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ABSTRACT

The development of the Harmonic Gradient Method
(HGM) and the Harmonic Potential Panel (HPP) method
for nonplanar wings and bodies in unsteady
supersonic flow is presented. They are proved to
be accurate and versatile tools for computations of
unsteady aerodynamics. According to a consistent
formulation, the bases of both methods are now
unified. Owing to the Harmonic Potential model,
optimal number of panels can be achieved without
loss of the computational accuracy. And yet it is
least affected by the given Mach number and reduced
frequency. Moreover, these methods are completely
general in terms of input oscillatory frequencies,
mode shapes and body or planform geometries. To
validate the HGM/HPP computer codes, various
computed results are compared with all known cases.

These results demonstrate that the computer codes
are attractive in their efficiency and cost-
effectiveness for aeroelastic analyses, which

suggest immediate industrial applicationms.

INTRODUCTION
With the advent of supersonic aircraft and
modern launch vehicles, there exists a need for an

accurate airload prediction method for aeroelastic
design analysis. While current methodology for
interfering lifting surfaces in the subsonic regime
is better established due to the accomplishment of
the Doublet Lattice Method (Ref. 1) an equally
effective supersonic method has been lacking for
several decades. Many attempts have been made in
recent years for development of such an effective
method in treatments of interfering configurations
(e.g. Refs., 2-6). Most of the investigators
followed Jones and Appa’'s Potential Gradient Method
and modified it further. By contrast, the Harmonic
Gradient Method (HGM, Ref. 5) developed in 1983
encompasses a generalized formulation for nonplanar
lifting surfaces and with that it also achieves the
requirements of computation accuracy and cost
effectiveness. Among these attempts, the HGM
appears to be one of the most promising methods to
date. In fact, since 1983 several aircraft
industries  have already adopted the HGM for
supersonic aeroelastic applications. To continue
the development of the HGM, our current efforts
have been engaged in the generalization of this
method for axisymmetric bodies with flexture (Refs.
7-8), with a view towards a comprehensive program
for computations of body-wing aerodynamics. In
this paper developments of the HGM and the Harmonic
Potential Panel (HPP) method in the problem areas
for wings and bodies will be addressed.

The essence of the HGM, and now the HPP method,
lies in the introduction of the Harmonic Potential
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(HP) model. With this model, substantial savings
in the wing panel numbers can be achieved and yet

without the
more, both

loss of computation accuracy. Further—
HGM and the HPP codes are completely
general in terms of the input wing/body geometry,
mode~shapes and reduced frequencies. The ease of
application of these codes are comparable to that
of the Doublet Lattice Code and the USSAERO Code
(Ref. 9). With these features, both codes once
combined can be attractive in that they can perform
cost—effective analyses for complex aircraft
configurations.

the confidence 1level of these
program codes depends largely on the result
validation. For this reason, wvarious computed
results of wings and bodies will be presented for
verification with all known cases.

Meanwhile,

GENERAL FORMULATION

Let o = 0 represent the wing formulation and o
= 1 the body. The perturbed potential integral can
be written in general as

¢°.(xo’3'o’zo) = IG{FG(%;)G H] (1)
where T, 1= [[ [ lax ay ana 1,01 = [ [ lax, F,

and F,
the body, respectively.

are the doublet strengths for the wing and
The kernel function reads

i
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2 2
where p = kMQ/B » M_ is the freestream Mach number
and k is the reduced frequency.

On the surfaces of the wing and along the body

axis, the doublet strengths of each panel can be
expressed in terms of a_. which can be obtained by
solving the flow tangeficy equation on the panel
surfaces,
[ 1 Dhc'}
=4 =< (3)
LAsij] {agit { Dt
where Aci' represents the aerodynamic influence
J
coefficient of the jth panel to the ith comtrol
Dh .

point. “B%l represents the downwash, in which hcj

is the displacement of the jth panel.
The unsteady pressure coefficients are
ikt

o

6y =~ 2 [32—'+ik} ¢%(xo,yo,zo) e (4a)
o

for the wing (o = 0), and
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C=c + 8,(Ac_) cosf o1kt (4v)
P Py 4
for the body (o = 1), where ¢ is the mean—flow

o
pressure and Ac_ represents the unsteady pressure
due to a small®amplitude §,. It should be noted

that a i for the body depends on the mean—flow
solution” due to the mnonvanishing of the body
thickness. Consequently, Ac_ should also depend on

the mean—~flow pressure cp .© 8Since the wing thick-

°
ness is approximated by a lifting surface, the L

and the unsteady pressure c® in Eqs (3) and (4a)
are decoupled from the mean-flgw solution.

STEADY-FLOW_RESULTS

Swept Rectangular Wing

With the subsonic leading and trailing edges,
the planform in Figure 1 is an interesting case for
result verifications. An exact solution obtained
by Cohen (Ref. 10) clearly indicates the wave—wave
interaction feature of the problem (Figure 2).
Among others, previous attempts by Chipman (Ref.
11) wusing improved Mach Box method and by Ueda and
Dowell (Ref. 4) using Doublet Point method have
shown smearing of data around wave-wave finite
discontinuities. To capture these discontinuities,
it is essential to create irregular panels along
the Mach wave cuts, One type of the panel
arrangements used by HGM code is shown in Figure
1b. With 196 panels, lifting pressures are computed
at the spanwise locations of 48% and 72% as shown
in Figures 2a and 2b. In so doing, both weak and
strong wave discontinuities are properly captured
in regions inboard and outboard of the tip Mach
line, as well prescribed by Cohen’'s exact results.

Nonlinear Solutions for Bodies

Results of linear and nonlinear versions of HPP
Code are presented in Figures 3 and 4. Based on
Van Dyke's iterative procedure, the HPP nonlinear
code has been developed recently (Ref. 8) to
account for the nonlinear body thickness effects.
It is the first time that the panel method, using
the technique of particular solutions, is employed

to tackle the nonlinear problem without involving
the field point computations. In Figure 3, HPP
results (linear) and HPP nonlinear results are

compared with those computed by USSAERO Code and by
exact characteristics for a 26% thick ogive body at
M, = 2.0 and 3.0. The HPP nonlinear results
compare very well with those computed by the method
of exact characteristics. It is seen that the
nonlinear effect due to thickness is substantial
from apex to the mid body. Next, the nonlinear
iterative scheme is applied to a 16% thick ogive—
cylinder-boattail body at M_= 3.0 and placed at

moderated angles of attack ?ao = 3,2° and 6.3°),
Again, very good correlations are found with the
computed results of the Parabolized Navier-Stokes
(PNS) Code and the Euler Code (Ref. 12) for both

cases in Figures 4a and 4b. Considerable devia-—
tions between the linear and the nonlinear results
are again observed particularly on the windward
side of the ogive part. It is believed that as
long as the flow remains attached, the present HPP
nonlinear method should expect to yield results in
favorable agreement with those by computational
methods in the supersonic Mach number range.

STABILITY DERIVATIVES

45° Delta VWing

For the panel arrangement as shown in Figure 5,
the large aspect ratio of each panel element in the
proximity of wing tips of a 45° swept delta wing
would have ordinarily caused numerical errors. To
show that such is mnot the case for the HGM, we
compare present HGM results with Miles’ exact
solution in terms of damping—in-pitch 1lift and
moment coefficients. It is seen that all are in
very good agreement with the exact results. This
implies that the HGM scheme used is a robust ome in
that the computed result is wunaffected by the
assigned panel shapes and sizes.

Cone-Frustrum Body

Damping—in-pitch moment cofficients for & come-
frustrum body are presented in Figure 6. Through-
out the supersonic range, present HPP results are
in excellent agreement with Platzer's linearized
method of characteristics (Ref. 13) Close agree-
ments are also found with Tobak and Wehrend'’s cone
theory and with various measured data (Ref. 14),

Ogive-Cylinder Body

It can be seen that in Figure 7 the damping-in-
pitch moments as computed by the present HPP
methods are in fair agreement with the measured
data for a 20% thick ogive-cylinder body throughout

the Machk range. The computed results of SPINNER
Code and that of Ericsson’'s (Ref. 27) show large
discrepancies with measured data whereas little

dependency was found in the Mach number range. By
contrast, strong Mach number dependency is shown in
the results of the HPP Code. However, mno
appreciable difference is found between the HPP
linear and nonlinear resutls for this case.

HARMONIC POTENTIAL MODEL

To achieve computation accuracy and effective-
ness for wings or bodies in high-frequency
oscillations, it is essential to render the doublet
solution and its convective gradient uniformly
valid throughout the frequency domain. This is to
say that the doublet strength in each panel can be
maintained spatially harmonic. In so doing, the
element size is ~made automaticalily compatible to
the wave number generated along the chord. Hence,
the solution obtained can be least affected by the
panel length and the input frequency.

In terms of Eq (3), the HP model amounts to
representing the unknown strengths L by

a, =(b, +c, x)e "% (5)
oi i i

Figure 8 shows that the doublet potential A¢ (or F,
and F,) behaves according to Eq (5). As a result,
as few as 30 panels are needed for a single wing
planform using regular paneling scheme and 20
panels for a single body in actual computation (see
Refs. 5 and 7). In an IBM 3081 computer, typically
only 90 CPU seconds and 7 CPU seconds are required

respectively for computations of unsteady
pressures.
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FULL-FREQUENCY DOMAIN

With the HP model built in, the HGM and the HPP
methods can handle oscillatory problems in the full
frquency domain effectively. 1In the high-frequency
range, accurate solutions can be obtained without
increasing the number of panel elements. Figures 9
and 10 present the unsteady pressures at the root

chord section of a high-aspect-ratio rectangular
wing in  pitching and in plunging motions,
respectively. For verificationm, the reduced

frequencies k selected 1lie in the moderate to
high range between 0.4 and 2.0 and the Mach numbers
(M, = 1,15 and 1.25) are selected in the lower
range. As the root-chord is not contaminated by
the tip Mach cone, it can be seen that the HGM

results are in good agreement with several
available two dimensional results of Chadwick-
Platzer (Ref. 15) and of Liu and Pi (Ref. 16) in
Figure 9 and with that of Jordan (Ref. 17) in
Figure 10. For oscillating bodies, Figure 11
presents results in the high frequency limit. To

validate the high-frequency solution of HPP Code,
its computed results using 20 the panel elements
are checked against results calculated based on the
piston theory for a very slender parabolic ogive.
The thickness ratio T = 0.02 is selected according
to the requirment of v M_ k <({ 1 as imposed by the
piston theory. At M= 1.5, it is seen that the
agreement seems to be very good for two selected
frequencies k = 4.0 and k = 7.5. It is also inter-
esting to compare the effects of frequency and flow
dimensionality om unsteady pressures, Figure 12
shows comparisons of unsteady pressure coefficients
for a 5.7° cone and a flat plate pitching about the

apex at M_ = 2.0, The HPP results are compared
with the LPP results (Ref. 16) which are identical
with the HGM results for a rectangular wing at the
root chord. As expected, the unsteady pressure
magnitudes for an oscillating cone is smaller than

those of a flat plate at k = 1.0 and k = 2,0,
Similar to the case in steady supersonic cone and
wedge flows, the present finding shows that the
cone in oscillation yields weaker compressions as a
result of three dimensionality of the flow,
irrespective of the oscillation frequency.

OSCILLATING FLEXIBLE BODIES

Coordinate Systems

It has been observed that a slender missile is
susceptible to flutter when it is under a
combination of short-period rigid mode snd free-
free bending mode oscillation during its supersonic
flight phase (Ref. 18). To analyze such problems
requires the proper selection of the coordinate
systems. This gquestion has been studied in depth

by Garcia-Fogeda and Liu (Ref. 7). Basically,
there are three coordinate systems to be
considered: the wind-fixed, the body-fixed, and
the pseudo wind-fixed (see Figure 13). The first

two systems have been subject to some controversy
in the past (e.g. Refs. 19-22), Ve found that, if
i11 formulated, the wind-fixed system will yield
solutions which are generally singular at the body
apex and at the body slope discontinuities. On the
other hand, based on Van Dyke's first order theory,
a generalization of the body-fixed system can be
readily formulated to facilitate present studies.
The psendo wind-fixed coordinate system is a hybrid
approximation between the first two systems. Its
formulation is physically correct but

rigorous. It will be seen that the latter two
systems yield similar trends for almost all cases.

Bending Oscillations

In Figure 14 the in-phase and out-of-phase
pressures for a 10% thick ogive and cone-cylinder
bodies with free—free first bending mode are

presented. At Mach number Meo = 2.5 and reduced
frequency k = 1.0, these results are computed in
the body-fixed coordinate system. The presence of
the pressure jumps, for the come-cylinder case,
obviously results from the flow turning corner at
the shoulder. Next, in Figures 15 and 16, general-
ized aerodynamic forces of these bodies in first
bending mode at k = 2.0 are evaluated in the range
of supersonic Mach numbers. While the psuedo-wind~
fixed and the body-fixed results are in satisfac—
tory agreement, their deviations increase with
increasing Mach number and thickness. Finally, in

Figure 17, computed HPP results for an elastic
cone—cylinder body were compared with  the
aerodynamic damping data measured by Hanson and
Doggett (Ref. 23) for verification. The damping
reduced frequency 1lies between 1.12 to 1.6,
corresponding to M_ = 3.0 to 1.5. It is seen that
the present results establish close trends to the
measured data, By contrast, all quasi-steady
theories yield much inferior predictionms. It
should be mentioned that equally close trends to

the measured data were also predicted for the case
of second order bending mode oscillations.

DIVERGENCE AND_FLUTTER

The main application of the HGM and the HPP
Codes 1lies in aeroelastic analyses such as the
predictions of divergence and flutter boundaries.
To wverify these boundaries with measured data for
wing planforms is difficult, as the latter are
mostly kept out of the public domain, However, it
should be noted that presently the HGM Code is used

by several aircraft industries for flutter
clearance purposes as well as flutter predictions
in their aeroelastic optimization program. Also,

limited amount of flutter data is found to exist
for bodies.

In Figures 18, 19 and 20, an oscillating come
in rigid mode at wind~off frequency ratio of o /v
= 1.8 is studied for divergence and flutter. e
present HPP (linear) method and the HPP nonlinear
method are used to compute the divergence and
flutter boundaries. Here, the HPP nonlinear code
js referred to a scheme using the nonlinear mean-—
flow solutions for unsteady-flow computations (see
Ref. 8). It is seen that consistent improvement in
trends are obtained for the nonlinear results over
the linear ones in comparison with the measured
data of Sewall, Hess and Watkins (Ref. 24).
However, the predicted boundaries become less
conservative in the order of slender-body, the HPP-
linear and the HPP-nonlinear results. Almost no
Mach-number dependency is shown for the divergence
boundary as predicted by the HPP nonlinear code up
to M = 5.0, In Figures 19 and 20 it is seen that
overall trends of the predicted flutter speeds and
frequencies are comparable to those measured.
Since the come is a slender ome (cone semi angle =
7.59), the predicted flutter speeds by the linear
and the mnonlinear methods merge in the low Mach
number range as expected. A similar trend can be
observed in the pressure distributions for the
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mean—flow cases (see Ref. 25). It should be noted
that for thicker bodies, the 1linear and the
nonlinear results are expected to deviate from each
other, as indicated by Van Dyke for the mean—flow
cases.

OTHER CONFIGURATIONS

Saturn Launch Vehicle

In Figure 21, aerodynamic damping of the Saturn
SA-1 launch vehicle is presented. To compare with

Hanson and Doggett’s measured data (Ref. 26), the
free—free first bending mode and damping
frequencies as determined by the experiment are

used as the inputs for the present HPP Code. The
natural frequency for the actual vehicle is 2.8 Hz,
however, for wind tunnel experiments, the model
natural frequency is 153 Hz due to the necessary
scale—down in size. Consequently, the reduced
frequency lies between 1.4 to 2.53 for Mach number
range between 3.0 to 1.2 respectively. Thus, the
reduced frequency range for the model study is of

order wunity. This then justifies the necessity of
a general method such as the present HPP method
which is valid in the full frequency domain. Good

agreements are seen between present results and the
measured data. To model this complex configura—
tion, less than 100 panels are used with the given
frequency range. Only 30 seconds CPU time on an
IBM 3081 computer were mneeded for computing the
aerodynamic damping coefficient for one freestream
Mach number.,

Northrop F-5 Wing

Tijdeman et al at NLR have performed a series
of experiments on a pitching F-5 wing throughout
the whole transonic range (Ref. 28). We select the
highest Mach number case in this series (Mw =
1.336) for the computation example. With the
pitching axis located at 50% of the root chord, the
wing is pitching at a frequency of k = 0.198,
Sections 1, 3 and 7 are selected which are located
at 18%, 51.2% and 87.5% of the semi-span.

The HGM Code computes this case without the
scheme of the Mach wave cut. It is seen that the
correlations between the computed results and the

The reason for this is
exists strong influence of

measured data are fair.
that ophysically there

the nonlinear effect due to a detached shock wave
near the leading edge, whereas the HGM is a linear
method. Also observed is the oscillatory feature

of the measured data. This can be explained by the
mentioned nonlinear effect in that the upstream—
propagated unsteady waves are interacting with the

detached shock wave which reflect upon the wing
surface. We believe that the oscillatory pressures
in this flow regime could in turn affect the
flutter results to a certain extent. JInvestigation
of this problem requires the careful study of the
nonlinear transonic/supersonic flow at the near
shock—attachment or detachment conditions. Such a

study is in progress at ASU,

Nonplanar Wings

Computations were carried out for a wing and a
tailplane, both with delta planforms in tandem
configuration, as shown in Figure 23, Two coplanar
cases and three mnonplanar cases are considered
according to Woodcock and York (Ref. 29). The

fixed geometric parameters for this arrangement
are, _

root chords: OB = 23 and PF = N3/2

wing spans: AC = 4 and EG = 2,

whereas the varied parameters are 'd’, the distance
between the wing and the tail measured along the x-
axis from one trailing edge to the other, and 'h’,
the height between the mean planes of the wing and
the tail. Case 2 and Case 5 are two special cases.
In Case 2, the co-planed wing and tail join at
point B (also now point P), in Case 5, no inter-
ference occurs between the two surfaces.

Four modes were considered,

mode 1: both wing and tail in plunging motion
mode 2: both wing and tail in pitching motion
mode 3: the tail alone in plunging motion
mode 4: the tail alone in pitching motion,

while the pitch axis remains fixed at 2/3 of the

wing root chord for all modes.
The generalized forces should read,

2 + ; (X}
P U2L2S(Qpy + ik Q)

where ‘L’ is the reference chord length, 'S’ is the
reference span length and 'k’ the reduced
frequency, and they are set ton3, 2 and 0.01,

respectively, for the present cases.

out—of-phase part of the generalized
presented in Tables 1 and 2,

Only the

re H
forces, QIJ‘ is
Computed results of HGM are compared with those by
Woodcock and York using the Box Collocation method
and by an approximate method of Martin et al (Ref.

30). Close agreement with Woodcock'’s results are
found for the coplanar cases. For the nonplanar
cases, some deviations are found in the values of

re 1 +s 1
Q;, Q1, Q;;, and Q.

It should be noted that the present HGM adopts
a total of 125 panels, 100 for the wing and 25 for
the tail, whereas Woodcock uses 350 boxes. In our
earlier work (Ref. 5), as few as 50 panels were
used to compute for an AGARD Wing-Tail-Fin combina-
tion. Practically 1little difference was found in
the generalized forces between using 100 panels and
50 panels to represent the cases of wing-tail and
fin-tail interferences.

CONCLUDING REMARKS

It has been shown that the present method has
the following advantage over the existing unsteady
supersonic methods:

1) The present method is formulated consis—
tently based on the Harmonic Potential
Model. It is general in the frequency

domain and for arbitrary input mode shapes.

2) The present method is general for computing
nonplanar or coplanar wing planforms as well
as for axisymmetric bodies with any given
body shape including slope discontinuities.

3) Due to the Harmonic Potential Model, the
required number of panels is least affected
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by the given Mach number and reduced
frequencies, and yet without the loss of
computational accuracy.

4) Both HGM =and HPP Codes are computationally

efficient in terms of computing time. The
ease of application of these codes is
comparable to that of the subsonic Doublet

Lattice Code.
we believe that a comprehensive three—
nsional, unsteady supersonic method for body—
combinations is mnearly in hand. With the
features when both codes are properly
ined in one, it can provide aircraft industries

ost-effective tool in performing supersomic
elastic analyses for a complex aircraft
iguration, Presently we are continuing our

rt towards this goal.
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2).

Table 1 Out-of-Phase Genmeralized Forces for Coplanar
Tandem-Wing Interference, M_ = 1.44, k = .01,

Fig. 23 Nonplanar Wing-Tail Configuration Showing
Notations (OB = 213, PF =+/3/2, AC = 4 and

Case 1 d = 2,866 =20 / Case 2 d = ,866 h=20
()

QII HGM Woodcock Martin / HGM Woodcock Martin
11 3,073 2.951 2.99 3.160 2.88 3.06
12 1.439 1.473 1.43 0.348 0.20 0.37
13 0.489 0.469 0.489 0.477
14 0.997 0.925 0.432 0.387
21 0.345 0.326 0.32 0.259 0.110 0.21
22 4,102 4.142 4.40 1.104 0.970 1.70
23 1.055 1.016 0.490 0.483
24 2.154 2.007 0.437 0.395
31 0.151 0.149 0.238 0.07
32 1.646 1.635 0.555 0.37
33 0.489 0.469 0.489 0.477
34 0.997 0.925 0.432 0.387
41 0.324 0.321 0.238 0.09
42 3.562 3,553 0.563 0.40
43 1,055 1.016 0.490 0.483
44 2.154 2.007 0.437 0.395

Table 2 Out-of-Phase Generalized Forces for Nonplanar
Tandem-Wing Interference, M_ = 1.44, k = .01,

Case 3 d = .86 h=.,5/Case 4 d= .86 h=1,0/Case 5 d= .866 h=5.0
QII HGM VWoodcock / HGM Woodcock / HGM Voodcock
11 3.161 2.954 3.065 3.028 3.412 3.282
12 0.264 0.170 0.269 0.141 0.225 0.214
13 0.489 0.477 0.489 0.477 0.489 0.477
14 0.432 0.387 0.432 0.387 0.432 0.387
21 0.272 0.171 0.164 0.240 0.512 0.499
22 1.026 0.934 1.018 0.896 0.977 0.971
23 0.490 0.483 0.490 0.483 0.490 0.483
24 0.437 0.395 0.437 0.395 0.437 0,395
31 0.239 0.148 0.142 0.222 0.489 0.477
32 0.471 0.343 0.476 0.315 0.432 0.387
33 0.489 0.477 0.489 0.477 0.489 0.477
34 0.432 0.387 0.432 0.387 0.432 0.387
41 0.250 0.155 0.112 0.224 0.490 0.483
42 0.485 0.358 0.478 0.319 0.437 0.395
43 0.490 0.483 0.490 0.483 0.490 0.483
44 0.437 0.395 0.437 0.395 0.437 0.395
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