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Abstract

In order to examine f{lowfield around ATP by
numerical  caculations, the finite  difference
methods are applied. In the first part, the partial
differential equation for the disturbance velocity

potential is solved by line relaxation technique.
In order for the calculations, boundary fitted
meshes are  gencrated. The transformations

between physical space and computational one are
performed by chain rule. 8R-3 is used for
numerical calculations. In the second part, the
Euler equations are solved by non-iterative
implicit ADI schemes in AF algorithm. Boundary
fitted meshes are also used {or this case. The
results show qualitative agreement with the
results by Bober et al. Finally, the aerodynamic
performances, such as power coefficients and
efficiencies, are obtained. Potential calculations
show that these quantities take relatively larger
than the experimental values obtained by NASA,
however; Euler solutions show that the values
come closer to the experimental values.

1. Introduction

Studies and developments of  Advanced
Turbo-Prop (ATP) are progressing promptly, and
are spreading over the world. It is said that FTB
program or flight test for practical use will be
soon realised. NASA already finished their
wind-tunnel tests, and these are continued in
other countries now. We can see some papers of
theoretical research works and the number of
them will increase hereafter, Among many
advantages of theoretical investigations about the
aerodynamic performance of ATP, the most
prominent one is to obtain the flow detail around
very complex configuration of ATP with accuracy.
This is difficult for the wind-tunnel tests.

Sullivan?® calculated ATP performances by the

lifting line theory., and Hanson- by the lifting
surface theory. The author® calculated the
aerodynamic performances by the VLM (vortex

lattice method) up to {flight Mach number of 0.6.
Since CPU time of these calculations is not so
long, it is easy to get characteristic curves of
ATP. However, it is impossible to calculate its
performance in transonic range, i.e. Mach 0.8,
where shock wave may occur. For this speed
range, the finite difference methods for transonic
flow should be applied to ATP. Jou' calculated the
flowfield around SR-1 applying a f{inite volume
method to a potential equation. Chaussee and
Kutler °presented a method of calculation for SR-3
by solving 3D-Euler equations and Bober et al®
got the results. Bousquet obtained the flow field
around the ONERA's ATP by solving 3D-Euler
equations.

In this paper, the flowfield around an ATP,
SR-3, is calculated by solving a potential equation
and Euler equations, and its aerodynamic
performances are obtained. Since CPU time is
short, the potential analysis is very convenient for
this purpose. Using vector processor, CPU time
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of VLM for one case of a pictch angle of
three-quarter of the tip radius and an advance
ratio is about 2 minutes. and that of this method

is about 15 minutes. On the other hand. CPU-time
for Euler cquations is over 30 minutes. The
numerical calculations are performed for SR-3 in
flight Mach number 0.8 for three kinds of pitch
angle of three-quarter of the tip radius, 57.3,
59.3 and o6l.3 deg.. and advance ratios are
varied from 3 to 4. The results are compared with
the values of the wind tunnel test performed at
NASAS

2. Method by Potential Equation

2.1 Basic Equations

The flowfield of an ATP moving in the air with
a constant flight speed and a constant rotating
speed is unsteady from the view point of a static
frame. However, it is steady Dbased on  the
rotating frame fixed on a propeller blade, and if
the ecffect of viscosity is confined within the
boundary layer on the solid surface and the thin

wake shed from the blade trailing edge, and.
moreover, if shock wave ‘standing on the blade
suriace is weak, the nonviscous and isentropic

assumptions can be made. On the rotating frame
fixed on a blade. free stream to the ATP becomes
rotating flow. Therefore. there exists no velocity
potential. However, a disturbance velocity
potential can be assumed for the relative flow
around the nacelle and blades.

Let the system of rotating axes be fixed on 2
blade shown in Fig.l, i.e. x-axis is adverse
direction of ATP motion, v-axis spanwise direction

and z-axis is taken to be right handed system
with x and vy axes. The equation for the
disturbance velocity potential  is  written as

follows:
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And the energy equation is written as follows:
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where the free stream

velocity y and  local
velocity v are given by

V=11,-%,31 (3)

[ u, v, w1

<
]

[1+¢x,-%z+¢y,1y+¢z] (%)

@ is local speed of sound, X
- . o
and . advance ratio.

flight Mach number

VOO

M, = ;‘w )
v

J = -—Q-}_; , £ : angular velocity ©)

In these equations, lengths and velocities are
non-dimensionalized by the propeller radius ¥ and
flight speed 7' respectively,

The main part of this work is to solve the
equation of disturbance potential o , Eqg.(l). As
a result, the pressure coefficient based on the
density and pressure at infinity can be calculated
by the following equation.

-
c = 2 ({1 - M = 17.‘, 2 2_ 2y1Y~1 )
P e 7 UvE= V%)) N

By this equation, the ATP aerodynamic
performances, power coefficients and efficiencies,
can be calculated.

2.2 Mesh Generations

In order to solve the partial differential
equation for the disturbance velocity potential,
Eq(1l). Dby f{inite difference method, it is
necessary to generate a computational mesh in the
space around the ATP. In this paper, the
boundary fitted meshes are generated. Generally,
ATP has many blades with same configurations
which are distributed by equal angles around
rotating axis, When the flight direction is parallel
with this axis and the spinner and nacelle are
axisvmmetric, the flowfield around all blades are
same, i.e. a flowfield is periodic
civcumferentially. In solving this {lowfield, it is
usual that the space Dbetween two Dblades
neighbouring with each other is treated for
calculation. It is the calculation technique for
cacades such as turbine blades. However, for this
potential calculations, the space including a blade
is emploved. In other words, we intend to solve
the flowfield around a Dblade and nacelle. The
physical space of calculation is shown in Fig.l.
For the Euler calculations, the space between the
neighboring blades is chosen. This case will be
described in the next chapter.

Actual configuration of an ATP blade is
determined by chord length, sectional form and
thickness of airfoil in the surface normal to v
axis, pitch angle and sweep angle at a quarter
chord line. In order to generate meshes around
ATP with these complex configurations, the
following processes are performed. First, the
space of Fig.l is divided into many axisymmetric
surfaces. Second, the two-dimensional H-type
periodic meshes are generated for an airfoil which
is cross sectional form of the axisymmetric surface
and the balde. Finally, three-dimensional meshes
are generated by connecting the  above

two-dimensional grids radially.

To avoid discontinuity of meshes in the outer
region of the blade, a hypothetical blade is
considered. This hypothetical blade has zero
thickness, and chord length becomes larger in the
outer portion, and pitch angle is taken for angle
of attack to be zero relative the flow. The
enlargement of the chord length is to moderate
mesh density. In the calculations, the grid points

of this hypothetical blade are treated as flow
point.

The configurations of spinner and nacelle are
determined by their radius

distribution »..(x) along the axis of rotation. In
order to avofd the singular point at the top of
the spinner, the circular cylinder with small
radius is extended to the forward infinity. The
following transformation is introduced?

r, -0

r&:r-[I’H(x)'RH]W’

( rH(x) <r<rg, ), (8)

where »_ is the radius of the blade and »_. is
nacelle = radius after transformation which™ is
constant, By Eq.(8), the axisymmetric space
between nacelle and »._ is transformed into the
regions between cylinders f{romy». to ».. The
outer part from the blade tip is transformed by
identical one.

r*¥=r, (r>rT) (9)
The next step is that the region
of Z.. < »¥ < p_ s divided into  equidistant
partg,” and the region of »% > »_  is divided

into exponentially extending par_ts.*Consequently,
the several cylindrical surfaces are made. The
intersections of the blade surfaces and these
cylindrical surfaces  can  be  obtained by
interpolations of some sample points of the blade
surface. There appeared airfoils on the developed
cvlindrical surfaces. Then, H-type periodical
meshes are generated. For this mesh generation,
a conformal mapping is utilized for the leading
edge of the airfoil. Mapping function is given by

Z - ’Z:Cl/z + kC, (10)
where

7=X+1Y

L= E +4n an

In Eqgs.(10) and (11), the origin of coordinate
axes is at leading edge. This mapping function is
effective to airfoil with large leading edge
curvature such as this case (NACA 16 series
airfoil section). Generated meshes are shown in
Figs.2(a), (b) and (c¢), which correspond to X-,
Y- and Z-constant planes in the computational
domain (Fig.3) respectively.

2.3 Computational Domain and Boundary Conditions

Eq.(1), the equation for disturbance velocity
potential, is solved in the computational domain
shown in Fig.3. Al grid durations are unity,
i.e. LAY = . =47 = 2 Once the meshes are built
up, the physical coordinates x, y and 2z are
easily related to the computational coordinates X,
Y and Z by chein rule. The derivatives are
described by Chentin detail. Therefore, Eq.(1) is
transformed in  the computational domain as
follows:
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Fig.3 Computational domain

Coyy *C 0%y + Cogp+ Coyy ¥ C 0y + C by

= 12
+ C7¢X + ca¢y + cg¢Z 0, (12)

where C1, C2,...., Cy are exprejssed by  the

contravariant vector (U V W) of the
velocity  (u v w) and the
derivatives x,, etc.

Let us cofisidér the boundary conditions. On
the inflow boundary ABCD and out boundary
DCGH (Fig.l or Fig.3), disturbance velocity
potential should be zero.

¢ =0, (inflow and out boundaries) (13)

On the outflow boundary EFGH, when the flow is
subsonic, the following equation is applied.

Cchyy + 03¢ZZ + 05¢.YZ + cs¢Y + Cg¢Z =0,

(outflow, subsonic) (14)

This equation 1is obtained from Eq.(12) by
neglecting all X derivatives. This means no
streamwise variation in the outflow boundary.
However, Eq.(14) is not applied when the flow is
supersonic. On the solid surface, spinner and
nacelle and blade surfaces, the impermeability
conditions are applied.

V=10 |, (spinner and nacelle surfaces) (15)
W=20 , (blade surfaces) (16)
V=W=20,

a7

(intersections of the nacelle and the blade)

At the trailing edge, Kutta condition is applied in
general cases. However, in this paper, Eq.(16) is
applied at this point.

The condition at the blade tip should be
given. Chen'&xpresses this by
by, = 0, (blade tip), (18)
just outboard of the tip. In this paper, at first,
the calculations were performed wusing this
condition. The grid line just outboard of the
blade tip was laid at 1.001R (R is blade radius).
The results showed that the pressure distribution
along this grid line took strange form.
Consequently, the grid line was removed to just
inboard of the tip, 0.999R, and the condition
Eq.(15) is applied for the blade tip condition.

The potential jump across the wake is assumed
to be constant and its wvalue is difference of
potentials between the upper and lower sides at
the trailing edge. Thickness of the wake Iis
assumed to be zero. Finally, on the periodic
boundaries, the potential values are equal with
each other, i,e.

= 1 (19)
bammp = Prrce (periodic boundaries)

2.4 Method of Numerical Calculations

In solving Eq.(l), if the flow direction is
approximately x axis, it is sufficlent to take
upwind difference along x direction in supersonic
region. However, the flow around the ATP is
highly inclined and the equation should be
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rewritten by an orthogonal coordinate system with
one coordinate s aligned with the flow direction as
follows:

2 _ 2 2,92, _ -

@ - g4,y +a® (V20 - ¢, ) = 0 (20)
where

q% = u® + % + 2 1)

Representing ¢__ by x, y and z, it is expressed

by ss
-4 2 2 2
L Ez-(u ¢xx+v¢yy+w¢zz
+ 2uv¢xy + 2vw¢yz + Zuud, (22)
In Eq.(20), ¢ in the first term should be

calculated by ““upwind difference in supersonic

region. Here, the artificial viscosity is added as

the directional bias of supersonic flow as follows:

C Oyt €, 0t €. (z7)¢p

* €, Oxpep ¥ € 0p)ep + O W ep

TGy * C ey + C, 000

- ulp [y = Gydepl *+ 2,10y = Gyp)ep]
+ Pyl yy = (Ggpdepl + P, L0 gy = (Byyp)cp]

+ P LGy = Gyepl +p, (G000 = Gy 0]}

=0y (23)
where
22
U= max( 0, 1~ 5‘2‘ ), (24)
and  pi1, Paye.., Ds are the coefficients

expressed by t}&g components of contravariant

vector wvw The subscript UW indicates
upwind difference, CD central difference. The
above artificial viscosity has nonconservation

form.

All of the finite differences are second order
and, especially, for UW,

Crodmi = Pi-251,5,k = Piega, i,k T %50k 0
s1= ;U>0

(25)
g1= 3 U<O0

In order to solve Eq.(23), the line relaxation
method is applied. It is vertical line relaxation in

which ¢ at (i,j) point are unknowns. Let this
value be ¢ijk’ the (n+l)-th potential can be
obtained by

n+l + n 26)

e ..+ (- . . 26
5,50 = g5,k T T T W0 5
The iteration process is continued until the
following relation is satisfied.

{ n+l n , 7

max [ |, .., =~ ¢. ., ] <e
Li k| Ladsk o Tduk

where ¢is a small quantity of convergence
criterion. i1, Cz2y..., Cs and x v & included
n

in p1, p2,...,psare calculated By ZYC{ order finite
differences.

3. Method by Euler Equations

It is very effective to investigate the flowfield
around ATP by solving 3D-Euler equations.
L.J.Bober et al. succeeded to do this and got the
results until f{light Mach number 0.8, The
procedures employed in this paper follow those by
Refs. 5 and 6. The descriptions will be
abbreviated and the detail should be refered to
the references.

3.1 Basic Equations
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BLADE (PRESSURE SIDE)
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Fig.4 Physical space and coordinate axes

Although the rotating frame fixed to the blade
was chosen in the potential analysis, the static
coordinate system is utilized in this Euler case.
Fig.4 shows the physical space with the
cylindrical coordinates in which z is adverse
direction of ATP motion, r extends radially
outward from z-axis and ¢ is the meridional
angle measured from the vertical plane. The Euler
equations in weak conservation law form are given
by

1
=0 (28)
Qt+E’z+FP+;G¢+H ’
where
o] pu pv
ou pu’+p puv
Q=|ov E= | pw F=| pvi4p
pw PuUw pvw
e (etp)u (etp)v
o] pv
ouw puv
G={ow [|H= |pWw-w")
e 2o (29)
(e+p)w (etp)v
= 1,2 2 2
e—Y_1+2(u 4+ v° + w) (30)
In the above equations u, v and w are the
cylindrical velocity components along 1z, r
and ¢-directions respectively, and e is the total

energy per unit volume.
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By this relation, the pressure is calculated.
Furthermore, the pressure p, density p and
velocity components u, v and w are
nondimensionalized by
p, s, 0, anday vy respectively,
where @ indicates the value at the free-stream.
The cylindrical coordinates are transformed
into the computational domain by

T=1

£ =E(t,2,7r,9)

n = n(t,z,7,9) G
= 50(t,3,r,0)

This generalized nonorthogonal coordinate

transformation maps the nacelle surface into a
constant 1 -plane and both sides of the blade
into two constant ¢ -planes. Then, the Euler
equations, Eq.(28), are rewritten by the
transformation as follows:

GaE R va rhe 0, 2
where
o oU oV
R pu . puU+pgz R puV+pnz
Q=Jlppl E=4 va+p£r F=dJ va+pnr
pw i pwlU+pE ¢/r pwl+pn ¢/r-
Le J (e+p)U—p€t (e+p)V—pnt
(oW oV
. qu+pcz A puv
G = J| puipe H=% o (v2-w?)
DwW+pC¢/r 200w (33)
(e+p)W—pCt (etp)v

(z,7,¢) _
I= —Emr) = Al T et T ORTy

- 3Tty T TedEn < SR (38)
and
U= ﬁt + uig + vir + w£¢/r
y=m, +un, +on,+ wn¢/r (35)
W=7, tut, + g, + wcq)/r

Thesew U, V and W are the contravariant velocity

components. The derivatives £_ , &  etc. are
. . T 2

obtained by chain rule.

3.2 Mesh Generations and Computational Domain
The mesh generation procedures are basically
same with the potential case described in 2.2. In
this Euler case, however, the flowfield between
neighboring blades is calculated. Therefore, the
new physical space is made by rotating the
periodic plane by 7/3 rad .(B : number of
blades). The new periodic planes are the outside
parts of the suction and pressure sides of the
blade. Moreover, the mesh lines on the outer
boundary were spirally tilted in the potential
case, however, these are approximately straight
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in this case, because the system of coordinate
axes are static. Instead of the rotating axes, all
over the mesh system rotates in this case with
rotating speed of the propeller. The pitch angle
of the outer hypothetical blades changes gradually
until zero at the outer boundary. The meshes
generated are shown in Figs.5(a), (b) and (c)
which correspond to £-, n- and ¢ -constant
planes in the computational domain respectively,
which is shown in Fig.6.

3.3 Method of Numerical Calculations

The numerical algorithm used to solve the Euler
equations, Eq.(32), which have the conservation
law form is non-iterative, implicit ADI schemes.
The scheme employed in this calculation is the
scheme developed by Beam and Warming?! Letting
the duration of mesh of computational domain be
unity, i,e. AL = An = Ag =1, the AF
scheme takes the following form, ‘

N
ghg? )

V(3 ~1\1
x{T + AténB ei(JVnAnJ )]

“n
[T+ 888.4" - e, (¥
S ‘1' n
x[T + At(SCCn - e, (V077D (
~ ~ /\n A
= —At[GEE” + <SnF” +6,d" 7"

2 2 2 -37\7
- eeJ”[(ngg +WA0% + (7,801 T

Qﬂ+1 _ Qn)

(36)
where A, B  and C_ are Jacobian matrices,
i.e. 9E/3¢ , 0F/36 and 3G/3¢ respectively. These

are expressed by Jacobian matrices A(= 3E/3¢ ),

B(= 3r/3@ ) and C(= 3G/5¢ ) as
foliows:

A = 35/ = koI + Tad + ka8 + X, 7
where

ko =&, K1 =&, ko =&, ks = €¢ R (38)
and I is the identity matrix. The detailed

expressions are given in Refs.5 or 6, The terms
multiplied by e. in  the left hand side and
by e in the 7f‘igh’t hand side are added for
dissipeation. The former controls the instability,
and the latter is added to decrease the short
wavelength oscillations.

In transonic flowfield, the difference scheme
should be switched whether the flow velocity is

subsonic or supersonic in order to get the stable

solution. In this case, only &, is calculated
using the following procedure. &

us -(V.e.A./2) 39
5 F|. = e LE (39)
gl M T - (Vgei/2) 1

where € is switching operater given as follows:

_Jo
€ 1

By Eq.(39), differencing transfers from central
difference to upwind one smoothly as the flow
velocity changes from subsonic to supersonic. The

: subsonic‘ (40)
: supersonic

other differentiations & and & are
approximated by the central fference? The
second term of the numerater of Eq.(39) is

calculated as follows:

_ n
Veely = Ve, - 1D

= epafig - G P EQTEH Efy G

In é)fjier to solve Eq.(36),
solve @ , the following four
processes are executed.

that * is, to
step sequential

1+ Atéggn - ei(JVEAgJ")"]Aé}* = rus"

~

[T+ Atéan - ei(JVnAnJ'l)”]AQH = AQ*

I+ 860" - e, “1y1A0" = pgH

[ c et(JVCACJ )14 AQ

Qn+1 -+ Agzn, (42)
where AQ* and AQ** are intermediate values of

the first and second inversions respectively.
rus” expresses the right hand side of Eq.(36).
This term is calculated at g?ch mesh point before
the inversion steps. A" “tends to a constant
steady wvalue as time t increases. The calculation
stops as the convergence is reached when the
average value of A§  comes to or less than
107" According to the linear stability analysis,
the implicit AF method is unconditionally stable.
However, the increment of time, At , has a
limited value.

3.4 Boundary Conditions
(1) Inflow and out-boundary conditions

The variation of all quantities should be zero
at the inflow and out-boundary, i.e.

Adypep = Moo = 0 43
(2) Outflow conditions

When the flowfield 1is subsonic, only the
pressure has to show no change, i.€.
bp =20 (44)

The other quantities are extrapolated at the
outflow boundary.
(3) Tangency conditions on the solid surfaces

On the blade and nacelle surfaces, the
contravariant velocities should be zero because of
their tangency.

W=20 blade 45)

V=20 nacelle



Moreover, both contravariant velocities should be
zero simultaneously on the intersection of the
blade and nacelle. The velocity components on the
solid surfaces are obtained by the linear
extrapolation. For example, U and V are obtained
by linear extrapolation while W = 0 by the
tangency condition on the blade. Therefore, u, v
and w are calculated by the following equations.

u (nrc¢ - n¢Cr)/r -(ErC¢ - €¢Cr)/r
v| = J -(nzc¢ - n¢cz)/r (Ezc¢ - £¢Cr)/r
w (M2, - nuL,) -(€L, - £,.5,)
€Ny = Egn/2| 1V - €t
-(Ezn¢ - €¢nr)/r vV-n, 469
€,n, - Ernz) W-z,

(4) Periodic boundaries

As Fig.9 shows, the periodic boundaries locate
at the outside parts of the suction and pressure
sides of the blade in this Euler case. The values
of two points which correspond with each cther
should be equal on the periodic boundaries.

8 = Mprec “7)

As the initial condition at t = 0, the
free-stream velocity field is given, and the time
marching process starts.

4, Numerical Results

The numerical calculations were performed for
SR-3 where the pitch angle at three quarter of
the tip radius, 8 are 57.3, 59.3 and 61.3
deg., and the rag'g7e5%f advance ratio is from 3 to
4. The f{light Mach number y_ is 0.8. The
number of meshes are 51 along x direction, 16
along y direction and 21 along z direction for the
potential case, and 45 along z direction, 18 along
r direction and 19 along ¢ direction for the Euler
case (see Fig.2 and Fig.5). The initial values
were set to zero and the relaxation factor was 0.9
throughout the potential calculations. The
free-stream velocity field was given as initial
values for the Euler cases. Dissipation
coefficients ¢, and e in Eq.(36) took the various
values accord?ng to %he pitch angles and advance
ratios,

Pressure distributions on the suction and
pressure surfaces of the blade and isolines of
constant relative Mach numbers are shown in
Figs.7(potential case) and 8(Euler case). The
pitch angle at three-quarter of the tip radius is
59.3 deg. The isobars and relative Mach numbers
above and below the blade are shown in
Figs.9(potential case) and 10(Euler case). Figs.7
and 8 show that shock waves appear on the
suction sides near trailing edge. Comparing these
figures with each other and with the results
obtained by Bober et al., pressure and iso-Mach
lines are different delicately. However, the
overall tendencies agree with each other. The
same can be described for the figures of the
flowfield above and below the blade. The degree
of convergence is good until the flight Mach
number is 0.8.

Finally, the aerodynamic performances of SR-3
at M_= 0.8 are shown in Fig.ll. Since the

L]

potential cannot give drag force, the results of
the potential cases are obtained by using the
experimental drag force of NACA 16 series airfoil
sections as the similar manner of Ref.3.
Comparing these calculations with the experimental
results, both of power coefficients and efficiencies
are larger than those of experiments. The reason
of these facts are estimated as follows: First,
recovering moments by centrifugal force act on
the blade. Therefore, the actual pitch angle is
smaller than the nominal one. This phenomenon
was indicated in the discussions of Ref.3. The
angle at three-quarter of the tip radius was 1.3
deg. smaller than the set angle by the
calculations through NASTRAN., Second, the
shock wave on the actual ATP blade might be
stronger than that in the calculation. Therefore,
isentropic assumption might be violated in the
experiments. However, the Euler cases are closer
than the potential cases by the reason that the
effects of tip vortex and viscosity cannot be
estimated by the potential analysis.

The computer systems used for these
calculations were FACOM M-382 and VP-200 vector
processor at Kyoto University Data Processing
Center. CPU-time for one case calculation was
about 15 minutes for the potential case, and 30
minutes for the Euler case, while that for the
VLM was about 2 minutes.

5. Conclusion

It is very important to investigate the flowfield
around ATP for its optimal design., In order to
accomplish this, the numerical methods are
appropriate. " The  wind-tunnel tests might
accompany difficulties. Among several numerical
techniques, the finite difference methods are
better for this purpose because of transonic
flowfield around ATP. We can solve both of

potential egquation and Euler equations by this
method. Although the flowfield detail can be
clarified with accuracy by solving 3D-Euler
equations, CPU-time takes longer. On the

contrary, it is relatively short for the potential
equation. In this investigation, the flowfield
around an ATP are calculated by both methods.

If the frame is fixed on a blade, flow becomes
steady, but rotating. Since no full potential exist
in this flowfield, the equation for a disturbance

velocity  potential is  solved  without any
linearization. Boundary fitted meshes  are
generated around ATP., The transformations

between physical space and computational one can
be performed by chain rule., These computational
meshes expanding the space between two periodic
boundaries including a blade. The line relaxation
method is used for solving equation. All
derivatives are calculated by second order central
differences. The artificial viscosity is introduced
as the directional bias in supersonic domain.

On the contrary, the  static cylindrical
coordinate system is employed in order to solve
the Euler equations. Although the same method
with the potential case for generation of meshes
around the ATP is utilized, the physical space
chosen for this case is that between the
neighboring blades. The non-iterative, implicit
ADI schemes are used for the numerical
algorithm, and AF scheme is employed to obtain
the steady state solutions.

SR-3 is used for numerical calculations and the
results of two methods show qualitative agreement
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with each other and with the results by Bober et
al. Finally, we obtained the aerodynamic
performances such as power coefficients and
efficiencies, and these values are relatively larger
than the experimental values obtained at NASA.
The reasons of this difference are due to (1)
recovering of pitch angle by centrifugal force,
(2) wviolation of isentropic assumption. It should
be noted that the results by the Euler analysis
are closer to the experimental values than the
potential case.
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