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Abstract
Unsteady aerodynamic and aeroelastic
stability calculations based upon transonic
small disturbance (TSD) potential theory are
presented. Results from the two-dimensional
XTRAN2L code and the three-dimensional XTRAN3S
code are compared with experiment to demonstrate
the ability of TSD codes to treat transonic

effects., The necessity of nonisentropic
corrections to transonic potential theory is
demonstrated. Dynamic computational effects

resulting from the choice of grid and boundary
conditions are illustrated. Unsteady airloads
for a number of parameter variations including
airfoil shape and thickness, Mach number,
frequency, and amplitude are given. Finally,
samples of transonic aeroelastic calculations
are given. A key observation is the extent to
which unsteady transonic airloads calculated by

inviscid potential theory may be treated in a
Yocally linear manner.
List of Symbols

AR aspect ratio

Cp pressure coefficient

*

C critical pressure coefficient

Ay unsteady 1ifting pressure coefficient

C airfoil chord, m

Cy 1ift coefficient

€y first harmonic 1ift coefficient due
to pitch, per radian

Cp wing reference chord, m

h nondimensional airfoil plunge dis-
placement

k reduced frequency, wc/2V

M free stream Mach number

Re Reynolds number based on chord, lc/v

r airfoil function, z = r(x,t) on the
airfoil surface, m

s o + jw; Laplace transform variable,
rad/sec
time, s

U free stream velocity, m/s

v speed index

X streamwise coordinate relative to
leading edge, m

y coordinate normal to x and z, positive
to right, m

z coordinate normal to free stream,
positive up, m

a angle of attack, deg

oy mean angle of attack, deg

o dynamic pitch angle, deg

Y ratio of specific heats

$ flap angle, deg

€ airfoil thickness ratio

n fraction of semi-span

T nondimensional time in semichords
traveled, 2Ut/c

) perturbation velocity potential

@ phase angle, deg

W angular frequency, 2nf, rad/s
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v kinematic viscosity

l...] indicates jump in ...
Subscripts

LE leading edge value

L Tower surface value

TE trailing edge value

u upper surface value

Introduction
The field of aeroelastic response and

flutter prediction has traditionally relied upon
linear subsonic  and  supersonic  unsteady
aerodynamics coupled with linear descriptions of
aircraft structurai dynamics to  perform
stability analyses. In the transonic speed
regime where the aerodynamic theories were not
on a technically sound foundation, numerous wind
tunnel tests of flutter models and flight test
experience provided the confidence to operate
aircraft., Due to the lack of wmore accurate
transonic aerodynamic theory, linear unsteady
airloads have been used for flutter predictions
and have been reasonably successful in providing
conservative flutter boundaries. Emerging
aircraft designs, calling for aircraft
performance objectives at maneuvering flight
conditions, and seeking optimized aerodynamic
and  structural configurations press these
traditional aeroelastic design tools beyond
their accuracy limits. New aeroelastic response
computational techniques based upon accurate
simulation of the nonlinear transonic flow field
are needed to bridge this gap.

The past decade has brought a maturing of
experimental and computational capabilities
aimed at filling this gap. The AGARD Structures
and Materials Panel has sponsored computational
efforts by defining sets of two- and three-
dimensional Standard Aeroelastic Config-
urationsi>2,  Numerous comparisons of computed

results with experimental data sets3 are given
in Reference 4. Computational methods range in
complexity from modified 1linear theories to

solutions of the Navier-Stokes equations. Due
to  their relative simplicity, nonlinear
potential theory methods have been used most
frequently. Economical finite-difference
solutions of the time-accurate transonic small
disturbance (TSD) potential equation were first
obtained with the alternating-direction implicit
(ADI) algorithm introduced in the low-frequency
LTRAN2 code by Ballhaus and Goorjian5. The
LTRAN2 algorithm has been extensively updated

with a series of improvements by many
researchers, The XTRAN2L codeb® solves the
full frequency TSD equation and includes the

capability of calculating transient aeroelastic
and flutter solutions, Borland and Rizzetta’
used the ADI algorithm in the XTRAN3S code to
obtain solutions of the 3-D TSD equation for
isolated wings. Surveys of applications of this



code are given by Edwards et al.8 and by
Goorjian and GuruswamyS. Extensions have been
made to treat multiple lifting surfacesl0,1l
and  wing-fuselage  combinationsl2, More
recently, work has been reported on 3-D full
potential code development by Ruo et al.l3 and
by Shankar et al,l4

The number of applications of TSD codes to

unsteady aerodynamic and aeroelastic
calculations makes feasible an assessment of
accuracy and reliability, This paper will

present a survey of results obtained with 2-D
and 3-D TSD codes at the NASA Langley Research
Center. The effects of shock-generated entropy
and dynamic effects of computational grids will
be illustrated. Typical 2-D results showing the
effect of Mach number, freguency, airfoil shape,
viscous boundary layer modeling and oscillation
amplitude are given. Comparisons of calculated
3-D  unsteady pressures with experiment are
followed by examples of multiple 1ifting surface
and wing-fuselage interference effects.
Finally, examples of transonic aeroelastic and
active control calculations are given which
i1lustrate the locally linear nature of these
calculated flows.

Transonic Small Disturbance Equation
Two-Dimensional Case

Most of the two-dimensional results presented
were obtained using the XTRAN2L code® which
solves the complete unsteady TSD potential
equation, In terms of the scaled variables used
in the code, this equation is

2
(C<1>T + A@X)T = (EcbX + F@X)X + (@

,)7 (1)

where the variables and coefficients are scaled
as

T = wt g% = eMZ(Y* + 1)

X = x/c v =2 - (2 - M2
7= 25*1/3/c o = ¢/(CUe*2/3)

C = ak’M2 jex2/3 E = (1-M2)/ex2/3

A = akM?jexl!3 Fe-gmiy+)

The reduced frequency k is based on semi-chord.
The airfoil flow tangency and trailing wake
conditions are applied on the z = 0 line and, in
the small disturbance approximation, become

+
7" Rx

4

¢ + 2kR$ s Z=05,0¢x<1 (2a)

[@X] + 2k[¢T} =0 ; Z=0,%X>1 (2b)

where the t refer to the airfoil upper or lower
surfaces and R = re*1/3/c.

The airfoil surface slopes, Ry, required
in Eq. (2a) were generated by spiine curve-
fitting the airfoil coordinatesl. The curve
fits were performed parametrically as a function
of surface arclength, beginning at the upper
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surface trailing edge, around the leading edge
and ending at the lower surface trailing edge.
(Spline fitting the upper and lower surfaces
separately can lead to erratic results near the
Teading edge.) No modifications to the
resulting surface slopes were made to improve
correlation of small perturbation calculations
with experiment,

Numerical solutions of Egq. (1) were
obtained using the ADI algorithm as described in
Ref. 6. Monotone differencing is wused to
eliminate non-physical expansion shocks.
Non-reflecting far-field boundary conditionsld

are implemented as follows to eliminate
reflected disturbances:
upstream
(A/B + D/YVB) op - 20, = 0 (3a)
downstream
(-A/B + D/VB) o + 20, = 0 (3b)
above (+) and below (-)
(BD/A) oy £ 0, = 0 (3c)
where B = E + 2Fa, and D = (4C + AZ/B)1/2,

These nonreflecting far-field boundary

conditions allow the boundaries to be moved
closer to the airfoil and allow greater freedom
in tradeoffs among number of grid points,
accuracy and expense, The default XTRAN2L
gridl® is 80 x 61 points in x,z and covers a
fixed physical extent of *20c in x and #£25¢ in
Z. An algebraic grid stretching is used to
distribute grid points between the airfoil and
the outer boundaries. This grid point distri-
bution was selected to alleviate disturbances
which can be generated in regions of large grid
stretching, On the airfoil the x-grid has 51
grid points having a uniform spacing of 0.02¢
with an additional point near the leading edge.

Three-Dimensional Case

Three-dimensional calculations were performed
with the XTRAN3S code7-19 which wuses a
time-accurate ADI finite-difference scheme to
solve the three-dimensional TSD equation

_ 2 2
(C<I>T + A@X)T = (E<1>X + Foy + G@Y)X +
(4)

(@Y + HQXQY)Y + (q>Z)Z
The nondimensional variables are

X = X/Cr = EUt/cr

Y o=y/e, = ¢/(Uc)

Z=2z/c
Two different sets of coefficients may be
defined for Eq. (4). For both cases



C = kM2 A = 2kmM2 £ = 1-M

where K is an arbitrary scaled frequency (k = 1

herein). The coefficients for the nonlinear
terms may be chosen as either
Feod(re i
6 =% (v - 3m? (5)
H=- (y- 1M
or
F=-g(3-(2- ynme
1,2
G=-—2-M (6)
Ho= M

The outer boundary conditions imposed on the
flow-field are referred to herein as reflecting
boundary conditions and are given by

upstream ¢ =0 (7a)
downstream oy E@T =0 (7b)
above and below o =0 (7¢)
spanwise & wing root ¢, = 0 (7d)
The airfoil flow tangency condition is

+ . +

o7 = Ry + KRy 5 Z=07, X g <X< Xy (8)
where R = r/cp, and the wake boundary
condition is

LQZJ = ‘.Qx"' EQTJ =0 (8b)

The code was run on a CDC VYPS 32 computer using
the computational grid described in Ref., 16 with
60 x 20 x 40 points in the x, y, and z dir-

ections. The program grid size restrictions and
the reflecting boundary conditions, Eq. (7),
assure that disturbances reflected by the

boundaries or internal grid stretching will be
present, The x, z grid was chosen to minimize
the effect of the internal grid reflectionsl6
for k < 0.50. The VPS 32 is capable of scalar
or vector arithmetic. The scalar version of the
XTRAN3S program required 1.9 seconds of central
processor unit (CPU) time per time step.
Vectorizing the ADI x-sweep and a matrix
manipulation routine reduced the required time
to 1.2 CPU seconds per time step.

Results and Discussion

Results  summarizing key features of
unsteady transonic airload calculations for two-
and three-dimensional flow are given., Attention
is first directed at details of solution
accuracy by comparison with linear theory and
with the more exact Euler equations. Next, a
number of geometry and amplitude effects are
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illustrated with results from the XTRANZ2L code,
followed by several results from the XTRAN3S
code, Several wing planform shapes and
interfering 1ifting surface configurations are
given. Finally, the use of transonic potential
equation codes for aeroelastic analysis is
illustrated.

Dynamic Computational Grid Effects

Transient airloads obtained from pulsed
airfoil motions allow airload frequency response

functions to be calculated from a single
response calculation using transfer function
techniques. 0f course this requires the

assumption of at least Tlocal Tlinearity of the
response to the forcing function, which appears
to hold widely for integrated airloads of
attached flow., These features were studied in
Refs., 17 and 18 which demonstrate the use of the
XTRANZ2L code for aeroelastic calculations.
Ref. 16 uses this pulse transform technique to
demonstrate key features of the relation between
computational grids, boundary conditions, and
dynamic calculations. The importance of
controlling reflections of disturbances from the
outer grid boundaries and from internal grid
points is shown in figure 1. In order to
compare with linear theory, the case of a flat
plate airfoil at M = 0.85 is shown, Three 1ift
coefficient responses resulting from quickly
pitching the airfoil from 0 to 1 degree and back
to 0 are given. In figures 1{a) and 1(c) the
default XTRANZ2L grid given above was used while
in figure 1(b) an exponentially stretched grid
extending +200c in x and *2327c¢ in z was used.
The latter grid contained 113 x 97 points in the
x and z directions. Figure 1(c) was obtained
using the non-reflecting boundary conditions
given by Egs. (3) while figs. 1(a) and 1(b)
utilized refliecting boundary conditions similar

to Egs. (7). Of particular importance are the
outer z-boundaries, The disturbance at 1 = 40
in fig., 1(a) correlates with the acoustic

propagation time for travel to and return from
these boundaries. The option of moving these

boundaries large  distances, fig. 1(b),
introduces the complication of severe grid-
stretching in the near-field. In this case,

reflections from the outer boundaries do not
occur, but disturbances seen from t = 20 to 50
correlate with propagation times for travel to
and return from regions of the z-grid where grid
spacing first becomes more than two chord-

lengths. Neither of these anomalies is seen in
fig. 1(c).

Figure 2 gives the ¢ frequency
responses calculated from thes® transient
responses. Reflections from the outer z-
boundary, fig., 2(a), contaminate the unsteady

airloads at low reduced frequencies, k < 0.15,
whereas the disturbances originating from the
near-field grid stretching, fig. 2(b), con-
taminate the airloads in the frequency range 0.2
< k < 1,0, Figure 2{c) shows that excellent
agreement with linear theory can be achieved for
moderate frequencies. Other calculations verify
that these features, which are most easily
studied for linearized examples, carry over to
nonlinear transonic calculations.



Shock-Generated Entropy

The conservative full potential and
transonic small disturbance potential equations
are'der1ved with the assumptions that the flow
is irrotational and isentropic. While it is
recognized that entropy is generated within
shock-waves, the use of potential theories to
study transonic flows with weak shocks has
progressed assuming that this entropy generation
was a higher order effect. It is now understood
that disregarding this effect can lead to
serious disagreement with more exact solutions
for physically interesting situations.

A common approximation in formulating the
full  potential  equations is to  impose
conservation of mass and energy while satisfying
the isentropic and irrotationality
conditions20, Reference 20 shows that the
shock jump conditions for such a “conservative
potential" equation deviate from the
Rankine-Hugoniot shock conditions as the Mach
number ahead of the shock increases. In Ref.
20, the implications of this effect were studied
by calculating cy versus o for a range of Mach
numbers. It was knownZ2l that the symmetric
NACA 0012 airfoil at o = 0° exhibited multiple
solutions for 0.82 < M < 0.85. Figure 3 shows
that such ranges of multiple solutions can be
found for all Mach numbers for sufficiently
large angles-of-attack. More importantly for
transonic aeroelasticity, it is concluded that
well before « reaches values at which multiple
solutions occur, the 1ift-curve slope, ¢y ,
has become unphysically large. ¢

Williams et al.22 have investigated the
effect of nonunique solutions of the unsteady
TSD  equation, Figure 422 gives three
different calculations of 1ift coefficient
versus a for the NACA 0012 airfoil at M = 0.85.
Figure 4(a) gives the upper surface pressure
distributions for the three multiple solutions
indicated by A, B, and C ih fig. 4(b). Solution
B is a symmetric nonlifting solution while the
other two are 1ifting solutions. Figure 4(b)
gives the 1ift coefficient versus angle-of-
attack for 1.) Ouasi-steady conditions, k = O,
and pitching oscillations for 2.) k = 0,01 and
3.} k = 0.05, Solution B is not a stable
solution and diverges with an extremely large
time constant to either A or ¢ depending upon
initial conditions. At k = 0,05 the solution
oscillates about the positive lifting solution.
While the average 1ift curve slope is not
unreasonable the solution must be regarded as
anomalous. In contrast, the solution for k =
0.01 exhibits a hysteresis loop, jumping between
the two stable steady solutions. The large
phase lag implied by this solution is unphysical
and caution must be exercised when using such
calculations,

Fuglsang and Williams23 implemented a
nonisentropic formulation for 2-D TSD theory.
By modifying the expression for streamwise mass
flux they were able to satisfy the Prandtl
relation for Rankine-Hugoniot shocks. A
modified pressure coefficient expression to
account for the entropy generated across the
shock and a modified wake boundary condition for
entropy convection complete the nonisentropic
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modeling. Figure 5 shows unmodified and
nonisentropic results compared to Fuler and full
potential results for M = 0.84 and o = 0.25
deg, The nonisentropic results are very similar

to the Euler results, No multiple solution
conditions have been observed with the
nonisentropic model and values of 1lift-curve
slope are reasonable, Also, 1low frequency
unsteady calculations do not exhibit the
hysteresis effect shown in fig. 4(b).23

Gibbons et al.2% implemented this 2-D

nonisentropic model in a stripwise manner in the
XTRAN3S code and demonstrated the existence of
multiple solutions of the 3-D  conservative
protential equation, Figure 624 shows this
feature for a series of rectangular wings having
NACA 0012 airfoil sections., For M = 0.84, 1ift
coefficients in response to a fast pulsed motion
in angle-of-attack are plotted versus time for
wing aspect ratios of 12, 24, 32, and 48,
Between AR = 24 and 32, the asymptotic 1ift
coefficient switches from zero to a nonzero
value, indicating the onset of nonuniqueness,
As in the 2-D case, the nonisentropic mod-
ifications eliminated the multiple solutions.
The nonisentropic model also corrects unphysical
lift-curve slopes for Mach numbers below those
at which multiple solutions occur. Figure 7
compares ¢y versus o for the AR = 12 wing at
M = 0.82. The original XTRAN3S code predicts a
value of ¢, about twice that of the non-
isentropic mSdel, which agrees well with the
FLO-57 = Euler code, Chordwise  pressure
distributions at o = 1 deg. are given in figure
8. For this case, the unmodified code
overpredicts both the shock strength and
position on the upper and lower surfaces whereas
the nonisentropic modifications are in good
agreement with the Euler code.

It is instructive to compare figures 3, 4,
and 7 to understand the effect of shock-gen-
erated entropy upon unsteady transonic
calculations, The effect of entropy varies
continuously from low Mach numbers to those for

which multiple solutions are found, Fig. 3. The
lift-curve slope, ¢y can be seriously in
error even outside the region of multiple
solutions, fig, 7. For unsteady calculations,
it would appear from fig. 4(b) that low
frequency calculations are more prone to
exhibiting anomalous behavior than higher
frequencies, Finally, it appears that for cases
where the small disturbance assumption is
reasonable and vorticity 1is not a factor

(attached flow, normal shocks) the nonisentropic
modifications do a creditable job of correcting
inviscid potential theory to agree with Euler
equation results, Cases presented in the
remainder of this paper were obtained using the
unmodified codes and an effort has been made to
stay away from conditions where entropy effects
are significant.

Two-Dimensional Airloads

There have been numerous published results
of 2-D transonic unsteady calculations. In this
section, several of the more interesting results
will be highlighted including effects of airfoil
shape, thickness, and motion amplitude. A
common thread is the degree to which transonic



unsteady airloads exhibit similarities for a

broad range of such parameters.

Transonic flutter boundaries were presented
in Refs, 17 and 18 for conventional and
supercritical airfoils. A surprising similarity
in the shape of the boundaries was observed and
a detailed study of the individual airloads is
given in Ref. 18, Steady pressure distributions
for the conventional NACA 64A010A (10.6 percent
thick) and the supercritical MBB-A3 (8.9 percent
thick) for the Mach number ranges studied are
shown in figure 9. The angle-of-attack was set
at o = 1 deg. for the NACA 64A010A airfoil and
-0.5 deg. for the MBB-A3 airfoil such that the
mean 1ift coefficients were the same. The Mach
ranges encompass flow conditions from near
critical to those with moderately strong shocks.
The unsteady forces for pitching and plunging
motions are given in figure 10 for k = 0,15.
The Tift coefficients are quite similar and
close to linear theory but the moment coeffi-
cients show some differences. Note that a shift

of about 0.01 in Mach number brings all of the
forces in very good agreement. This can be
attributed to a thickness effectl8 and is

consistent with a transonic similarity shift of
about 0.007 in M corresponding to a ratio in
thickness of 1.06 between the two airfoils. The
unsteady pressure distributions of the two
airfoils were also compared. Although the
steady shock strengths were different, the
locations and widths of the unsteady shock
pulses were very similar. It should also be
noted that the unsteady pressures away from the
shock were very similar for these two airfoils
with very different aft steady pressure loading
(cf. fig. 9). Thus, the resulting similarity of
the flutter boundaries of the two airfoils
(again with a shift of = 0.01 in M) is to be
expected.

Reference 18 also studied the effect of
oscillation amplitude upon unsteady forces. The
pressure distribution on the NACA 64A010A
airfoil at M = 0.78 and k = 0.15 is shown in
fig. 11 for pitching amplutide, o5, of 0.25 to
2 deg. The pressures are normalized by
oscillation amplutide and away from the shock
there is very little effect of amplitude. The
width of the shock pulse increases while its
height decreases with increasing amplitude in
such a way that overall forces are nearly linear
with respect to amplitude. These features of
similarity of unsteady forces with respect to
varying airfoil shape, thickness, and motion
amplitude point to the possibility of utilizing
linear stability analysis methods at least on a
Tocal basis.18  Note that this requires that
forces wvary reasonably Tlinearly 1in motion
amplitude and that forces due to different modes
of motion may be superimposed reliably. The use
of s-plane Pade' representations of the unsteady
forces to perform such linear flutter calcula-

tions of airfoils at transonic speeds is
demonstrated in Ref., 18, Flutter speeds
predicted in this manner are within a few
percent of those determined from direct

transient responses.

Motion amplitudes for cases presented thus
far have been small such that the small distur-
bance assumption was reasonable. Figure 12
presents results for Tlarger amplitudes which
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press this assumption.8 Comparisons of cal-
culated and experimental 1ift and moment
coefficients versus angle-of-attack are given
for pitching amplitudes, oy, up to 4.59 deg.
and for mean pitch angles, oy up to 4.86 deg.
Agreement for the 1ift coefficients varies from
very good to good. In contrast, the moment
coefficients show a systematic difference
between the calculated and experimental values.
The characteristic shape of the ¢, - a curves
for the non-zero mean pitch angle cases, figs.
12(a-c), 1is caused by a large second harmonic
contribution. In fig. 12(d), the different
character of the ¢y - o curve is due to the
increased third harmonic component. These
examples demonstrate the ability of the XTRANZL
code to predict with reasonable accuracy
airloads due to moderately large airfoil motions
for which the flow remains attached.

The next case to be presented illustrates
the effect of wvarying reduced frequency.
Comparison of computed and experimental unsteady
airloads due to pitching for the 10.6-percent
thick NACA 64A010A airfoil are given in figure
13. Also shown are Howlett's resultsZd
wherein an integral equation boundary layer
model 1is coupled with the inviscid XTRAN2L code
to compute viscous effects., At the test Mach
number, M = 0.796, a moderate stength shock is

located near midchord. The agreement of
coefficients for the inviscid and viscous
calculations is very good for 0.1 < k < 0.3,

whereas the computed moments are displaced from
the experimental values. Below k = 0.1 the
calculated 1ift coefficient and the real part of
the moment coefficient deviate from experiment,
The viscous corrections for this case are slight
and do not correct for either the offset in the

moment or the low frequency deviation,
Fuglsang* shows that this Tlow frequency
deviation 1is corrected by his nonisentropic
modifications.

Figures 09-13 demonstrate the effect of
airfoil shape and oscillation amplitude on
unsteady forces for moderate reduced
frequencies. The effect of shape, thickness,
camber, and angle-of-attack upon these forces

for a wider range of frequencies are given by
Batina.26  The harmonic forces for airfoil
plunge and pitch motions were computed using
the pulse-transient technique and results are
given for 0 < k < 1.0. Shape effects were
studied by considering three symmetric
ten-percent thick airfoils: NACA 0010, NACA
64A010, and parabolic arc. Thickness effects
were calculated for the 8, 10, and 12-percent
thick NACA 0008, NACA 0010, and NACA 0012
airfoil sections. Angle-of-attack and camber
effects were also considered. Figure 14 is
typical of the results of this study, showing
1ift coefficient due to pitching for three
airfoils at M = 0.78. At this Mach number,
small supersonic regions have formed near the
points of maximum thickness for all three
airfoils: 0.3c for the NACA 0010, 0.4c for the
NACA 64A010, and 0.5¢ for the parabolic-arc
airfoil. Figure 13 is typical of the study in
that: 1.) the three airfoils show similar
trends with frequency, 2.) the moment coe-
fficients are more sensitive to airfoil shape

*unpublished calculations.



than the 1ift coefficients and 3.) the
difference between unsteady forces, where they

exist, are such that the NACA 64AD10 forces
generally 1lie between those of the other
airfoils for a given value of k (c.f. ¢p.).

Note that the points of maximum thickness and
Tocation of formation of the supersonic region
follow this same sequence. 0f particular
interest in the moment coefficient, c¢p , is
the clear evidence of an “"aerodynamic resofance"
near k = 0.6, Such resonances have been
reported for measured unsteady airloads?

vhere there is strong evidence of shock-induced
flow separation. A key result of this study is
that the differences in unsteady airloads for
these airfoils are more closely related to
maximum thickness locations, maximum steady
pressure locations, and steady shock strengths
rather than to differences in airfoil shape.

Unsteady Airloads were also studied for 8,
10, and 12 percent thick airfoils with similar
shapes, At Mach numbers determined using steady
transonic similarity scaling, the unsteady
airloads for these airfoils have similar char-
acteristics as functions of reduced frequency.
The effects of differing thickness become less
important with increasing thickness. Finally,
effects of angle-of-attack and camber were
investigated for the NACA 64A010 airfoil., When
the steady shock position and strength are
matched, the effects of angle-of-attack and
camber upon the unsteady airloads were quite
similar,

Three-Dimensional Airloads

Comparisons of steady and unsteady
pressures calculated by the XTRAN3S code with
experimental data have been reported in Refs.
19, 28, and 29, The first two experimental data
sets are for rigid models oscillating in pitch
while the latter is for an aeroelastic research
wing which deformed significantly due :to the
test airloads.

The first caseld involved a rectangular
supercritical wing with' a panel aspect ratio of
2. It was oscillated in pitch about 0.46
chord. The calculated and experimental steady
pressures are compared in figure 15 for M = 0.7

and o = 2°, Calculations for both sets of
coefficients, Eqs. 5 and 6, are shown. At this
Mach number there is little difference in the

results obtained using these coefficients except
near the leading edge peak where use of the
Eq. 6 coefficients results in a larger pressure
gradient. At a higher Mach numberl9d, this
effect is accentuated with the coefficients of

Eq. 6 yielding a shock that dis significantly
stronger and located further aft than that
predicted when wusing Eq. 5. The lack of

agreement in the nose area shown in figqure 15 is
the result of using a relatively coarse grid
near the nose.

Unsteady pressures for this case are shown

in figure 16.19  The reduced frequency is
k = 0.356 and the Eq. 6 coefficients have been
used, Also included for comparison are linear

1iftin8 surface theory results from the RHOIV
code.3 The magnitude of linear theory
pressure is too low at the leading edge and too
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high at the trailing edge. The XTRAN3S results
better predict the pressure peak at the nose and

are in better agreement with experiment than
linear theory over the rest of the wing, At
this frequency, the phase angles are well
predicted except near the tip. At  Tower
frequenciesl9,  the  phase  angles  show

discrepancies over the aft 40 percent of chord,
which is attributed to unmodeled viscous effects
in the lower surface cove region.

The second model2® was tested by the RAE
and is referred to as the AGARD tailplane
model. It has a 50 deg. leading edge sweep
angle, a taper ratio of 0.27, and a NACA
64AD10.2 airfoil section, Steady and unsteady
pressures are given in figures 17 and 18,
Steady pressure comparisons are good except near
the tip. Comparisons of unsteady pressures at M
= 0,65, 0.80 {not shown), and 0.8 (figure 18)
show good agreement for trends, and good
quatlitative agreement for the inboard sections.

Bennett et  al.29  reported  XTRAN3S
calculatons for a flexible aeroelastic model of
a transport-type wing. The supercritical wing
model has an aspect ratio of 10.3 and a leading-
edge sweepback angle of 28.8 deg. Wing
thickness varies from 15 deg. at the root to 11
deg. at the tip, and the wing has a rather blunt
leading-edge. For subcritical Mach numbers,
only fair agreement of calculated steady
pressures with experiment was obtained with the
agreement being better in the outboard span
region, At higher Mach numbers, the agreement
deteriorated with calculations showing strong
shocks where none were seen in the data.

An aeroelastic analysis of this model was
performed using the first eight normal vibration
modes. White no flutter boundaries were
calculated, a very interesting correlation of
static wing deformation was obtained which is
given in figure 19. Although the calculated tip
deflection, zy, at 300 pounds/ft2  (psf)
dynamic pressure is approximately 40 percent
high, the nonlinear feature of this loading
versus dynamic pressure is predicted. The
agreement seen in the tip twist angle, 6, is
fortuitous 1in light of the poor steady pressure
agreement for these conditions.

These examples indicate the Jlevel of
accuracy of unsteady airloads calculated by the
XTRAN3S code. The available grid size (60 x 40
x 20 points) is marginal and refined grids
should 1improve accuracy. In addition, the
recent developments in nonisentropic modeling,
figqures 6-8, and in viscous boundary layer
modeling should be dinstrumental in improving
correlation with experiment.

Aerodynamic Interference

The previous section presented details of
the validation of the XTRAN3S code by comparison
with experimental data from isolated wings. The
code 1is also being augmented to enable cal-
culations for complete aircraft. Batina has
developed capability to model multiple 1ifting

surfaces and wing-fuselagel? interference
effects. Reference 11 gives examples of wing-
tail and canard-wing interference effects.



Figure 20 gives canard and wing 1ift coeffi-
cients due to canard pitching at M = 0.9, a =
2°, and k = 0.3, The surfaces have similar
planforms with 45° leading-edge sweep angle, 0.5
taper ratio, and NACA 0010 airfoil sections.
Results for two separation distances are given:
S = 0.25 and 0.5 (measured in terms of wing root
chord). At this Mach number, the interference
effect of the wing on the canard is small, with
both XTRAN3S results, Cy_, 1lying near the
isolated lifting surface 1¥he (also calculated
by XTRAN3S). In contrast, the induced Tload on
the wing, Cg , dis significant with an
appreciable effdtt of separation distance seen
in the real part. For the cases studied,
interference effects were larger for the wing-
tail configuration than for the canard-wing.
Also, at M = 0,9 there was negligible induced
interference effect on the forward surface for
either configuration.

Capability for modeling wing-fuselage
geometries is reported in Ref. 12. The fuselage
is modeled by imposing body boundary conditions
on a constant cross-section computational
surface, The body boundary conditions are
modified by slender body theory to account for
the disparity with the actual surface.
Comparisons with steady experimental
wing-fuse]age data are given for three con-
figurationsl2 and very good agreement is shown
for fuselage pressures and for the interference
effect on wing pressures. To assess the inter-
ference effect upon typical unsteady airloads,
calculations were performed at M = 0.91 for an
assumed wing first bending mode oscillating at
k = 0,25, Figure 21 gives the resulting
section lift and moment coefficients versus span
for the wing-alone and for the wing-fuselage.
Interference effects on the lift are largest
inboard whereas the woment is affected both at
the root and near midspan. The maximum effects
on the integrated generalized airloads were five
percent increase in magnitude and three degree
increase in phase angle. Inclusion of these
augmented capabilities 1in the XTRAN3S code is
anticipated to significantly expand the ability
to perform transonic aeroelastic analyses for
complicated geometries,

Transonic Aeroelasticity

The previous sections have given examples
of 2-D and 3-D unsteady airloads calculated by
the XTRAN2L and XTRAN3S potential codes. Com-
parison with measured unsteady pressures has
allowed an assessment of their accuracy. In
this section, the use of these potential codes
to study transonic aeroelasticity and flutter is
described. A key factor will again be the
locally Tinear nature of the transonic airloads
calculated by these codes.

Berry et al.31 studied viscous effects
upon transonic flutter using the method of Ref.
26. Pitching and plunging degrees of freedom
were assumed and transient response curve fits
of airfoil response time histories yielded the
frequency and damping for the aeroelastic
modes. An s-plane root locus of a typical case
is given in figure 22. The case studied is the
MBB-A3 airfoil at M = 0,76 and « = 1,5°, The
ordinate gives the normalized frequency and the
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abscissa the normalized damping of the plunge
{bending) and pitch (torsion) modes. Root loci
of both the inviscid and viscous models are
given as functions of the square of the speed
index, V. In addition, results from the
stability analysis of the Pade' model derived
for this case are superimposed, Note the
significant shift in the bending locus when
viscous effects are included; the dynamic
pressure at flutter (o = 0) increases by
40%.31  Also of note is the reasonably close
agreement of the (locally linear) Pade' mode)
results with the time marching results; the
viscous Pade' model over-predicts the flutter
dynamic pressure by 11 percent,3l

The importance of the coupling between
static deformation and flutter for transonic
aeroelasticity was shown by Edwards et al.l7
Flexible wings deform under load such that the
wing tip tends to deflect towards negative twist
angles as wing loading is increased. A 2-D
analogy of this effect is to compute the twist
caused by the static pitching moment upon the
two degree-of-freedom pitch-plunge model, In
this analogy, the reference position of the
pitching spring is fixed to simulate a wing root
angle-of-attack, op, and the airfoil pitching
moment, ¢y, twists this pitch  spring,
resulting 1in an airfoil angle-of-attack a,
Figure 23 gives the resulting root locusl’
versus speed index, V, for the MBB-A3 super-
critical airfoil at M = 0,775 and o = 3°,
The root locus is annotated with speed index, V,
and effective angle-of-attack, a. Also shown as
inserts are the steady pressure distributions at
V=20.6, a=1,0% and V = 1,15, a = -0,5° The
effect of the increased loading as V increases
is to twist the airfoil nose down, thus delaying
the onset of transonic effects as seen in the
pressure distributions., The net effect is to
produce a local minimum in damping at M = 0.6.
As V increases, the mode "becomes damped again
and finally flutters at V = 1,3, A small
increase in either M or o would Tlead to
flutter at Vv =~ O0.6. The flutter point at
w = 1.33 rad/sec corresponds to a classical type
of flutter 1in which significant frequency
coalescence occurs, The incipient flutter
condition at w = 85 rad/sec has much less
frequency coalescence and is similar to cases
which have been termed “single degree-of-
freedom" or “"shock-induced" flutter. Inspection
of the pressure distributions corresponding to
these two conditions indicates that the lower
frequency flutter occurs when a very moderate
shock has just developed on the upper surface.
In Ref, 17, these features are attributed to the
aft loading of the super-critical airfoil, and
it is shown that this can lead to multiple
flutter speeds for a given Mach number,

A final example of transonic aeroelasticity
is provided by Batina and Yang.32 They
studied active control of transonic flutter for
2-D flow using the LTRAN2-NLR code. This code
is very similar to the XTRANZL code with the
principal exception being the omission of the
or7r term in Eq. 1. They also determined the
suitability of the locally Tlinear Pade' model
for studying airfoil stability. Active feedback
stabilization of a flutter mode was demon-
strated using three simplified feedback laws:
plunging position, velocity, and acceleration.



Figure 24 summarizes the acceleration feedback
study with the control surface position, s,
given by 8§ = Kph where Kp is the feedback
gain. A composite of two root-locii is shown:
open-loop Tlocus leading to flutter at V/iVp =
1.0 and the closed-loop locus resulting from
increasing the acceleration feedback gain, Kp»
at V/Vp = 1,0, As shown, the bending mode is
stabilized and the torsion mode destabilized by
the feedback control, Significantly, the Pade’
model works very well for this case involving
aft-airfoil control surface motions. This
further demonstrates the locally linear nature
of transonic airloads computed by TSD computer
codes.

Concluding Remarks

Calculations from two transonic small dis-
turbance (TSD) equation computer codes have been
presented and compared with experimental results
in order to demonstrate the ability of potential
equation codes to treat transonic effects, The
two-dimensional XTRAN2L code and the three-
dimensional XTRAN3S code were used to demon-
strate the effects of several parameter var-
iations upon unsteady airloads. The importance
of the computational grid and far-field boundary
conditions was illustrated by examples of
reflections from boundaries and from large grid
stretching in the near-field. The wuse of
nonreflecting boundary conditions enables use of
an economical computational grid covering an
extent of %25 chordlengths in the z-direction.

Conservative potential equation solutions
do not account for entropy generated within
shocks and can be in serious disagreement with
more exact Euler equation solutions, In extreme
cases, multiple solutions are found in both 2-D
and 3-D flows and, at lower transonic Mach
numbers, Tift-curve slopes can be seriously in
error. Low frequency unsteady airloads are
particularly prone to error due to this effect.
Nonisentropic corrections to the transonic small
disturbance equation alleviate these short-
comings and provide results similar to Euler
equation results,

Examples from the XTRANZL code illustrate a
variety of significant effects. A key
observation 1is the degree to which calculated
unsteady airloads from transonic inviscid
potential equation codes are locally linear with
respect to motion amplitude and mode of motion.

Thus, Tlinear superposition methods may be
applied to study aeroelastic stability and
Pade' representation  transonic aeroelastic

models give acceptable accuracy and are very
economical. Investigations of airfoil shape and
thickness effects indicate that differences in
unsteady airloads are more closely related to
the Tlocations of maximum airfoil thickness and
maximum steady pressure location on the airfoil
rather than to differences in the airfoil shape.

Three examples from the XTRAN3S code
provide comparisons with experimental data from:
a rectangular supercritical wing mode}
oscillating in pitch, a swept tailplane model
oscillating in pitch, and a flexible aeroelastic
model exhibiting considerable static defor-
mation, Agreement of the calculated pressures
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with experiment is fair to good. The
comparisons show instances where viscous
modeling is required and also indicate a need
for denser computational grids than have been
availabie, The 3-D code is being extended to
allow treatment of complete aircraft and
examples of calculated canard-wing and wing-

fuselage interference are given,

Finally, several examples of transonic
aeroelastic calculations using the XTRAN2L code
are given, For one case considered, inclusion
of a viscous boundary layer model increased the
predicted dynamic pressure at flutter by 40

percent, The key dimportance of the coupling
between static and unsteady airloads for
transonic aeroelastic effects is stressed.

Multiple flutter speeds can occur at a given
Mach number when static deformation 1is taken
into consideration.
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Figure 22. Effects of viscosity on airfoil
stability as determined by time
integration and by Pade' model;
MBB-A3 airfoil, M = 0.765,
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Figure 23. Flutter mode root-locus versus V for

MBB?A3 airfoil suspended on pitch
spring for M = 0.775, o = 3°,17
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Figure 24, Effect of plunge acceleration feed-
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modes at the open-loop flutter speed.3?2



