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Summary

A theoretical approach for investigating the
flow over strake-siender-wing combinations is
presented. The method developed consists of a
modification of a well-known, slender-wing-theory
model, together with the development of an
approximate, local solution in the kink region,
This enables us to take care of the leading-edge
discontinuity. The theoretical results predicted
by the present method permit a rapid, qualitative
investigation of the parameters which influence
the vortex—flow patterns and the aerodynamic
coefficients, within certain 1imitations and to
compare configurations. Quantitatively the
calculation resuits in an over-prediction of the
forces. Such trends are typical of slender-wing
methods. The method could be readily extended to
deal with the case of a strake-slender-wing
arrangement mounted on a slender fuselage.

Method of Solution

Modelling

The model for a siender wing with leading-
edge separation developed by Brown and Michaell
for a delta wing and modified by SmithZ to
represent the separated flow past a slender wing
with a curved leading edge, is extended to treat
strake-slender-wing combinations.

The vorticity of the fluid near the strake
leading edge, including the feeding sheet, is
represented by a pair of isolated vortices of
varying strengths. The kink in the Teading edge
introduces a disturbance which results in the
formation of a wing leading-edge vortex. At the
kinks, the feeding sheets of the strake vortices
separate and their circulation remains constant
thereaf ter.

Experiment al supgort for the above modelling,
is given by Luckring? and Hoiejmakers and
Vaatstrat. An extensive qualitative discussion
about the domain of validity of such wodelling is
given by Smith®. Reddy® investigated a
double-aelta wing using the sophisticated method
developed by the Boeing company’/, in which the
leading-edge vortex system is represented by free
vortex sheets. The best agreement with experi-
mental results was achieved while modelling two
separate vortex systems on the inboard and
outboard leading edges. A model based on two
separate vortex systems has been applied in the
present analysis, which, however, is much simpler
than that of Ref. 7.

Mathematical Representation

Consider the inviscid, incompressible,
irrotational, symmetric, steady flow of a uniform
stream of velocity U at angle of attack o past a
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Fig.1 - Vortex System & Notation

strake-slender-wing combination, as shown in Fig.
1. The basic assumptions made and the trans-
formation applied to map the physical cross-flow
plane into the computational domain are those
used by Smith€. Upstream of the kink the
equations are those of Smith2. Downstream of

the kink, the introduction of the strake vortices
above the plane of the wing (Fig. 2) then leads
to a system of four simultaneous differential
equations:
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where [” is the vortex strength, Z is the physical
cross-flow plane complex variable, s is the local
nalf span and Z* is the transformed plane complex
variable, where 7*2=72-sZ, Subscripts S and

W refer to strake and wing, respectively.
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Fig. 2 - Physical & Transformed Planes After the Kink

Equation {la) is a real equation which
represents the fact that the Kutta condition is
satisfied at the leading edge of the wing, i.e. a
zero velocity at the transformed 1eading-edge
position assures a finite velocity at the
physical leading edge.

The assumptions of SmithZ along with the
assumption that the strake vortices disconnect
from the wing in the region of the kink, and move
downstream as free vortices, lead to Egs. (1b)
and (1c). These are complex and describe the
motion of the constant-strength (strake) and
varying-strength (wing) vortices, respectively.
Equation (1d) is a real equation which represents
the constant strength of the free vortices.

A computer program is used to solve the above
set of differential equations for the six real
unknowns: the strake-and wing-vortex strengths
and the coordinates in the cross-flow plane.

When solving for the strake region, the
calculation starts from an assumed conical flow
near the strake apex, using the method of Brown
and Michaell to find the initial position and

strength of the pair of strake vortices. Marching
downstream towards the kinks, the equations used
are those of SmithZ as mentioned above. Here
the strake is actually treated as a slender wing
with only one pair of vortices - the evolving
strake vortices. To evaluate the kink vortex
initial growth, in the immediate vicinity of the
kink, a first—order local solution is used.
This, as expected, has nonconical features. The
development of the approximate solution is
presented in detail in the next section.

Once the vortex strengths and coordinates are
known, the 1ift coefficient and center of pressure
can easily be determined using Sack's law8.

Approximate Local Solution at the Kink
Discontinuity

Consider two successive sections in the kink
region, as shown in Fig. 1, X=xg and x=xgtéx.
We choose

6X/sk << 1

where subscript k refers to the kink section. The
above choice, together with the physical behavior
yields:

625 /s, << 1
lZw—s[/sk << 1
(s—sk)/sk << 1

At the section x=xy, the wing vortices are
still absent and the Kutta condition at the
leading edge is satisfied by setting

—-E) (2a)

*
where ZS and ZS are, respectively, the values of
k k
*
ZS and ZS
Kutta condition is now satisfied by (la) with appro-

at X=X 5 and at section x=xk+5x, the

*
priate values of ZS and ZS , i.e.

*+ *+_ *+ —%
ZSk 523 Zsk GLS
2nUsina = T {

> (2 *6Z0) (T +sTe)
5,885 ){Es ToLs
Z*+—*
s, (=) (2b)
K ok
7 T,

Subtracting Eq. (2a) from Eq. {2b) and
rearranging, after considering terms up to the
first order, yields:
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The terms forming the coefficient of é6x on the
left-hand side of Eq. (3) are independent of &x,
so that the first-order approximation to the
right-hand side of Eg. (3) must also be of order
5X.

Tne following power-law series are assumed:

q
{1+ 2 a (sx)
p=1

Fw = 'Yw(sx)

Y‘
= k(o)™ (1 + 2 b (6x)
p=1

Zw -s

Where rp, qp are general positive powers whose
magnwtudes 1ncrease with increasing p. Note that
ky and the by are complex numbers. Substituting
Eg. (4) 1nto Eg. (3) and rearranging, it is seen
that the right-hand side of Eq. (3) becomes of
order &x if m=2n-2. Equation (3) written to the
first order, becomes:

The derivative is found from the conjugate of
Eq. (1b) at x=xi (in which case the [y terms

vanish, ZS_ZS etc.). Equation (4) requires m>0

and thus n»>l. k

Equation (5) involves two unknowns, ky and
Ty. As an additional equation, Eg. (lc) is
used. Substituting the power-law series
description of the unknowns, Eq. (4), together
with the already-known relations m=2n-2, n>l,
into Eg. (1c) leads to,
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Equation (6) consists of two independent terms
which do not involve the step size, while in each
one of the two other tevrms the step size can be

eliminated by setting its power to zero, i.e.
n=3/2 or n=2. If n=2, the coefficient of yy is
complex, whatever the argument of ky is, while
the other terms of the same order are real. Thus
n must be 3/2. Applying this and solving gives a

real value for ky to first order. The power-
law series then become,
Iy = YW5X3/2 + O(axi) ;1> %
_ (7)
Zw -5 = kwex + O(&xJ) s3> 1
and Eq. (6), considering terms of up to the first
order, becomes:
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ky can be evaluated directly from Eq. (8).
Knowing ky, Eq. (5) is solved for yy.

Analysis of the Approximate Solution

Equation (8) shows that the position of the
wing vortex,ky.near the kink is the difference
between two independent terms. The right-hand
side of Eq. (8) is the complex velocity at the
Jeading edge of the strake, just upstream of the
kink. The seCOnd term on the left-hand side,
Ucosa{ds/dx)x=x depends upon the geometry
of the wing. [%ds/dx) ~xk is the sliope of
the sweep angle of the wing just after the kink.]

Since ky is a real number (for first order
considerations), its magnitude describes the
Tateral distance between the wing vortex location
and the wing leading edge (Eq. (4)). For ky<0,
the initial wing vortex lies above the wing
surface and its displacement above the wing is of
the order of the neglected higher-order terms.

It is difficult to accept such a soiution from a
physical point of view. Furthermore, we notice
that Eg. (5), which is derived considering terms
up to the first order only, gives an infinite
vaiue for yy for the case ky<0. Therefore,

the region in which the approximate local
solution is valid, is defined by,
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Peace? presents a solution derived by Smith,
which is similar to this analysis but more general
and includes higher order terms. His equations
yield a solution which, again, seems physically
implausible for ky<0.

Results and Discussion

A comparison between 1ift coefficients
calculated using the present model and experi-
mental results for several double-delta wings
tested by Wentz and Koh]manlo, shows a
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qualitative agreement. (See Fig. 3. Note that
the double-delta wings calculated, are slightly
shorter than those tested, due to the length
limitation of the present method to be discussed
later. Checking the effect of such small
differences in length of the main wing, for cases
which could be calculated completely, showed that
they have negligible effect on the calculated
normal force coefficient.) Quantitatively the
present model over-predicts the forces. This is
typical for a slender-body theory, in which the
decrease in 1ift on approaching the trailing edge
cannot be calculated, because the Kutta condition
at the trailing edge is not fulfilled.
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Double - Delta Wings.

While calculating strake-slender-wing
combinations, two limitations of the method were
discovered:

(a) Length (or aspect ratio) limitation

While marching downstream, the strake free
vortex tends to move towards the wing leading-
edge vortex. If the wing is long enough in the
chordwise direction, the two vortices come close
together and the numerical scheme either breaks
down, or predicts enormous jumps in the locations
of the vortices within a few successive
integration steps. In a real flow field, the
wing vortex becomes dominant while advancing
downstream and it "swallows" or feeds on the
strake-originated vorticity. The strake vortex
vanishes or spreads its vorticity throughout
large regions of the flow field. More details
are given by Hoeijmakers and Vaatstra? and
Smithd,

Such a situation cannot be simulated by the
present model, since it assumes that the vorticity
of each vortex is concentrated in its core and
actually can be described as a point vortex in
each section. Once the mathematical model is no
longer valid, there is no point in carrying on
with the numerical calculations. Thus, the method
is limited by the length (or aspect ratio) for
which this difficulty first occurs.

The limiting length differs for each case and
depends on the geometry of the configuration and
the entire flow field. It cannot be predicted a
priori and is reached, if at all, while
implementing the numerical solution. It was
found that increasing the angle of attack

decreased the distance along the x-axis for which
the difficulty first occurred., An example of
this tendency is shown in Fig. 4. The
trajectories of vortices above a double-delta
wing at different angles of attack are described,
up to the point at which the numerical scheme
breaks down. The flow patterns up to the break-
down nevertheless show a good qualitative agree-
ment with the results obtained by Hoiejmakers and
vaatstra? (c.f. Figs. 4 and 23 of Ref. 4).
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Fig 4 - Vortex Trajectories above a Double Delita Wing at Several
Angles of Attack

(b) Angle-of-attack limitation

The angle of attack strongly affects the
domain of validity of the present method. For
the approximate solution, the single mathematical
condition which allows the initial growth of the
kink (wing) vortices is:

ds
vX=xk > Ucosa (a;)
at leading edge

+
X=X,
Nevertheless, there are two independent physical
cases for which the above conditions is not
satisfied:

(1) When the angle of attack is small, the
sidewash term is small. Thus, for a given
{ds/dx)x —xk there will be an angle of
attack below which the local solution does
not exist. It is reasonable to suppose that
below this angle the strake-wing combination
can be treated as one slender wing with
varying angle of sweep and a single vortex
system along the entire leading edge. This
conclusion has been implemented in the
calculations.

(2) If the k1nk discontinuity is too large,
(ds/dx)x _xk will be large and the local
solution does not exist. Conditions do not
allow the development of a wing vortex, even
if the angles of attack are high. For this
case the flow field is much more complicated
and consists of both attached and separated
flow regions. Such flow fields were
experimentally investigated by Liu et al. 11
and many others.

Between the 1imiting low and high angles of
attack, however, the model is valid and produces
useful results.



Bloor and Evansl? investigated the fiow
field of a double-delta wing using a vortex
discretization method. They found the same
limitations, i.e. the kink size and the wing
length. ’

In addition to the above limitations, arising
from the condition for existence of a local
solution, if the kink discontinuity is
sufficiently small, the real physical flow may
only be Tocally influenced by it and the single-
leading-edge-vortex model will be the correct one
instead of ours, regardless of the mathematical
existence of the local solution at the kink.
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Interesting vortex flow patterns are shown in
Fig. 5. 1In this case the flow field was
calculated for two different types of strakes
combined with the same delta wing. For both
combinations, the strake spans and lengths were
kept the same and the calculations were carried
out for the same angle of attack. The difference
between the two strakes was in the leading-edge
curvature, one being a straight line (delta type)
and the other a curved, gothic type. From a
canparison of the results it is clear that,
although the vortex strengths do not differ much,
for both cases {at the same locations along the
x~axis), the trajectories of the free vortices
above the main wing are completely different.

The vortices on the delta-strake-wing combination
tend to be much closer together than those for
the gothic-strake case.

An extensive parametric analysis showed that,
for Tow to moderate angles of attack, the addition
of a strake did not improve the 1ift character-
istics of the wing. Experimental studies by
Wentz and Kohlmanl0 showed that the addition of
a strake to a slender wing results in the vortex
breakdown occurring at higher angles of attack
than those for a wing without a strake. Thus the
benefits of such combinations are only felt at
high angles of attack. The present model cannot
calculate flow fields involving vortex breakdown.
It enables, however, comparisons to be made
between different configurations at low and
moderate angles of attack. Even though the
numerical values of forces are over predicted, the

model provides a simple tool to better understand
the flow field and to conduct rapid qualitative
comparisons.

By use of a suitable conformal transformation
the method could be readily extended to deal with
a strake-slender-wing system mounted on a slender
fuselage. The effects of any nose vortices could
also be included.
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