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Abstract

The post-buckling behavior of graphite-epoxy
curved plates under compressive load has been
studied by experiments, the Galerkin method and
the finite element method. Panels of seven types
of lamination constitution have been treated, and
the influence of lamination constitution on the
behavior has been disclosed.

l. Introduction

For graphite-epoxy flat panels, the authors
have studied on its post-buckling behavior under
compressive load or shearing load by theoretical
analyses and experiments and have demonstrated its
load carrying capability at the post-buckling
state.”” % 1In the present paper, as an advanced
study, the post-buckling behavior of graphite-
epoxy curved panels under compressive load is
studied by experiments, the Galerkin method and
the FEM analysis, and the influence of lamination
constitution on the behavior is disclosed.

For the post-buckling behavior of curved
panels, although several studies, for example the
references 5) and 6), have been presented for
isotropic materials, Zhang and Matthew's analytical
study by the Galerkin method about the simply
supported panels is only one paper for the
laminates.” For the compressive buckling load of
graphite-epoxy circular cylindrical shells, one of
the authors has disclosed that the quasi-isotropic
lamination constitution is optimum, if the elastic
properties are homogeneous in thicknesswise.$% 9
Therefore, as the lamination constitution of the
test specimens, the one which becomes quasi-
isotropic if the number of layers is infinite and
the others which are composed of 0°, 90° and +45°
layers are selected.

2. Approximate Analysis by the Galerkin

2.1 Expressions of One-Term Approximate Solution

The fundamental equations of a circular
cylindrical curved plate without initial
imperfection in the large deflection theory is
expressed as

Dxx. W,x0xx + 2 (Dxy+2Dss)-W,xxyy + Dyy W,yyyy + F,xx/R
- F,yy W,xx =~ F,xx W,yy+ 2F,xy W,xy = 0 w

a5, F,xxxx + (Za12 + a33)'F,xxyy +a; F,yyyy
= Wxx/R + (W,x0)% - Wxx W,yy @

for the symmetrical laminates in the use of the
radial displacement W and the middle surface
stress function F (see Fig.l). The definition of
elastic moduli of symmetrical laminates is as
follows:
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n 2] R
[AIJ ’ Dij]:mé 1 jf‘m./[l’ Zz]EiJ(m) dz, (1’J=X’Y9S) (3)
[al=fa1 7 Q)

We take the following boundary conditions in
this section:

x=xzb/2;W=0,Wx=0,

Nxy = - F,xy =0 , u = const,
y=a2b/2;W=0,Wyy=0,

Nxy = -F,xy = 0 , Ny = F,xx = 0

(5)

(6)

The conditions except Nxy=0 at x=+b/2 are regarded
as the same with those of the present expriment.
Although the boundary condition is rather regarded
as v=0 at x=3b/2 instead of Nxy=0, we can easily
obtain one-mode approximate solution to satisfy
the boundary condition (5) and (6) as follows.

We use

W= W1 [1+cos(2mx/b) }. cos (ny/b) 7)

as an expression of deflection which satisfies the
boundary conditions for deflection. Substituting
Eq.(7) into the right hand side of Eq.(2), we get
the particular solution

2, .
F, = -toyy’/2 -szwl/(anfl)} cos (2mx/b) cos (ny/b)

-(w,%/8) {1/ (16a, )} cos (4nx/b) +(1/a, )cos (2mx/b)

+(1/alfcos(2ny/b)+(1/f)cos(2hx/b) cos(21y/b)}
where ®)
£)= 16ap; * 4(28y, + agz) + 2y

’
fp=ar Qg+ agg) v ay

and g7 is the mean compressive stress. In order to
obtain the solution of the homogeneous equation of
Eq.(2), substituting

F(x,y) = cos(mix/b) exp(}y)

which satisfies the boundary condition F,xy=0 at
x=+b/2 1into the equation, we can derive the
characteristic equation which is quadratic for A*.
The roots of the equation are )

= A /@m)? ={1/(2a) D} [(2ay, + a
+ {(2a

(m: integer) (9)

. 33)
12 ¥ 833" - 4311322}1/2] (10)

Therefore the pattern of the solution is
classified into three types according to the
property of u as follows.

(1) The case of (Zau+a“f -4a, a,>0.
We get p=t My and %M, where J and Jz are real
positive., Taking into account the symmetric
property for the x axis and the form of Fp for x,



we have the expression of Fh
F = cos(va/b)-[Alcosh(Znuly/b) + Azcosh(2n pzy/b)]

+cos (4nx/b) . [Clcosh(41r Liy/b)+ Czcosh (4n pzy/b) 1 an

where the constants A;, Az, C;, and Cy are
determined by the boundary conditions (Fp+Fh),xy=0
and (Fp+Fh),xx=0 at y=b/2 for any x.
Substituting F=Fp+Fh and W of Eq.{7) into

2
du/ 3ax = allF,yy + ale,xx - (W,x)%/2 12)
and integrating by x from -b/2 to b/2, we get
the expression of end shortening
2
Ues = [1%7, = -ajjopbt - w2,/ (2b) a3

which is independent of y.

Substituting Eq.(7) for W and Eqgs.(8) and
(11) for F into the left hand side of Eq.(l), and
writing is as ®[w;], we take

f_gg f_g;g (b[Wl] «{1*+cos(2mx/b) } cos(my/b) dxdy = 0

(14)
instead of Eq.(1) by the Galerkin method. The
calculation of Eq.(14) yields the equation of
equilibrium curve between the load P=J7tb and W;:

TSRS TARE A (1s)
where
4, 2 3, 02
A= fr/(8b ))-{2/811+17/(8a22)+1/f2) - 77465
s|sinhm y sinhn i/ (1coshnyy sinka 1~ ¥ sinhwy, coshm uz)]
{(1/aym1/85) 2 @ 122w ) Y Gy iy B
x(1+ 122) }+ {1/ (IZBali}[sinhZW ulsinhZTI Lh/(ulCOShZW n
xsinhZny,- y;sinh2ny cosh2n uz)]( IJZZ" 1112)/(111 W)
B = (n/R) U/ (2a,,)+1/ (6£,)+64/(3£,) }--(/R)/ (wycoshm 1y
xsinhnuz- uisinhnulcosh ). [{(1/;22-1/f2)/2}
'{nz(hhzxz )sinhmcoshm iy -y (1+4n, %) sinhn weoshny,
7%y (1) ) + (478,00, (10 1y D) sinhmyy coshn
-1y (0 y D)sishmibgoshn i ¥ ey (14 1) @+ ) 1)
C = (/b7 UDroc 2(Dry+ 20ss)+ 30yy/4 Wab?/ (RPe,) -2 ¢
- {Bbz/ (nR%E PHeoshm yycoshm i,/ (coshn y sinhn
- ysinhm ycoshn 1)} 4 (1,2 1 1)/ (ara y ) 1041,2) )

(16)
If the effective width bwmis defined by

olbt = — Ues by t/ (aubt) (17)
as in the case of the flat panel, substitution of

Eq.(13) yields a formula
_ 2.2 2
bm/b = 1/{1+n Wl /(Zallb tol)] (18)

(2) The case of (2a,-;+a,,)2—4a”au=0

As the characteristic value is J; =Pz =1, the
expression of Fh becomes a different form from
Eq.(11) essentially. However, putting as Je=};+{
and taking the limit £ —0, we can derive

A= {n4/(8b2}{2/an+17/(8322)+1/f2 H3n%/ (8bd))
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x(l/azz-l/fz) (sinhn)Z/ (coshnsinhn-m)#{i/ (64a11)}
x(sinh2m)?/ (cosh2nsinh2n+2m)

B = (n/R) {1/ (2a,)+1/ (6£,)+64/ (3£,) M(n/R)
/ (coshnsinhmsn)}{(1/a,,-1/£,)/50) (13sinhncoshn
+(2/ fl) (2sinhrcoshm-1) }

C = (n%/b%) UDrce 2 (Dey+2Dss) 3oyy/4 ) +4b/ (®2Ey) -0yt
-—[64!72/ (ZSnRZfI)}(coshn) 2/ (coshnsinhm +7) (19)

as the expression of the coefficients of Eg.(15).

(3) The case of (2&\,2+a3,)z ~ha; a,<0.
As the four roots ! become complex variables
i}i,+i}(2, we take the following expression of
homogeneous solution:

Fh = cos(2mx/b) »[Alsinh(Zn Li)’/b) sin(2rm Lby/b)
+A2cosh(21r uly/b)_cos (2n Lhy/b) ]
+cos (4nx/b) [Cls'mh(tm ply/b) sin(4n uZy/ b)
+C,cosh(4my y/b)cos (4n wy/b)] (20)

where the constants A;, A, C, and C, are
determined by the boundary conditions as mentioned
above., Finally the expression of the coefficients
of Eq.(15) is obtained as

A= /(867 Me/ay +17/ (8a,,)41/€, Y /)20,

< 2w 2 T, 2, 0y w1, 2y ) )
48, L0 2 122 L5921 o8, Oy P 1204 1915
w1+ ay1 98 18,1, 20, (Tt ipLe) 42, (yTg- 110
48, 1y +nlg) 48, (1 1g-1w1y)]

(/R {1/ (2a,,) 4/ (6£,) %64/ (3£;) )- (bn4/4) [Z(uzlg

w
L]

1))/ (Rad)-20 (0 D)1, 2 1)
~2a3 (0 2 ) -2y 1l g Py T T,
*2ay (yIgtple) a3 (1 - 115l
C = (n*/b%)-WDix 2 (Dxy 42Dss) 3Dyy/4 1sab?/ (REE,) -0, t
- b/ (2R) Yoy Tg gl ) 21

where
o = 2n/b

L= jkj/bizs‘mhuﬁysina WY {cos (ay/2) }zdy

= jt_) é; 2coshoc W YCosa by {cos(ay/2) }Zdy

ot
(3]
i L

3 f%fzs'mhm 1y ysinZoy {cos (ay/2) Yay

I = le {jzcoshZu W ycos2a iy {cos (ay/2) )Zdy
Iy = f%; ;cosha ysinawycos(ay/2)sin(ay/2)dy
6" f%;fiﬂha Wycosa wycos (ay/2)sin(ay/2)dy
L= _]/jzcoshZa W ysinZawycos (ay/2)sin(ay/2)dy
Ig = fl_) é; 2sinhZon W ycos 20 Wyycos (oy/2)sin(ay/2)dy
o = -2b%coshn W cosT W/ ("ZRflwa)
Oy = - (1/a22-1/f2)-( Lisinhn W cosT I, Lhcoshn ulsimr ”2)
/(84,)



ag = szsinhwLisinnlb/(ﬂzRflwa)
oy = (1/a22-1/f2){Lﬁcoshn1isinnu2+LisinhnLic05ﬂxé)

/(8H,)

By = -(ulsinhZﬁLiCOSZHlt-LbCOShZWLiSiHZNLb)
/(128a22WC)

By = ( plCOShZTT ulsm2n b +pbsmh2n u1c0521r pz)
/(128322WC)

Wa = Lisinn1?cosnu2+1bsinhn15coshn15

WC = LiSiHZﬂL?QPSZﬂUZ+u251nh2Wu1COSh2ﬂU1 (22)

2.2 Analytical Results
As a numerical example, the values of all

test specimens, whose lamination constitution is
shown in Tabel 1, are treated. The elastic moduli
of unidirectional graphite-epoxy composites shown
in Table 2~B have been calculated for Vi£=60% from
the elastic moduli of the fiber and the matrix
written in the reference 10),which is also shown
in Table 2-A, through the method of the reference
11). The elastic moduli aij and Dij of each test
laminates are calculated from the value of Table
2B and are shown in Table 3. The characteristic
values } of each test panel are shown in Table 4.
The test panels 6p-1 and 8p-2 correspond to the
case (1), the in-plane quasi-isotropic test panels
6p~2, 6p-3, 8p-1 and 12p~l correspond to the case
(2) and the test panel 8p-3 corresponds to the
case (3). )

The relation between the load P=G;bt and the
end shortening Ues shown in Figs2a~2b is similar
as the well-known curves for isotrpic materials,
The upper and the lower curves correspond to W,>0
and W;<0, respectively. These figures suggest the
possibility of snap-through from the upper curve
to the lower curve in the experiment controlling
the end-shortening. Specimens 6p-2 and 6p-3 have
the same in-plane elastic moduli essentially, but
have the different out-of-plane elastic moduli
depending on the difference of the stacking
sequence, which yields the difference of the
buckling load. Clear differences are seen among
the properties of three kinds of panels with
eight-layers. Although 'the panel 8p-2 has
the highest compressive rigidity, the buckling
load is lower than those of 8p-1 and 8p~3. The
compressive rigidity of 8p-3 is very low. The
property that the buckling load of the in-plane
quasi~isotropic panel is higher than that of
others is the same as that of the cylindrical
shell,3 1)

Figs.3a and 3b show the relation between the
effective width ratio bm/b and the load ratio
P/Per, where Pcr means the buckling load. For the
equilibrium curve of W;<0, the value of bm/b is
less than about 0.6 at P/Rer=1 already, and there
is no distinct decrease with the increase of P/Pcr
except the panels 6p-1 and 8p-2.

The P/Pcr(plate) versus We/t relation is
shown in Fig.4. Pcr(plate) means the buckling
load of the flat plate with the same boundary
condition and stacking sequence. Wc means the
deflection of the center point positive in the
concave side, namely is equal to -2W. The
intersection of the curve with the ordinate is the
buckling load of the curved panel. Comparing the
properties of panels stiffened in 0° and 90°
directions, namely 6p-2 and 8p-1, with those of
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the in-plane quasi-isotropic panels in the
condition of about the same value of shape
parameter Z=b7(Rt), we can observe the following
properties: 1) the rate of increase of the
buckling load by curvature is lower, 2) the drop
of the minimum point of P/Pcr(plate) from the
buckling load is lower, 3) the value of Wc/t which
gives the above-mentioned minimum point is
smaller, and the rate of increase of P/Pcr(plate)
at the Wc/t larger than the minimum point is
higher.

The buckling load by the Galerkin method
shown in Table 1 is calculated from

P = obt+ExUesZ£t/b  (b=120mm,{ =8mm) (23)

including the correction of the load carrying
capability of two edge strips whose width £=8mm at
|yi>b/2, for comparison with experiment.

2.3 Buckling Property of 6p-3 Panel

The FEM analysis of the section 4 has
yielded that the buckling mode of the panel "6p-3"

is different from Eq.(7) and includes higher modes.
Then, assuming an expression of higher mode.

W= Wl{l-cos(4nx/b)]cos(ny/b) 28)

and using linearized equations of Egs.(1). and (2),
and applying the Galerkin method, we can obtain
the expression of buckling load

- (n2/b%) {16Dxx 42 (Dxy 2Dss) BDyy/16 }
- 166%/ [’ (2562, 16 (2, %85) 8y, ]

Nx
(25)

Including the load capability of the edge strips,

we get Pcr=-Nx#(b+2£)=401kgf, which is lower than
Pcr=464kgf calculated from the made of Eq.(7).
This result is mainly due to the property that

Dyy is greater than Dxx as shown in Table 3.

3. Experiment

3.1 Procedure of Experiment

Compressive tests were carried out about
curved panels of seven types of stacking sequence
shown in Table 1. The specimens were made by
TORAY Inc. in hot-press curring of lamination of
unidirectional prepreg sheets of about 0.12mm
thickness. The graphite fiber is Torayca T300 and
the epoxy regin is #2500. The volume fraction of
the fiber of the specimens is about 60%. The
numbers of layers of the sheet are three kinds,
namely six, eight and twelve. The radius of
curvature R is 500mm. The size of the specimen is
170mm in longitudinal length including the parts
of upper and lower fixtures and is 136mm in the
arch length including both edge strips. The test
part is a square of b=120mm.

The figure of the test apparatus is shown in
Fig.5 . The load was applied by Instron testing
machine in crosshead speed 0.05cm/min.. The center
of load was adjusted so as to coincide with the
center of the section of the panel. The panel was
fixed to the upper and lower fixtures with bolts
and a low melting point metal, i.e. TU~60, so as
to make the condition of clamp for both in~plane
and out-of-plane as shown in Fig.5 . The line
which is 8mm from the side edge is supported by a
rod of high strength steel with a circular cross-
section of diameter 10mm. The clamping force of
the rod was adjusted so as to make the boundary
condition which is simply supported for out-of-
plane and free for the inplane direction through




the checking of the strain distribution by wire
strain gauges. The thirty-six strains at the
points and directions shown in Fig.6 were
measured. Displacement was measured at the four
points shown in Fig.5a. The gages at the points 0
and 2 indicate the center deflection and the end-
shortening, respectively. The measurements at the
points 1 and 3 were only for the porpose of
checking the test accuracy.

3.2 Test Results

The experimental maximum load and snap-
through load are listed in Table 1. The load
versus center deflection relation and the load
versus end-shortening relation of each test
results are shown in Figs.7~13. In the tests
except 8p-2 and 12p-1, the snap-through from the
convex side deflection to the concave side one
occurred before the maximum load. In the tests 6p-
1, 6p-3, 8p-31 and 8p-3I, the decrease of convex
side deflection were seen before the snap-through.
However, in the tests 6p-2 and 8p-1 the snap-
through occurred abruptly. In the testl2p-1,
after the load dropped from the maximum by local
failure in the convex side deflection, a snap-
through to the concave side occurred, but in the
concave side the load did not increase under the
increase of end-shortening.

In the tests 6p-1, 8p-31 and 8p-~31L, the end-
shortening was removed after observation of snap-
through before the final failure test. In other
tests the loading is one process until the
failure. In Table 5 the maximum values of tensile
strains and compressive strains among all strain
gages at the load written in Table 5 are listed
with the number of gage in parentheses.

Except the test 8p-3I, 8p-31I and 8p-2, the
failure occurred at the region which is close to
edge and a little bit higher than the middle
as shown in Photograph 1. At the failure point
the peeling of the surface layer was observed.
After removing the panel from the test set-up, a
interlamina peeling was observed at the free edge
in most of test specimen. In the test 8p-31 and
8p~3 1 cracks of 45 direction appeared at the both
side edge lines at the point about b/4 lower from
the upper loading edge as shown in Photograph 2.
In the test 8p-31I the crack penetrated from
one surface to the other surface.

The ‘failure mode of 8p-2 is quite different
from the others as shown in Photograph 3. The
crack line is nearly parallel to the lower edge
and about 27mm upper from the lower edge. The
crack penetrated from surface to surface. After
removing the panel from the test set-up it was
observed that the panel was completely separated
into two parts and the failure surface was skew to
the panel surface.

4, Analysis by Finite Element Method

4.1 Method of Analysis

A hybrid method for a plate element which was
derived by the authors in the reference 2) has
been used. The curved plate is divided into
rectangular curved elements as shown in Fig.l4 .
The each curved element, as it is shallow, is
treated as a plate element with initial
imperfection in the local flat coordinate system
through the four corner nodal points. The initial
imperfection shape is treated as a quadratic curve
which goes through the point of maximum rise. In
the element with four corner nodal points, the
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degrees of freedom of each nodal point are ug,
up, ug,Bgand On , and the interporation function
of displacement of inner points is

T T
g, ¥ = §=1Ni(€ g u, T

(26)
u = élm;Mi+Nfgwgi+anin)

where
Np = Q-D)Q-m , Ny = EQ-m) , Ny =
N My My ), N, O My Mg ()
N= M, (M, (), N, 6= M, (E)My ()
N My (M, (), NyTE= My (DM, ()

3
N,y (M () 5 N, My (8 ()

En, Ny = (1-8)n
Mz (E)M; ()
M, (E)M; (n)
My (E)M, ()
M (E)M, ()

6 _

N1 =
]

» Npre
[¢]

’N3n=
]

» Ny

My(E) = 126°-36% , My () = 14203

M,(€) =36%-26° , My(m) = 3n-2n’

M(E) = -ag(£-1)% , My(n) = bn(n -1)°
My(€) = -ag(e2-€) , My(m < br(n’-n) an

and & =x/a,l}=y/b, where a and b are the edge length
of rectangular element in x and y directions,
respectively.

The expressions of stress field in the
element are assumed as

Np = B3*848 o Ne™ By

Ng = By N,

= = 28
Mg = 8o E+BgN*BgEN , M = B) (48, €48, ,m8, En , (28)
Mg

n P1a*B155*BeN

which are the same as those of the reference 2).

The curved plate was divided into the
elements as shown in Fig.l4. The edge strip
between the simply supported line and the free
edge is also treated as a element in order to
compare with the experimental results. In the
case where both Dxs and Dys are not zero, the
deformation is not strictly symmetrical about x
and y axes. However, as the influence is
considered to be not so important, it is treated
as symmetrical about the x axis as an
approximation and the region y<0 alone is
analysed. For the x direction, we have analysed
all region taking into account the possibility
that the anti-symmetric mode about the y axis may
give an influence on the snap-through instability.

The geometrical boundary condition given in
the half region analysis is as follows;

; at the nodes except A;

u=const(= Ues), v=w=0, 9x=9y=0
at the node A; u=const(= Ues)alone
x=-60 mm ; at the nodes except B;

x=60 mm

u=v=w=0, Ox=0y=0 (29)
at the node B; u=0-alone
y=0 mm ; v=0, 8x=0

y=-60 mm ; w=0, Gy=0

In the case if we analyse the one-fourth region
x>0 and y<0 alone using a symmetrical condition
about the y-axis, the geometrical condition is
written as

x=0 mm ; u=0, 8y=0 {30}

4,2 Calculated Results

The calculated results are drawnin Figs.7~

13. Some of the deflection shape calculated are



shown in Fig.15. In the present FEM analysis
under the boundary condition v=0 at x=+b/2, the
deflection appears at the load lower than the
buckling load under the condition of no initial
imperfection. Namely, as the elongation in the y-
direction due to Poisson's.ratio under the
compression in the x-direction is constrained at
the upper and lower boundaries, the center of the

panel has to deflect in the convex side under
the boundary conditions w=0 at y=+b and free at
y=£(b+f).

For the panel 6p-1, the result of the FEM
analysis up to 1200kgf shows a deflection in the
convex side alone without a maximum point or
instability. However, at the load about 720kgf
the value of the determinant of the tangential
stiffness matrix, which gives an indication of
stability, has abruptly become 0.2x10°¢times of
that of the previous step., However, the value of
the determinant has not changed the sign and
becomes a reasonable order again. Above the load
the compressive stiffness has become lower with a
kink as shown in Fig.7a. Fig.15a shows the
deflection shape at the lines y=Omm and y=-15mm

at two loads lower or higher than the load.
Although the deflection shape along the y=Omm line
is a simple wave, the deflection shape along the
=-15mm line varies from a simple wave to a higher
mode wave. It is considered the decrease of the
compressive stiffness is due to this variation of
deflection shape. In the case 6p-1, the
deflection shape is symmetrical for the x-axis
because of Dxs=Dys=0.

In the load versus end-shortening relation of
the case 6p-3, although a maximum point has
appeared at P=360kgf, the value of P is an unique
function of given end-shortening, then instability
has not appeared in the FEM analysis different
from the case 6p-2. The deflection of the y=0
line shown in Fig.15b is a pattern of two waves in
the convex side at P=352kgf, which is much
different from Eq.(7) as explained in the section
2.3. However, at P=592kgf the deflection is a
simple wave in the concave side. The deflection
shape is not symmetrical about the y-axis because
of Dxs=0 and Dys=0.

In the case 8p-1, an instability due to
bifurcation buckling to unsymmetrical mode has
appeared at P=1270kgf. The case where the
boundary condition for v at x=+b/2 is changed to
be free is also calculated by the FEM analysis for
comparison with the solution by the Galerkin
method. The result is drawn in Fig.10. In this
case the prebuckling deformation has been quite a
small as a matter of course. A good agreement is
observed between this FEM solution and the
Galerkin method solution including the region of
large deflection except a litte difference of
buckling load in Fig.10a.

In the case 8p-2, the decrease of compressive
stiffness has appeared taking: P=1700kgf as a kink
point. The deflection shapes calculated suggest
that the reason of the decrease is the same as
that explained in 6p-1.

In the case 8p-3, the prebuckling deformation
to the convex side is large as shown in Fig.12a,
because of large value of V. An instability has
appeared at the maximum point P=1070kgf of the P
versus Wc curve,

In the case 12p-1 also, the maximum
instability point has apeared. However, the
deflection at the convex side is large and the
stress level is very high at the point.
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The effective width ratio bm/b of the case
8p-1 calculated by the FEM analysis for the
boundary condition v=0 at x=+b/2 is drawn in
Fig.3. For comparison with the Galerkin solution
it is calculated from

bm/b=a,,(P-F, )/Ues (31)
where Py is the load carried at both edge strips.
The comparison indicates that the effective width
of the one-term Galerkin solusion is larger than
that of the FEM solution, although the boundary
condition is not same.

5. Comparison between Analytical and
Experimental Results and Discussion

(1) Buckling Load

For the behavior of deformation before the
snap-through, the experiment and the FEM solution
are essentially different from the Galerkin
solution because of the difference of the boundary
condition. Although the buckling loads have been
found by the§>plot from the P~Wc relation for some
of the experimental results and the FEM solutions
and are shown in Table 1, a reasonable agreement
between them is found only for 6p-1 and 8p-2 which
are characterized by no snap-through in the FEM
analysis. Therefore, it will be concluded that
the so-called bifurcation buckling load is not
clear in the boundary conditions of experiment.

(2)

Snap~through Load

The snap-through load calculated by the FEM
analysis is shown in Table 1. The values in
parentheses in the case 6p-3 is not the snap-
through load but the maximum point in the P versus
We curve. Others are the load which makes the
determinant of stiffness matrix equal to =zero.
In the cases 6p-2, 8p-1 and 8p-3 alone, good
agreement is observed between the experiment and
the FEM analysis. In the case 6p-1, a snap-
through was measured in experiment different from
the FEM solution. It will be concluded that the
instability of deformed shape is sensitive to a
small difference of the shape.

(3) P versus Wc Curve in Large Deflection

In the P versus Wc curves at large deflection
after the snap-through of the cases 6p-2, 6p-3 and
8p-1 and in the P versus Wc curves of the cases
8p-2 and 12p-1, roughly good agreements are seen
among the experimental results, the FEM solution
and the Galerkin solution. The Galerkin solution
has a tendency a little bit stiffer than the FEM
solution at the region of large deflection after
the snap-through because of one term approximation
in the cases 6p-2, 6p-3 and 8p-1. The
experimental deflection has a tendency to become
rapidly larger than the FEM solution above a load
close to the maximum load. It is considered this
suggests that a local failure has started and it
lowers the effective stiffness. In the cases 8p-
31 and 8p-3I we cannotfind a good agreement
between the experimental result and the FEM
solution.

(4) P versus Ues Relation

In the relation between P and Ues, a good
agreement is observed between the Galerkin
solution and the FEM solution in the state before
the snap-through. However, at the state of post
snap-through, except the case 8p-2 and 12p-1,
distinct differences are seen between the Galerkin
solution and the FEM solution in spite of good




agreement for the P versus Wc relation. It is
considered that at the large deflection the shape
of deformation transfers from a cosine type wave
to the shape of a pan and the center deflection
alone agrees well between them. Therefore, it is
concluded that the Galerkin solution by one-term
approximation is not sufficient for calculation of
compressive stiffness at the post-buckling state.
The FEM solution for the P versus Ues
relation does not show a good agreement with the
experimental result except the case 6p-2.
Particularly the difference is large in the state
before the snap-through. In some cases the slop
dP/dUes shows a good agreement between them at the
state of the post snap-through.
(5) Influence of Lamination Constitution on the
Maximum Load
In comparison with the experimental results
the following properties can be stated. Among the
six layer panels, although 6p-2 is the highest for
the snap-through load, the maximum load of 6p-1 is
much higher than that of 6p-2 and 6p-3. Among the
eight layer panels, although the buckling load of
8p-2 is lower than the snap-through load of 8p-1,
8p-31 and 8p-30, the maximum load of 8p-2 is
higher than that of 8p-1, 8p-3T and 8p-31.
However, the difference between the maximum loads
of 8p-2 and 8p-1 is small, These results may
yield a conclusion that for the maximum load the
laminates composed of 0° and 90° layers alone give
higher values than that of the in-plane quasi-
isotropic laminates. The ratio of the maximum
load to the snap-through load is 2,70 for 6p-1,
1.62 for 6p-2, 1.51 for 6p-3, 1.65 for 8p-1, 1.47
for 8p-3I and 1.50 for 8p-3I, The panel 12p-1 has
two times lamination of 6p-2. Is is noticeable
that 12p-1 yields 4.08 times maximum load of 6p-2.

6. Conclusion

It is considered that the present study by
experiments, the FEM analysis and the Galerkin
method about the seven types of laminated curved
panels yields the following conclusion.
1) The experimental result and the FEM solution
indicate that the curved panel deflects to the
convex side from the beginning due to the boundary
condition v=0 at loading edges and have the
prebuckling deformations and instability behaviors
which are different from the Galerkin method
solution with the boundary condition Nxy=0 at the
loading edges.
2) The post-buckling behavior until the final
failure load can be divided into three-categories;
(a) the panel has a load carrying capability also
after the snap-through to the concave side, (b)
the final failure occurs in the convex side
deflection without snap-through and (c) the final
failure occurs right after snap-through. The
property depends on the lamination constitution
and the shape factor.
3) The curved panels with the width~thickness
ratio and shape factor in the present study have a
considerable load-carrying capability at the post~
buckling state.
4) Roughly good agreements are seen between the
experimental results and the FEM solution.
5) In the comparison under the condition of the
same number of layers, the inplane quasi-isotropic
curved panels yield a higher primary buckling
load, while the lamination constitutions which
consist mainly of 0%and 90°lamina with a small
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value of Yy yield a higher failure load.
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Fig.1 Curved plate, Dimensions



Table 1. Experimental and Calculated Results of Graphite-Epoxy Laminated Curved Panels

thick-| buckling load (kef) | ony 0" Ckat) | maximm

speci- lamination ness = = 1oad
men constitution @ | eridin | F.EM. | peri- | F.EM. (kef)
ment | method ment (Exp.)

6p-1 [0°90°0°/sym.] 0.708 297 300 331 { (1) 612 1817

i (2) 672
6p-2 [0°60°-60°/sym.] 0.723 - 521 545 732 * 691 1187
{ 663
6p-3 [60°0°-60°/sym.] 0.701 - 164 305 682 (360) 1032
1*401
8p-1 [0°90°45°-45°/sym. ] 0.948 - 718 { ¥ 818 1262 1270 2077
835

8p-2 [0°80°0°90°/sym. ] 0.943 558 528 574 - - 2102

8p-31 | [45°-45°45°-45"/sym.] 0.976 - 612 t % 583 z (1)1087 {* 1037 -

506 | { (2) 847 1070 { 1242

(1027 -

8p-31 | [45°-45°45°-45°/syn. ] 0.970 - - - {(2) 882 t - { -

(3) 882 1327

12p-1 | [0°60°-60°0°60°-60°/sym.] | 1.473 | 1520 1845 1922 4642 4400 4842

T --- see section 2.3
¥ --- Value obtained by the 1/4 region analysis.

able 2. Elastic Moduli of Graphite Fiber, Epoxy
and Unidirectional Composites

Table 4. Characteristic Values of Test Panels

A. Fiber, Torayca T300; B - speci- poisson's |
s \ s ) men B ratio (vx) Z=b"/ (Rt}
Eg = 22000kgf/mm® , Gg o= 2500kgf/mm
E_.= 0.08xE_. , v_. .= 0.30 , v...= 0,42 sp-1 +4.3959 £0.3069 0.0318 40.88
Epf;y s £17 Bp-2 £1.0000 £1.0000 | 0.3120 | 39.83
’ ", Bp-3 £1.0000° *1.0000 0.3124 41.08
E = 370kgf/mm* , v = 0.36 8p-1 +1.0000 +1.0000 0.3124 30.38
B. Unidirectional Composites (Vf= 60%); 8p-2 +3.8714 £0.2583 0.0411 30.54
E = 13350kgf/m’® , E,~ 911.2kgf/mn? ?;'3" :‘1’4333 :“’gzgzb g;;g: 29.51
p- .0000 . . 19.55
Gpp= 473.6kgf /mm? vpp= 0.321 (v,=0.519)
b=120mm , R=500mm
Table 3. Elastic Moduli of Test Laminates
-4 ..
a..(x10 Dij kgfemm
speci- 15 ) mm/kgf R
men a31] 222 | 212 azs Dxx Dyy Dxy Dss Dxs Dys
6p~1 | 1.527] 2.778|-0.088 | 29.823 301.6 | 123.2 8.72 | 14.01 0. 0.
6p~2 | 2.691(2.691]-0.841 | 7.063 315.0 95,8 { 30.07 35.70 9.98 27.98
6p-3 12.775) 2.775} -0.867 | 7.285 138.8 1 178.8 | 55.82 | 60.95 | 27.29 76,51
8p-1 | 2.052| 2.052{ -0.641 | 5.387 608.5 [ 358.4 | 47.29 | 59.98 1 20.84 20.84
8p~2 11.479]1.479{-0.061 | 22.391 665.9 | 337.7 | 20.60 33.10 0. 0.
8p~31]6.0941 6.094 | -4.723 2.976 326.3 ] 326.3 | 252.89 | 266.74 90.98 90.98
12p-14 1.321§ 1,321 | -0.413 3.467 | 2061.6] 1181.2 | 369.60 | 52.76 | 147.88 | 117.20
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Table 5. Maximum Strains in Experiment e 1 T

. b 6-7
( unit; x10 3) ts -9 10-!11
speci- . . _|compressive
men load (kgf) tensile strain strain
6p-1 1802 7503 sy 915 (12) 30-31
6p-2 1152 9375 (30) { 5945 () 14-15 |18-19 _y22-23 +26-ZL>
6773 (38) 12-13 16717 20-21 24-25,0 1o
6p-3 1002 6837 (30) 6126 (%)
[6927 €))
8p-1 2002 6040 (26) 8334 (1)
8p-2 2102 13801 (1D 9580 (29)
8p-31 1202 15490 (15) 14149 (13) 32-33 3¢-37 38-39
Listn oy _i'_}j_zi____j\
8p-310 1302 17393 (31) 247718 (29 Fig.6
12p-1 1602 * 12691 (27) 9097 (9? Position and Direction of Strain Gauge

*¥ Maximum strain at P=4002 kgf above which
the 27th gage had peeled off.

P (kef)
2000
15001 P (kat)
) 8p-2
2000] p-1 8p-2
W0 L et
.'/’.‘ _A
1000 -3 1500 o
g W10
/ /1/’§p-3
] 1000 - -
500+ i /"/,-/ /
4 ,-’.' /-
500 ’/ / ’// 8p-3
/ //L_.._—-—-/
ol - — il
T A ¥ M 4 0 v Y L A r T T T B
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 yos(mm)
(a) Panels composed of six layers Ues (mm) (b) Panels composed of eight layers
and twelve layers
Fig.2. Load versus End-shortening Relation Calculated by the Galerkin Method
(Symbol e indicates the buckling load.)
ba/b : bm/b
1.0 4 1.0
0.8 0.8
0.6 0.6-
4 i = B
0.4 0.41 W40 S o 822
4 "‘7-~~ 8p-1
0.2 0.2 FEM (v=0 at x=tb/2)
N 1
0 v y ' v . ' ' v r———— T
1 2 3 Prper 0 1 2 3 P/Pecr
(a) Panels composed of six layers and twelve layers (b) Panels Composed of eight layers

Fig. 3. Load versus Effective Width Relation
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P/Per(plate)
6p-3
6

Fig.4 P/Pcr(plate) versus Wc/t Relation

calculated by the Galerkin Method
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8
. we(mm)
Fig.7a. 6p-1, P—Wc
P (ki) Galerkin
A "Exp.

(1/4 region)

-2
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Fig.8a. 6p-2, P-Wc
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Fig.5 Test Set-up
P (kgf) Galerkin
2000 7 .
h .

1000

) 1'.0 1.5
Ues (mm)
Fig.7b. 6p-1, P—Ues
P (kef) | Galerkin
/e )
LJ -
10001 , ‘i . Experiment
- "'
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‘\\ 9;:.".
Yo%
5001 &f N\
{e '
° FEM
{eo
e}
0 —— —
0.5 1.0 Ves(nm)
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Fig.8b. 6p-2, P—Ues




P (ksf) Galerkin

1000

0 2 4
Fig.9a. 6p-3, P-iic

we(mm) 6

P (kgf)
2000

Galerkin

.~ FEM
(VK free at loading
edges)
-2 0 2 4 6 vocamy 8
Fig.10a. 8p-1, P—Wc
Galerkin P (ksf)
. N 2000
-6 -4 -2 0 we(mm) 2
Fig.lla. 8p-2, P—Wc
P (kgf
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. v
Galerkin
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Fig.12a. 8p-3, P—Wc

P (kef) |
1000

500

Galerkin

o Experiment

Tos 1.0 ves(am
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4 L ]
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Fig.12b. 8p-3, P—Ues




Galerkin P (kst)
5000 1

Fig.13a. 12p-1, P—Wc Yl

R=500mm.

X constant
e

|____ LT | free

| I O B = d edge
3. !
Y e A

‘:‘=~a]'
|
|
i
u
120 mm

—ﬁ‘\_— "_’-‘/l;r
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Fig.1l4, Division of Finite Element

Photograph 1. 8p-1

0.5 1.0 18 .
. Ues(mm)

Fig.13b. 12p-1, P—Ues

y=0mm lﬂ P=709.94kgf
A P=1103.9ksf
y =15mm [9 P=709.94kgf

(a) Panel 6p-1 v P=1103.9kgf

5

w( n: | .’.'/,. ...... v\\.
.’.‘ -"‘.
3 ¥ W,

-1 4

-2 y=0mm [© P=351.57ksf
[B P=284,42kgf

(b) Panel 6p-3 v P=502.32kgf

Fig.15. Shape of Deflection in the Section y=const.
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Calculated by FEM Analysis (W is positive
in the concave side in this figure.)




