the shell becomes worst.

The parameter h* is the most
important factor to obtain the growth of
the [lGy . It influences directly the
aeroelastic characteristics and always
when it is necessary to obtain the
increase of the flutter velocity we must
act this parameter firstly.

The parameter L is an important
shape~characterigtic of the shell which
besides h* , has a great influence on
the MZo, .

In designing the aerospace cylindri-
cal structures it is necessary to choose
this parameter so, that the aeroelastic
quality of the structure should be best.

The critical Mach is strongly
affected by the parameter L*, being
advantageous that the shell should be
relative as short as possible.
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The parameter 6/" allows us to
appreciate in wnich way the snell must
be designed in order to ootain tne
optimum flutter guality (the ligatest
structure with tne flutter Limic as
great as possible). To meet cthese condi-
tions the shell must be characterised
by the parameters: § appropriate to
value of 1.0, n as great aad u as
small as possible. If, from coastructive
considerations, L must be biy enouyn
(L* = 2 - 3) tne role of the parameter
h* becomes opposite: it must pe -as
small as possible. This 1nteractlon of
the parameter L and h* is of tne
greatest importance to ontain tne )
optimal values of tne flutter quality or
the shell.

So, the optimal geometricai and
elasto-mecnanical cnaracteristics of tae
cylindrical shells, enteriny as compo-
nent parts of aeronautical and space
structures may be determined by desiyn
of these structures.

Appendix Al

Notations used in the pasical gdouadary~-
value Problem (Ch.2)

4/ “iz ZB/ }4 @0) §<; u)
A,, = (Cule- Clzé)/_?l

§2= (CHCZZ Gz)%+2€,z ¢y (AL=3)
'C// ng -Gz C/g

/L@g) u-f)) /,
f, )

The quantities Zaaa are ’'eaygineering
constants’ [ 4 , which for orcaotropic
layers keep expressions (2.9) presented
in

Mo *Zﬁ /i@w o) =
“he (e)z %o i5)

is the axial normal stress oI
the shell {considered eyual
to zero in tne case of axi-
symmetrical mode)

4@ is the damping factor oi tne
material

(Al-1)

(Al-4)

(Al-4)

Cda

(Al=-3)

,747/:



'Engineering constants’ of a multila
orthotroplc shell exed
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Appendix A2

Main expressions used in the derived
Boundary-Value Problem (2.11)

A2.1 The complex frequency of the
vibrational movement
J (A2-1)

4’”0); Dﬂ
@Hﬁ#g)‘l_"

A2.2 The equation (2.15)

A1 4
e 121 €2 B oY
2 ZF za zf

2 e‘z’zze‘z‘z ege™

(A2-2)

F (51'---34)5‘54‘

9 2)=(- 22 2)la-2) %
X (2{2’3)(22— Z4)(25- 5:’4) ‘

(a2-3)

A2.3 The equation (2. 17%_

Bxt 5-2515)";?”&%\}%(2
R (3x~F) + 4o<ﬁ

2R 05 BHpE2E+2ch @)
(3x*B)" +42p*

+

(A2-4)

=0

A2.4 The equatlon (2.18)

- A sl S’Ol/(‘*’f a‘)
F%A) 1éo< ~?-%)V(12)

_Z&Zws\/(o?z- 4%)Cosi/(oﬁ A+
+2&2ah(z?o‘<)J =

I (EEA) (&’ A)

(A2-5)

Appendix A3

Expressions of structural parameters of
the (21-1) layered, orthotropic sanell
Lin (3.4), (3.5), (3.6)]

2%/(’:'(;/ £ "Zafv/ﬁf}éw“gw)
Zafﬂ @g; EM) ‘Zaff/(%/ 559)

G2 Z%) oﬂu)< Si0)
L&O)&u %M)Z“w §5 EW)

(A3-1)

Bc L )@gf ga'*))i%?ﬁ(/} (g‘g)«.g(j_’)) (A3-2)
J* =
L 3 3
EW:Z‘ CL(J)(%U)-%Q—')) ) (A3-3)
J=
where:
2 70 (A3-4)
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)
®=
/] /eo)%)

Structural parameters oi the taree
layered (1 = 2) ortnotropic s.aelld

?2’—'5; 1; §,=1;570

oo

a,

u) /1 %'q ©Z ) (A3-5)
1

- A |

T T e

?z—§4=4'§4 = §4 (A3-7)
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1 (014 1+4>z §4)@ d;?ﬂ'é’ dzsf') /L‘.x (!/7,4454 fl’z d«z?)

s

Structural parameters of the three
layered isotropic shell

b= k=1, 2=943, ; 5=1

= § q't+ (94 .
= ) 4 j%’%"(4-%)’

][ ga ‘i)] (A3-12)
B = % [ ~g(1-4,)1.

(A3-11)

(A3-13)

Structural parameters of the one-layered
{1 = 1) orthotropic shell

- - /I _
a= ——— = Q (A3-14)
{ 2 /- é/u:'('
2
EB:,k< _.k/u_*) ) (A3-15)
ort B s B 4
ﬁ.ﬂ&ﬁﬁ.’m — a/ - 7 (A3-16)

996

5 (a/§f+ 4 >)(a4 5 +3,5, )

(A3-8)

Structural parameters of tae oOue=idyeXed
isotropic saell

7 .
L_b-i,B _—_/I /L (A3-17)
1 _ g -
Fe=B = 727 & (asmse)
The parameter i:

(A3-19)

—
z; : H, 3
=\/ /=
Jhe

The parameter Z: of tae ctaree-layered
ortinotropic sadll

' -’—-*—/-1-—— é"q".f i A3=40
b = e I—%,0-7) e
if 74 :-2?4
C :—fi‘T (A3-21)

Thne parameter ;> 0oL tne oue~layered
orthotropic saell

& =(k(-kp)

The parameter Z- 0f the oue=iayered
isotropic shell

C =y = l—lﬁ_

(As—24)

(A3-43)
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