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Abstract

A variety of drag reducing mechanisms of
shark skin are considered. In terms of fluid dyna-
mics these are based on either:

(a) a delay of separation by shear-stress depend-
ent mixing control of the turbulent boundary
layer or :

(b)

a reduction of turbulent shear siress below the
value of a smooth surface.

First, we give a survey on possible mixing
control mechanisms (a) which can be attributed to
the structures which we find on shark skin. All-
though these mechanisms are plausible, only few
laboratory data are available to support these
ideas.

On the other hand, turbulent shear stress re-
duction of 7-8% below the value of smooth surfaces
(b) has been demonstrated independently in several
laboratories. These drag reducing surfaces exhibit
small longitudinal riblets. Spacing and height of
the tiny riblets have dimensions comparable to the
dimensions of the viscous sublayer of a turbulent
boundary layer. In addition, these tiny riblets are
found on the scales of all species of fast sharks.

The idea of the shear stress reduction mecha-
nism by riblets is this: There are small streamwise
vortices in the viscous sublayer of a turbulent
boundary layer. The stireamwise vortices produce a
local upwash of slow fluid away from the surface.
This is equivalent to the occurence of low speed
streaks. The velocity profile in a low speed streak
is highly unstable and this causes the high fluctu-
ation activity (bursts) in the layer adjacent to the
viscous sublayer. Thus, the streamwise vortices
should be hampered in order to decrease turbulent
mixing and hence decrease the turbulent shear
stress. This can be achieved by small longitudinal
riblets which impede the cross flow of the stream-
wise vortices. The riblets should have a finer la-
teral spacing than the spacing of the streamwise
vortices.

The thrust of the present paper is to devise a
theory of the viscous flow on surfaces with small
longitudinal riblets. Therefore, in our analytical
model, we consider wvarious riblet shapes immersed
in a viscous Couette type shear flow. The height

rations are given. These include sawtooth, blade-
like, scalloped and convex riblet cross sections.
The analytical calculations are confirmed by elec-
trolytical analogy experiments.

In order to circumvent the limit for the pro-
trusion height of the riblets, staggered short rib-
lets are suggesied. By electrolytical analogy ex-
periments, it is shown, that the protrusion height
of this novel device may be increased to more than
twice the value of conventional straight riblets. Fi-
nally, it is documented, that the skin of fast
sharks clearly exhibits already the suggested short
staggered riblets.

1. Survey of previously suggested mechanisms

The properties and the drag reduction mecha-
nisms of shark skin are distinctly different from
those of other marine animals such as, e.g., the
compliant skin of dolphins, which is considered to
delay transition [1,2]. The mucus of bony fish is
another very efficient means to reduce fluid dyna-
mical drag in water [3]. However, on the surface of
sharks one sees only extremely small amounts of
mucus if one compares it with the surface of bony
fish. Thus, for the time being, we use as a working
hypothesis*) that mucus is probably not essential
for the drag reduction of sharks and hence we are
looking for other mechanisms there.

Bone [5] has suggested that the peculiar shape
of the scales on spiny dogfish, a species of sharks,
may serve as vortex generators. Vortex generators
would enhance mixing in the turbulent boundary
layer on the body of the fish and thus help keep-
ing the flow from separating. Certainly, separation
control is essential for sharks, since sharks are
obviously not only in steady forward motion. Un-
fortunately, spiny dogfish is a slow shark and
scales of slow sharks are very dissimilar to those
on fast sharks [6]. For slow sharks, other biolog-
ical functions like, e.g., protection against parasites
or abrasion are of paramount importance. To de-
monstrate the differences, Fig., 1 shows the scale
patterns on a fast shark, the silky shark. Fig. 2
shows the scales of a slow shark, the bramble
shark.

For our considerations we focus on the scales
of fast sharks only. A typical survey of the shapes
of the scales on a fast shark, a Galapagos shark, is

by which the riblets protrude into the boundary given in Fig. 3. On the snout (rostrum) of the
layer flow is of crucial importance. This protrusion shark, the scales look like well adjusted paving

height cannot be increased beyond a certain level
for all conceivable straight riblet configurations.
The limit for the protrusion height is the essential

stones with a very smooth surface. A gimilar struc-
ture we see at the leading edge of the pectoral

finding of the present investigation. In addition, *) This issue has been discussed in more detail in
fairly detailed flow data on various riblet configu- our previous paper [4].
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fins. In these two locations laminar flow and vary-
ing flow directions due to varying stagnation point
locations can be assumed. In the middle of the
body and the fins we recognize an anvil-like
structure of the scales, with ridges in the down-
stream direction. It looks, as if the direction of the
ridges follows the local flow direction [7]. However,
this specific orientation of the scales is lost in
scars [8]. On the rear part of the body and the
fins, the scales look like little hands and these are
less rigidly anchored in the skin as the anvil-like
scales are. On some species of very fast sharks,
like the hammerhead sharks and the mako, the
body is almost completely covered with very small
hand-like scales.

For fast off-shore sharks, the dimensions of
the scales lie between 0.2 and 0.5 mm. The lateral
spacing of the ridges on the crown of the scales is
between 0.035 and 0.1 mm. The scales carry bet-
ween 3 and 7 ridges; the larger scales on silky
shark and Galapagos shark exhibit the larger num-
bers, i.e., 7 ridges.

There are only sparse data on the velocities of
fast sharks. The burst speeds are in the range of
10-15 m/s [4,9]. The cruise speeds are lower; we
estimate about 2-5 m/s. Data on the size of each
species can be found in the literature [10,11]; a
typical length of a fast shark is about 2-3 m, with
white sharks growing to about 6 m length. The
Reynolds number, calculated with the body length
lies in the 104-107 order. Thus, it is reasonable to
assume turbulent flow on most parts of the surface
of a fast shark. In the following, we will discuss a
number of conceivable and previously suggested
fluid dynamical mechanisms related to shark scales.

1.1. Separation control

1.1.1. Shark scales with V-shaped ridges

Separation control by enhanced mixing of the
turbulent boundary layer is useful in regions of
strong positive pressure gradients where separa-
tion is likely to occur. The pectoral and caudal fins
of sharks have airfoil profiles and operate, roughly
gpeaking, similar to the blades of a turbomachine.
Thus, on the surface of the fins, from about half
the chord length on, we may look for patterns
which help to keep the flow attached. Indeed, there
we find for several species scales with a V-shaped
central ridge (see Fig. 4). Such structures produce
enhanced mixing by the generation of streamwise
vortices [4] with an upwash of fluid downstream of
the V-shaped wedge.

1.1.2. Shark scales at an angle of attack

Our previous investigations on shark scales
with different angles of attack were caused by our
observation, that on the skin of dead sharks of
some fast species (e.g., mako and hammerhead
shark) the angle of attack of the scales is not de-
fined. The individual hand-like scales can attain
different attitudes within an angle regime of, say,
0 and 30 degrees. Therefore, we have carried out
experiments with artificial surfaces with "scales" at
different angles [4]. The essence of the results
was, that there is a dramatic increase of turbulent
shear stress with an only small increase of angle
of attack of the individual scales. Since enhanced
turbulent shear stress is equivalent to enhanced
mixing, it is obvious, that turbulent mixing can be

controlled efficiently by small changes of the scale
angles. Conceptually, there are two possibilities for
a passive separation control mechanism:

(a) Elastically anchored scale: we assume that the
scales are elastically anchored with the zero
position at an angle of attack of, say 10°-20c°,
Under normal shear stress conditions, the
scales are assumed to be aligned completely at
an angle of 0°. For decreasing shear siress,
however, which is typical for a flow close to
separation, the scales will pop up and will in-
crease turbulent mixing. Thus, separation can

be delayed.
One open question is, however, how well
this mechanism responds to varying flow

speeds. If there is a coupling between anchor-
ing stiffness of the scales and speed of the
animal via tension of the skin [12], then this
can be considered as a plausible mechanism,
Nevertheless, it is difficult to imagine how this
will work on the surface of the fins.

(b) Loosely suspended scale with passive flow con-
trol: There is another possibilty of a direct
fluid~-dynamically operated control of the angle
of attack of the scales. The scales in the rear
part of the body and the fins are hand-shap-
ed. There is a cavity underneath the surface,
connected over a significant area. The indivi-
dual scales have also a significant vertical sur-
face. In Fig. 5 a schematic view of an array of
hand-like scales can be seen. Assume now a
flow with positive pressure gradient in the
streamwise direction, i.e., a flow close to separ-
ation. The positive pressure gradient produces
a reversed secondary flow underneath the sur-
face (see Fig. 5). This secondary flow causes a
drag force on the vertical surface of each
scale. This force increases the angle of attack
of the scales if the shear stress decreases sig-
nificantly. As before, a situation close to sepa-
ration leads to an increased mixing and hence
separation is delayed. We have suggested this
separation control recently in a patent [13].
Neverthless, a complete verification of this
suggested mechanism in the laboratory has not
yet been carried out.

In the above discussion we have consider-
ed methods to enhance mixing for separation
control. Unavoidably, enhanced mixing produces
also increased shear stress drag. Thus, en-
hanced shear stress drag can be tolerated only
if avoiding separation is of paramount impor-
tance in a certain region of a body immersed
in fluid. Thus, enhanced mixing on demand, as
proposed here, looks promising.

If separation is no problem, shear stress
reduction is preferable. This issue will be dis-
cussed in the following section.

1.2. Turbulent shear siress reduction

1.2.1. Basic fluid dynamics

Fig. 6 shows the flow structure of a turbulent
boundary layer as seen through a transparent wall
[14,15]. The fluid is water and the flow structure
is made visible by aiuminum particles. What we see
is the viscous sublayer of the turbulent boundary
layer. One can recognize easily a streaky structure
in the downstream direction. The typical lateral
spacing A, of the streaks is A} ® 100 {16,17]. ex-
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pressed in wall units*). The streaks in Fig. 6 are
produced by slowly rotating streamwise vortices.
The streamwise vortices provide a transport
mechanism of slow fluid being convected away from
the surface and fluid of high velocity taken back
to the surface. The regions of slow fluid, the "low
speed streaks" have been detected first with hy-
drogen bubble flow vizualization in water [16].

Macroscopic momentum transport across the
boundary layer is the cause of the high shear
stress of turbulent boundary layers as opposed to
laminar boundary layers. The streamwise vortices
contribute to this momentum transport, but they
produce also distortions of the mean velocity pro-
file (i.e., the low speed streaks). These distortions
cause high local instabilities ("bursts"” [18]), which
are responsible for the high turbulence activity
cloge to the wall.

Recently, Jang, Benney and Chen [19] provided
a convincing theory for the streamwise vortices.
They assume the mean velocity profile of a turbu-
lent boundary layer and calculate possible flow in-
stabilities, There are two classes of instability
modes which coincide at a certain wavelength and
frequency. The nonlinear interaction of these two
wave types produces a secondary flow in form of
longitudinal vortices, whose stireamlines had been
also calculated (see Fig. 7). The lateral wavelength
is predicted very well, i.e., the theoretical result is
At = 90. The question, however, as to what the
streamwise wavelength is, does not seem to be
settled completely. The theory [19] predicts A} =
338. On the other hand, the available hydrogen
bubble vizualization data suggest a higher value,
between Af # 630 [20] and Af > 1000 [17]. We feel,
however, that the evaluation of a streamwise wave-
length from hydrogen bubble data is difficult and
certainly less reliable than the measurement of the
lateral wavelength At by the same method.
1.2.2. Riblet surfaces

The fluid dynamical idea of turbulent shear
stress reduction by surface modifications is the
following: In order to hamper the development of
the streamwise vortices fine riblets with sharp
ridges are arranged on the surface and oriented in
the streamwise direction. These riblets impede the
lateral flow component of the vortices. As a con-
sequence thereof, the vortex cores move a bit far-
ther away from the surface. Thus, the viscous sub-
layer grows thicker, which is equivalent to a re-
duced shear stress [21]. In addition, the turbu-
lence fluctuation level is reduced in the vicinity of
the wall [22]. We have carried out similar measure-
ments. Fig. 8 shows a comparison of hot wire data
above a smooth flat plate and above a riblet sur-
face. The drag reduction of the riblet surface is
6%, measured independently by a direct shear
stress measurement {the method is described in
[4]). The changes in the mean velocity profile are
very minor and not shown here; the mean flow dis—
tribution is only shown to clarify where we are in

¥) The quantity A} is a Reynolds number, calculat-
ed with the shear stress velocity [/, /o We

have At = X - _;Q . T, is the shear stress of

a smooth flat plate; p and v are the density
and the kinematic viscosity of the fluid, re-
spectively.

the boundary layer. More interesting are the devi-
ations in the fluctuation level u’gys.*} The turbu-
lent shear stress = = p u™W" is a quadratic quanti-
ty in terms of the fluctuations. This quantity is
reduced by 6%. Thus, we should expect a reduction
in the fluctuation level, which is a linear quantity,
of 3% And this is exactly what we see in the re-
gion not too far from the wall, where the shear
stregs does not differ very much from the wvalue
just at the wsall., This measurement shows, that the
effects of a drag reducing surface on the
turbulence are by no means dramatic.

A typical measurement with a shear stress re-
ducing surface is shown in Fig. 9. D/Dgp on the
vertical axis is the drag of the riblet plate divided
by the drag of the smooth flat plate. We see a
drag reduction for values of the dimensionless*¥)
lateral riblet spacing st being smaller than the
spacing of the sireamwise vortices, st < Af/2 =
356-50. Sawtooth riblets show a similar behaviour
[23] as the scalloped riblets in Fig. 9, which ex-
hibit a 7 - 8% drag reduction. In Walsh’s [23] and
our experiments, it has turned out, that it is
crucial that the edges of the riblets are sharp.
Convex riblets with rounded ridges have no drag
reducing effect [23]. The ridges on the scales of
fast sharks have always sharp edges [6]. As we
have shown in previous papers [4,7], the lateral
spacing of the riblets on shark scales have, rough-
ly estimated, the "right" spacing. We will return to
the fluid dynamics of riblet surfaces in more detail
in section 2 of this paper.
streak cancellation by fluid

1.2.3. Low_  speed

ejection

Whereas we were on comparatively solid ground
with the preceding two subsections of this paper,
the following suggested mechanism is only support-
ed by analytical estimations and by observations on
the structures of shark skin. From some sparse
and, admittedly, not completely satisfactory data
from the literature [24] and from analytical con-
siderations [4], we concluded that the "low speed
streak"” regions in the viscous sublayer should be
at the same time regions of lower instantaneous
static pressure. We suggest to install small slits in
the surface with their exit in the downstream di-
rection. Due to the low pressure in the "low speed
streak"” region, fluid should be ejected through the
glits in the downstream direction. In this way the
velocity defect of the "low speed streaks"” could be
compensated, at least partly [4]. Such a surface
with slits could look, in longitudinal cross section,
like the device shown in Fig. 10. The cavities un-
derneath the surface are connected. The particular
surface in Fig. 10 exhibits also longitudinal riblets
for improved performance. Incidentsally, this is a
longitudinal cross section through actual shark
skin with anvil-like scales (see Fig. 3). This, ad-
mittedly, still speculative mechanism can be ex-
tended even further. With the slits of Fig. 10 we
inject fluid in the downstream direction in order

¥X) In this measurement, the hot wire length was 1
= 1.36 mm, in wall units 1*¥ = 76, i.e., not small
enough to pick up the full fluctuation level
very close to the wall. However, a comparison
before/ after is still sufficiently conclusive.

*¥) The riblet spacing s is expressed in wall units,
ie., 8t = s - VTo/p), - st is roughly propor-
tional to the mean flow velocity.
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to compensate the u’-defect in the instantaneous
velocity profile. However, the induced flow of the
streamwise vortices does not only posess a u’
down~stream component, but also a w’ cross flow
component (see Fig. 7). Therefore, an ejection of
fluid to the sides should be also advantageous. A
device to achieve this could look like the array of
plates in Fig. 11, which is a lateral cross section
as Fig. 7 is. Since the location of the low speed
streaks is not fixed, an array of plates like in Fig.
11 should be adjusted instantaneously. If the indi-
vidual plates or scales are anchored elastically,
this can be achieved in a simple way: In the re-
gions of the low speed streaks, the shear stress is
lower and the scales pop up to a higher angle of
attack. Also, the above mentioned static pressure
difference has the same effect on a scale with
hand-like shape. In our previous paper [4], we
have estimated the time constants of such a mech-
anism and we have found compatible time constants
for (a) the fluid motion of the low speed streaks
and (b) the mechanical reaction of the shark
scales. On the other hand, the same estimation of
time constants [4] shows, that the latter mechanism
utilizing compliant scales works only in liquids and
not in gases.

2. The viscous flow on riblet surfaces.

2.1. Basic equations

The reader may have realized from the preced-
ing sections how many plausible mechanisms are
conceivable and, on the other hand, how difficult it
may be to prove most of them. In order to get
some unambiguous information, for a change, we
will perform a rigorous viscous flow analysis.
Eventually, this will lead to new insights which
could not have been obtained by just intelligent
speculations accompanied by rough estimations.

One of the unsettled questions of riblet sur-
faces is as to where the apparent (average) origin
of the velocity profile might be located. This
question was raised by Hooshmand et al. [21] and
we suggested in our previous paper [4] that this
problem could be solved analytically by a viscous
flow theory. In Fig. 12 we show what we mean with
the term "apparent origin". It is that particular
elevation where the boundary layer "sees" an equi-
valent smooth wall. Another way to interpret the
apparent origin is to consider it as the center of
gravity of the shear streas distribution on the
riblet surface. At first glance, this appears as an
academic discussion. However, it is of paramount
importance how far the ridges protrude above this
apparent origin (see Fig. 12). This protrusion
height determines how far the flow above the riblet
surface can be influenced by the riblets. An opti-
mization of the riblet shape is at the same time an
optimization for maximal protrusion height*).

Thus, we consider the average mean flow of
the viscous sublayer in which the riblet surface is
immersed. In the following equations we choose x
as the direction of the mean flow. The lst Navier-
Stokes equation is

au au du au 1 9dp 2
— + U + v + + = = yeu .
at ax ay 2z " Pax V'Y m

*¥) with the constraint that the riblet spacing
should be smaller (® 1/2) than the spacing of
the streamwise vortices.

We assume a flat plate boundary layer flow without
mean flow pressure gradient, so 9P/3x = 0. If the
riblet surface is immersed in the viscous sublayer,
neglecting the convective terms on the left hand
gide of the equation is certainly a good approxi-
mation. Consequently, for 2-dimensional riblets we
are left with the equation

a2y = 482y
;—y—z- + 3;‘2‘ =0 . (2)

This is the Laplace equation for the wvelocity u. To
solve this equation in two dimensions, various es-
tablished techniques can be used. One particularly
suitable of them is conformal mapping, which will
be used in the following section.

Before we will do this, however, we will discuss
the basic equations for 3-dimensional riblets. Here,
we can no more assume a priori that the pressure
gradients are zero. For a viscous steady flow, we
are left with

i _ 2

ax st

a

rrAR A &)
p 2

Iz bW

where p is the viscosity of the fluid. Taking deri-
vatives of these equations, we can eliminate the
pressure and obtain

2 [du av
v —— i =0,
[ay ax} (@)
2 {du aw -
v [;—2-: - -3;] =0, etc.
First, we try trivial solutions for equations (4),
such as
vzu = 0; vzv = 03 vzw =0 (5)
or
du vl _ . fu _ dwl _
ay ~ 3§} =0 (az ax] 0, ete. (6)

Clearly, v2u = 0 leads with eq. (3) to ?P/5% = 0. If
we use, on the other hand, the equations (6) to re-
place v and w in eq. (3), we have

_,J3 (m, ov, LW]
ax ax lax 3y  az) ° M

With the continuity equation

au av aw
ax + ay * az 0 ®

we find again %5 =0 or v'u=0.

We know, however, from other solutions of the vis-
cous flow equations, that the pressure is most like-
ly not constant in our flow field. In Stokes’ solu-
tion, e.g., for the viscous flow on a sphere, 1/3 of
the drag force comes from the contribution of the
pressure normal to the surface. On the other hand,
in our investigations, we will deal only with blade-
like structures aligned to the mean flow direction.
Thus, the static pressure is not expected to con-
tribute anything whatsoever to the fluid force on
such a structure. Based in these conjectures, we
submit, that a solution satisfying v?u = 0 in three
dimensions, and with u = 0 on the surface, will
produce a shear force very similar to the one ge-
nerated by the solution of the complete equations
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{(3) and (8).*) As we have mentioned already, the
apparent origin of a structure with surfaces alig-
ned with the flow, can be interpreted as the eleva-
tion of the center of gravity of the shear stress
distribution. Thus, we estimate the protrusion
height of a three-dimensional flow-aligned struc-
ture by a solution of the three-dimensional Laplace
equation, ¢%u = 0.,

To solve the Laplace equation in 3 dimensions,
again established methods are available, such as,
e.g., a numerical source distribution approach. On
the other hand, almost forgotten methods, like the
electric field analogy in an electrolytic tank experi-
ment can be also utilized. This latter method turns
out to be simple and easy to handle. In particular,
the protrusion height can be determined by a
straight-forward electrolytic resistance measure-
ment, as will be shown in section 4.

2.2. Two-dimensional riblets, conformal mapping

To solve viscous flow problems on 2-dimension-
al riblet surfaces, conformal mapping is superior to
other methods. There are two striking advantages:

(a) Sharp edges which produce singularities in the
flow field do not lead to problems or inaccura-
cies with this method, whereas, e.g., purely
numerical methods would be in trouble there.

(b) For a variety of configurations, solutions in
closed form can be worked out, in particular
simple formulae for the protrusion height can
be produced.

Conformal mapping utilizes the fact that for the
equation
a3 a2

2 0 @
arbitrary functions f(z + iy) are solutions, as one
can verify easily. The function f, the mapping
function, has to be selected so that the boundary
condition on the riblet surface is u = 0. The mean
flow u-distribution will be a uniform Couette shear
flow in order to emulate the viscous sublayer. What
we will do by conformal mapping is to transform a
uniform shear flow above a smooth plane surface
into that above the particular riblet surface. So
the task is to do mathematically what we see in
Fig. 13. By the way, the solid lines in Fig. 13 are
not streamlines, but lines of constant velocity u
(isotaches). In conformal mapping we ususally plot
the real and imaginary part of a function. So we
obtain a network with lines intersecting each other
perpendicularly. If the imaginary part of our func-
tion is u, what is then the significance of the real
part, i.e., the broken lines in Fig. 137 The answer
is simple: Between iwo broken lines a shear force

AF=1-7, - oz (9

is transmitted. In equation (9), 1 is the length in
the streamwise (x) direction and Az is the spacing
between two broken lines of the undisturbed grid
far above the riblet surface. r, is the shear stress
T, = # - du/dy, where du/dy is the velocity gradi-
ent above the smooth surface or far away from the
riblet surface. Thus, we call the broken vertical
lines in Fig. 13 force lines (isodynes).

*}  Of course, we consider this only as a somewhat
deficient approach for the time being, which
should be replaced by a direct flow experiment
and/ or a numerical solution of the full viscous
flow equations.

2.2.1. Riblets with sawtooth shape

Riblet surfaces with sawtooth-like cross section
have been extensively tested by Walsh [22,23] and
they do produce drag reduction in a turbulent
boundary layer. Therefore, we have chosen this
configuration first for our viscous flow analysis.
The procedures of the conformal transformations
are as follows (see Fig, 13):

(a) A rectangular grid of wvelocity lines and force
lines in the w,-plane (w, = z; + iy,) is fixed.
The vertical extension of the grid is chosen
from y, = 0 to an arbitrary upper value, and
the horizontal extension z, is from -7/ to
+7/9.

(b) This grid is transformed by the mapping func-
tion sinus, i.e., w; = 8in w,.

(¢} The half-plane above a straight horizontal line
can be transformed into the plane inside a po-
lygon by virtue of the Schwarz-Christoffel
transformation. For details on this technique
see, e.g., the books of Betz [25] and Kober
[26].

The Schwarz-Christoffel transformation pro-
vides the mapping function to relate the wjy-plane
to the wz-plane*):

dw, - c 1 1
doy o . s
dws s+ D/ - n T

C, is a constant and the integration of eq. (10) will
produce another constant C,. These two constants
have to be determined later. « is the corner angle
of the polygon (see Fig. 13). In order to carry out
the integration, it is useful to introduce the fol-
lowing substitution

(10)

1
T LI 1, =
=[5y we -3 (L)
We obtain d
ws = n - C f 1_£,,~+ Cz . (12)

This integration can be carried out for n being an
integer number [27]. For n = 4 (x=45°), we obtain,

€.,
i 1+
Wy = -;— [1 + % (In T:% + 2 arctan E),] (13)
. w, - 11/ .
with ¢ = [m] . For this case, the constants

had been determined as

- is

C, = 5

in order to obtain a grid pattern with the dimen-
gion and orientation like in Fig. 13.

and Cz = a5 (14)

For other angles, the mapping function can be-
come more cumbersome. However, we have worked
out the mapping functions for:

n 3 4 6 8

« 60° 45° 30° | 22.5°

ridge | ;550 | gg°

o
angle 45

60°

¥) This is a receipe~like procedure. Why equation
(10) is valid, is explained in [25].
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The formulae of the mapping functions are given in
appendix A. The grid pattern, i.e., the velocity
distributions and the force lines are given in Fig.
14 to 17. These drawings are computer plots of our

equations. Several things become obvious from
these plots:
(i) The velocity perturbations caused by the

riblet structure are vanishing very rapidly

with increasing distance from the riblet
surface.
(i) There is very little fluid motion and extre-

mely low shear stress at the bottom of the
grooves, in particular for the smaller riblet
angles.
(iii) The protrusion height hp does not seem to
increase above a certain fraction of the
riblet spacing s.

This latter observation can be quantified fur-
ther. We track down through the coordinate trans-
formations where the different points A, B and C
move for a riblet surface, in comparison to the un-
disturbed reference pattern (represented by « =
90° or n = 2). In this way, we can derive a general
formula for the protrusion height h for arbitrary
riblet angles. The details of this calculatlon are
given in appendix B. We find

_l_l_p_ . cotgx
2

- v 42002 -4 y(1ed)

(15)
In this equation, 7 is the Euler constant vy = 0.5772
and ¥ is the Digamma function, as defined and ta-
bulated in the tables of Abramovitz & Stegun [28].
In Fig. 18 we have plotted equation (15) for the
protrusion height versus the height of the riblets.
Both quantities have been made dimensionless with
the riblet spacing s. For low values of the relative
riblet height h/s, the protrusion height is half the
riblet height, i.e., hp ®# h/2. For high riblets, how-
ever, there is a saturation of the protrusion height

t Bp,.. = 0.2206 s. This saturation limit (0.2206 =
h’12/-,,) is an important and unexpected finding of
this paper. We will see in the next section whether
or not this limit value is also valid for other con-
figurations.

2.2.2 _ Blade shaped riblets

Two-dimensional blade-shaped riblets have been
introduced by Wilkinson [29] as a drag reducing
surface. Preliminary tests seem to show, that the
turbulence levels above such a surface immersed in
a turbulent boundary layer are lower than those
on sawtooth shaped riblet surfaces [29]. Therefore,
we carry out the wviscous flow calculation also for
this configuration.

As in the preceding section, the wviscous flow
on blade-shaped riblets can be calculated using the
Schwarz-Christoffel transformation. In fact, a
transformation with n = 2 (ie., rectangular cor-
ners) and a shift in coordinates between the w,
and the w; planes would do the job. However, the
following procedure to solve the problem is differ—
ent and ressembles somewhat the procedure to cal~-
culate the flow in blade rows of turbomachines
[25]. Its basic advantage is that it can be modified
to deal with other configurations such as scalloped
riblet shapes, which are found on shark acales
{4,61.

If we use methods of turbomachinery flows, we
may draw the reader’s attention to an obvious fact:

The grids representing lines of u = const and F =
const look like streamlines ¥ = const and potential
lines ¢ = const. In spite of the fact that we do not
really consider a stream in the z,y-plane we may,
however, utilize this analogy. This has the ad-
vantage, that, as fluid dynamicists, we are used to
think in terms of streamlines. It is, e.g., easy to
see what a stagnation point and a stagnation
streamline in the ¥,4-plane are. However, how would
we call this in our u,F-plane? Thus, we will use ¥
and ¢ instead of u and P, intermediately. At the
end of our calculations, we will just change the
names of the functions back to u and F, their real
meaning.

In the ¥,#-plane, the task is to find the flow
around an array of blades. This task is carried out
in several steps (see Fig. 19). The w,-plane is not
shown in PFig. 19. It is, as before, an undisturbed
rectangular ¥%,¢# {(or u,F) grid. The flow in the w,~
pPlane is the flow around a cylinder of radius a, in-
duced by a vortex with strength I,. The induced
field of this vortex alone would be

&+ i¥ = —= 1In (2, + iya) . (16)
In order to fullfill the no penetration condition on
the surface of the cylinder, we need a mirror im-
age vortex of identical strength I',, but with nega-
tive sign, inside the cylinder at an excentric loca-
tion E. Having only these two vortices would prod-
uce a field with circles as streamlines everywhere.
Also, as we would see later, the streamlines in the
final w,-plane would not be these of a horizontal
parallel flow. This latter condition is fullfilled if we
install an additional positive vortex of strength I,
in the center of the cylinder.

We will not show all details of the mathematics
here. Since there are no particular tricks involved,
we will show only a few equations and outline the
essential steps of the transformations. We find for
the stream function of the flow around the cylinder
in Fig. 19, which is the stream function of the sum
of the three vortices:

il wy (wy ~ 1)
e [ an

¢ + i¥ = w, =
wa ~ 1+ a

where w,; = z; + iy,. The radius of the cylinder is
a and the distance between the origin at A (where
the inducing wvortex is located) and the center of
the cylinder at M has been set equal to one.

The streamlines can be calculated by inverting
equation (17) to find w, at a given w,. Since (17)
is a quadratic equation for w,, this is a straight-
forward procedure. By following one ¥ = const line
through the w,-Plane, one can decide which one of
the two solutions of the quadratic equation is to be
chosen.

The next step is to "smash"” the cylinder in
PFig. 19 to obtain a single blade of finite length.
The transformation capable to do that is well
known from airfoil theory, i.e., the Kutta-Joukows-
ky transformation

2

a
Wy = W + — .
W2

(18)

Before we apply this transformation, however, we
have to shift the origin of the coordinate system
from A to the center of the cylinder, M. Thus, with
the appropiate adjustment of constants, we have
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instead of eq. (18)
82

W3=(Wz“1)+(w2__1)

+ 1+ a? (19)

After having applied the Kutta-Joukowsky transfor-
mation, the point A has moved a bit to left and, in-
terestingly enough, the stagnation streamline ¥ = 0
still remains a circle.

Before performing the next step, we move the
origin back to the (shifted) center of the inducing
vortex, A. By applying the transformation In w we
obtain the desired periodical flow pattern on the
blade row. With the proper choice of constants, the
transformation equation is

w =g b (720

where s is the riblet spacing. The result of this
transformation can be seen in Fig. 19. The broken
line is the stagnating streamline ¥ = 0 and is
equivalent to the location of the wall with u = 0.
The height of the riblets can be controlled by
changing the radius a of the circle in the w,-plane
(see Fig. 19). After some intermediate calculations,
one can find the relation which determines the
riblet height h

(20)

1
h/g = = artanh a (21)
with the above outlined procedure, a set of flow
patterns has been calculated for various riblet
heights, see Figs. 20 to 23.

The protrusion height hp is the height of the
riblet h minus the upwards shift of the streamlines
(lines of constant u) in the w,-plane of Fig. 19. Its
magnitude can be determined by carefully tracking
down the locations of the points in the different
planes after the different transformations. We find
after some intermediate calculations

h
= 1 in (1 + tann (;—'9)] (22)

From eq. (22), one can see, that hp * h for, small
h/s. This means, that for very small blade riblets,
the protrusion height is equal to the real height of
the blade riblets.

On the other hand, for large blade heights, the
blade riblets behave like the sawtooth riblets, see
Fig. 18. This is due to the fact, that for very deep
grooves only the top of the blade takes the vis-
cous force. Obviously, the top of the blade is iden-
tical for deep grooves on sawtooth riblets and on
blade riblets. Thus, the limit value for the protru-
sion height is again hp/s 2 In 2/,, for large h/s.

2.2.3.  Scalloped riblets

Riblets with scalloped cross section are found
on the scales of fast sharks. In laboratory experi-
ments, it has been shown, that scalloped riblets
with semicircular shape match the best sawtooth
riblets with a drag reduction of 7-8% [4,23]. The
vigcous flow calculation on these scalloped riblets
can be carried out with a modification of the
transformations we had used for blade riblets.

The Kutta-Joukowsky transformation in the
preceding section (eq. (18)) had a constant a being
equal to the cylinder radius a. We obtain scalloped
riblets if this radius of the mapping circle, which

we call now b, is larger than the cylinder radius a,
see Fig. 24. In addition, the mapping circle is no
more coaxial with the cylinder. The position of the
mapping circle has to be chosen so that it touches
two streamlines with the same value (¥.), but
opposite sign, at the horizontal axis, y, = 0. The
streamlines between -¥. and +¥%, penetrate into the
blade in the w; and w, planes. In the final plane
w,, the ¢, streamlines become the scalloped wall
contour of the riblets. By numerical trial, cylinder
radius and mapping circle radius can be adjusted
so that the riblet contour is wvery close to a
semi-circle. This particular configuration and its
flow distribution is shown in Fig. 26. Of course,
the velocity value on the surface has to be
readjusted so that u = 0 at the contour ¥,. In this
particular case, the protrusion height is hp/s =
0.192 h/s. Other scalloped surfaces and their flow
distributions are given in Figs. 25 and 27. In ge~
neral, the protrusion height of scalloped riblets
lies between sawiooth riblets and blade shaped
riblets. But, as one can see from Fig. 18, they can
be indeed very close to blade riblets. Of course,
mechanically, scalloped riblets are much more
durable than blade riblets.

2.2.4. Rounded ridges

There are several ways to calculate the viscous
flow around rounded edges of riblet surfaces:

a) One can choose a line u = const above the ac-
tual surface of the sawtooth or blade shaped
riblet and can consider this as the new sur-
face. This produces a variety of riblet surfaces
with rounded edges.

b) Similar to the preceding modification of the
mapping function which produced = scalloped
riblets one can modify the Kutta-Joukowsky
trangformation into the other direction, which
is more familiar from airfoil theory. If one
choses a mapping circle radius smaller than the
cylinder radius, one obtains "club"-like blade
riblets with rounded edges, see Fig. 28. Also
the modified flow pattern can be seen in the
example calculated in Fig. 28.

From the numerical data of various "club"-like
configurations, in particular for comparatively thin
blades, we have compiled an approximate formula
for the loss in protrusion height 4 hp, as compared
to the thin blade riblets

fhe o2t

hp s
where t is the maximum thickness of the blade.
This approximate equation is valid for t/s < 0O.1.

x

(23)

At the present time, however, we have not yet
found a general law for the influence of the radius
of curvature at the edge on the protrusion height.
Nevertheless, we feel that this may be possible by
an extension of the present analysis.

2.2.5. Convex riblets

Due to a programming error in our data plot-
ting program for sawtooth riblets, we ran inadver-
tently into the solution of this problem. We change
the mapping function for sawtooth riblets with n =
4, eq. {13), by omitting the second term:
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i Woo
we = 31+ 10 12 $); with ¢ = [G':T%] . (29

Instead of the originally expected pattern, we get
the viscous flow above 2 convex riblets per divi-
sion s. By varying the parameter n = 7/, in the
function ¢ of eq. (24), we can vary the depth of
the grooves. Fig. 29 and 30 show the viscous flow
on convex riblets, calculated with the mapping
function eq. (24), the grid size being normalized to
obtain one riblet per division s.

The protrusion height can be calculated for
each pattern. It is Np/g = 0.0724 for Pig. 29 and
ho/e = 0.0767 for Fig. 30. For convex riblets, the
protrusion height is always very small. This ex-
plains why experiments with convex riblet patterns
have been unsuccessful in terms of drag reduction
[231.

3. Considerations leading to
three~dimensional riblets

The basic idea of the shear stress reduction of
a turbulent boundary layer is to decrease the mo-
mentum exchange in the vicinity of the wall by im-
peding the streamwise vortices, We consider the
protrusion height as the crucial quantity for the
interaction with these vortices. On the other hand,
in the preceding sections, a clear limit of the pro-
trusion height has become visible, i.e., (hp/s)max =
In2,. = 0.2206. For a suitable riblet spacing, we
may assume, s8ay, half the spacing of the natural
streamwise vortices. This leads to st # 22 (see Fig.
9). Thus, with the above mentioned limit for the
protrusion height, we find b}, . # 5, in wall units.
However, the cores of the sireamwise vortices are
much farther away from the surface. According to
Fig. 7, the vortex cores are located at about yt =
35. Consequently, the interaction between two-di-
mensional riblets (of any conceivable shape) and
the streamwise vortices remains indeed limited.

However, inventors do not give up that soon.
There is still a possibility to increase the protru-
sion height far beyond y* # 5, which we are going
to explain now. The streamwise vortices have a
comparatively long wavelength in the downstream
direction. Thus, it may be sufficient to have riblets
with finite length in the downstream direction and,
say, about 1-3 short riblets per longitudinal wave-
length. A staggered array of riblets might then be
suitable, see Fig. 31. A sharp swept leading edge
should help to prevent secondary flows. Hence,
short riblets with the shape of a section of a circle
or of a swept fin look promising. In a staggered
array, such as in Fig. 31, the lateral distance can
be doubled and, therefore, also the protrusion
height can be increased substantially. As we will
see in the next section, the protrusion height of
the point of highest elevation of short staggered
riblets can be increased even beyond double the
value of two-dimensional riblets.

Looking through our shark scale atlas [6] re-
veals readily, that we aren’t the greatest inventors
anyway [30]. For very fast sharks, we find inter-
secting and overlapping scales with staggered rib-
lets quite often, or betiter say, almost everywhere.
Indeed, the jagged trailing edge of the hand-like
scales fits into the leading edge region of the con-
secutive scale like the two halves of a zipper, au-
tomatically producing an array of staggered riblets.

Fig. 32 and 33 show photographs of such "zipper"
structures on the skin of two different species of
fast sharks.

However, the conditions under which shark
skin samples are dried to be photographed, are not
always ideal. There is no fluid shear force anymore
to close the "zipper" during the drying process.
Thus, not all available photographs of shark skin
show actually interlocking scales.

4. Electrolytic experiments

It is desirable to have an independent proof
for the 2-D riblet calculations and a simple and
quick method to demonstrate the potential of 3-~D
staggered riblets to produce an increased pro-
trusion height.

As before, the task is to solve the Laplace
equation v?u = 0 with our particular boundary con-~
ditions, i.e., u = 0 on the surface of the riblets. It
iz well-known that the electric field in a conductor,
e.g., an electrolyt, obeys the same Laplace equa-
tion. In a model experiment, lines of constant ve-
locity u would correpond to lines of constant volt-
age V in an electrolytic tank., However, besides
tracking down velocity distributions by a point
probe, we can also measure easily such quantities
like the protrusion height. Mainly for this purpose
we have established a measuring setup which is
shown schematically in Fig. 34. We measure the re-
gistance ‘R of the rectangular electrolytic tank
without and with riblet electrode wvia a voltage
measurement (Fig. 34). The resistance of the tank
without riblet electrode is proportional to the
length L of the tank. The decrease in the resist—
ance caused by the presence of the riblet electrode

is equivalent to a decreased length L’ of the
electrolyt. We have

L-1"=h-h (25)
and

hp=h - (L-L1), (26)

where h, is the protrusion height and h is the ge-
ometricaf height of the riblet, as before. The shape
of the riblet electrode has to be chosen so that the
walls of the rectangular tank are symmetry planes.
The details of the experimental setup are given in
appendix C.

The electrolytic measurements of the protrusion
height h,/s plotted versus the geometrical height
h/s can %e gseen in Fig. 35. The agreement clearly
shows, that our calculations are correct. There is,
however, a systematic deviation: The measurements
on the blade riblets show a protrusion height
being about 5% lower than the theoretical values.
We argue that this minor discrepancy is caused by
the finite thickness of the blades of the blade
riblet electrodes. The blade thickness is t = 0.025
8. Then our approximate formula for the decrease
of the protrusion height, eq. {23) would predict a
decrease of 5%. Thus, the discrepancy is explained.

For our 3-D demonstration electrode, we have
chosen the dimensions which can be seen in PFig.
36. The protrusion height which we found experi-
mentally is hp = 0.55 s. This is more than twice the
protrusion height of a comparable 2-D riblet.
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Appendix A
Transformation functions for various angles of
sawtooth riblets.

Note: In all cases we have w, = gin w,
wy—1 /n
and ¢ = [w,+1] ‘

1.) Normalized undistorted grid n = 2; « = 90°

-8 i, 1+€& _s i
Wy = 2[1 + = In 1 $] = om (w, + 2) (Al)
2.) n = 3; « = 60°; ridge angle: 120°
_ 8 i J1+E+E2 2¢+1
Wy = 2[1 + “[ln B + 3 arctan —%
1 (A2)
- 3 arctan 75—”
3.)n=4; a= 45°; ridge angle: 90°
1 +
ws = £[1+2 (1n =%+ 2 arcten o] (A3)
4.) n = B; « = 30°; ridge angle: 60°
_ sl L if, 1+ E2-¢41
ws = oIl ¥ +(1n 1% 1-¢ gl eFrerl ©
+ V3 arctan 21 + V3 arctan -§—-—]] (Ad)
J:?
5.) n = B; « = 22.5%; ridge angle: 45°
= 8[yy ifgp 1t _ L, £2V2¢+
Wy = 2[1+ “_[ln T-¢ \/51 ?’17-2'%_ + 2arctan §+

+ V2 arctan (v2¢-1) + v2 arctan (/264-1)”. (A5)

Appendix B:
The protrusion height of sawtooth shaped riblets.
The aim of this section is to find a general
equation for the protrusion height of sawtooth rib-
lets with arbitrary angle. To achieve this we have
to track down where the points of the grid move if
the conformal transformations are carried out. We
focus on points farther away from the surface with
large y; in the w;-plane. We have for w,

Wy = sin wy = sin (z,+iy;) = sin 2z, cosh y, +
(B1)

In particular for z, = "/9 (see Fig. 13) we_obtain
wz = cosh y,. For large y, this becomes # y‘/2.
For the transformation from the w, plane to the w,
plane we use a variable €

+ i cos z, sinh y,.

1
w-1)8
& = [ (32)
This variable becomes then for large y,
£q ”l—g-e.y‘ or: ¢5 21 fory, > e . (B3)

The transformation function (eq. (11)), with appro-
priately determined constants assumes the form
€n
=8, isn d¢
Wa =5t om Il—e" (B4)
As we see from Fig. 13, the shift d between the
reference grid (n = 2) and the riblet surface grid
{n = /) is a quantity from which we can calculate
the protrusion height. We have for large y,

*)  For clarity, we introduce here the subscript n.

d = YS(n — _'g_) (Bs)

- YS(n = 2) ,

and s
hp=h—d='2"cotga—-d; (B6)

we omitted here the i-coefficient. Using eq. (B4) we

have

£n
d=§Fh"‘[“Il Il ] (B7)
yyre O

where the index 2 in ¢, stands for n = 2, referring
to the reference grid on the right hand side of
Fig. 13. We change again the integration variable in
the integrals by putting £" = x. We obtain

wl

wrl 1

€n
n J‘ : ilfén - J‘ »D dx
o o

(1)
The difference of the two integrals in brackets of
e.q. (B7) can then be expressed, using eq. (B3):

o 3
1 — —

(B8)

2
- K

Thie integral we could not find in integral tables
[27]. Nevertheless, we managed to find a way to
perform the integration analytically. The problem
i, that the integral I cannot be split into two
parts, because the two constituents of the integral
I do not converge by themselves. However, by in-
troducing a convergence coefficient z, which we
eliminate finally, we can split the integral

~for 0 €« £ T/2 (BS)

I =1, + I
1 g -1

L= 5 &  (A-07 (B10)
‘: - ":' &-1

I, = !,' © (1 - x)

The integrals I, and I, are Beta functions [27].

L =B@ ¢ 5 I, =B( ) (B11)

The Beta functions can be expreassed in terms of
Gamma functions [27]
1
(3

) r[%] - r(e) . - r(s) 12

to l‘(-:—‘#-e] ’ : F(%+t;]

Inserted in I and expanded for small ¢ gives

1 1 1
C N - N
1+ ¢ L 1+ ¢ :
I‘[;] I‘[';]

Accordmg to Abramovitz & Stegun [28], the ratio
r’, r is defined as the Digamma function ¥. We find
for small =

I= (B13)

SR oW
The value of ¥ [-;-} is
1
v =-0o+2m2 (B15)
where 7y is the Euler constant y = 0.5772. Using

equations (B6) and (B7) we find for the protrusion
height h,
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h cotg « 1
20—+ [rr2zmz+ud] @16

Since the tables for ¥ [28] are available only for
arguments exceeding the value 1, we rewrite this
formula with the recurrence relation [28]

W2) = V(an) - 1 (B17)

Thus, we have finally the general formula for the
protrusion height of sawtooth riblets

h cotg « 1
P+ [rr2zma-F+wd)] @18
It can be shown by expanding this equation and
using the tables of Abramovitz & Stegun [28] for
specific values of special functions, that the sa-
turation value for large heights (or small «) is

h

2p - in 2
sa-)., m

for small riblet heights (or « close to 7/3), on the
other hand, the protrusion height is half the riblet
height.

Appendix C

Description of the electrolytic experiments. Fig.
37 shows a photograph of our electrolytic simula-
tion experiment. In the center, we see a Briiel &
Kjaer type 1022 beat frequency generator as the
A.C. source. On the right hand side, a digital volt-
meter (Schlumberger 1240) is visible, and besides
it, the reference 1Ko resistor. On the left hand
side, we have lined up a set of 2-D copper elec-
trodes. By intermediate copper pieces, also visible
on the left, the overall distance of the electrodes

can be adjusted to the particular size of the riblet
model electrodes. Several details of the experiment
should be also mentioned:

a) The experiments can be carried out with A.C.
only. A.C. does not lead to a buildup of gas
layers at the electrodes, which would produce
a very high resistance. The frequency should
be as high as the digital voltmeter for the
resistance measurement can take it. Of course,
there is a limit by the skin effect at very high
frequencies. We have taken our measurements
at a frequency of 10 KHz.

b} We selected a non-poisonous electrolytic liquid
in order to simplify the handling of the liquid.
We used destilled water with a few percent of
dish washer cleaning fluid, which consists of
lemon acid and a detergent. A typical specific
resistance is 100 0 per cm length for a cross
section of 10 cm2. This led to values of the re-
gistance in our tank in the order of 1 Ko.
Thus, the resistance of the electrodes and the
wiring was negligible.

¢} The tank was milled precisely. Deviations of
fractions of a millimeter in the dimensions
would lead to significant errors. The tank has
a small ventilation tube and a funnel combined
with an additional fluid reservoir. Bubbles were
removed completely.

d)} All electrodes were sanded and cleaned careful-
ly before each test series. Reference resistance
measurements of the tank without riblet elec-
trode were taken before and after each meas-
urement.
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Fig. 2: BRAMBLE SHARK,

Fig. 1: SILKY SHARK, Carcharhinus falciformis, 2.27 m length. Echinorhinus brucus, 1.90 m length.

&

"paving stone" "anvil" "hand"

Fig. 3: GALAPAGOS SHARK, Carcharhinus Galapa-
gensis, 2.55 m length, scale shapes on va-
rious locations of the body.
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LEMON SHARK, Negaprion brevirostris
0.64 m length

DUSKY SHARK, Carcharhinus obscurus
2.50 m length
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SANDBAR SHARK, Carcharhinus milberti
1.69 m length

Fig. 41 V-shaped central ridge on scales of pectoral fins.

———>  high shear stress,low or negative pressure gradient
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Fig. 5: Loosely suspended hand-like scales, controlled by a secondary flow underneath the
surface.
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mean flow
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Fig. 7: Computed streamline pattern of the

streamwise vortices, according to Jang et
al. [19].

Fig. 6: Viscous sublayer flow structure as seen
through a transparent wall, photograph
by Cantwell, after Coles [14].

mean flow distribution

flat plate

[ 10  riblets

> Y (mm)

Fig. 8: Hot wire measurements of mean flow profile and velocity fluctuations u’gys
for smooth and riblet surfaces.
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Fig. 9:
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Fig. 10: Longitudinal cross section of a surface
with slits for low speed streak cancella-
tion by instantaneous streamwise fluid
ejection.
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Fig. 11: Lateral blowing for low speed streak cancellation.

T}xrbulent shear stress reduction by a
riblet surface with scalloped cross section.

mean velocity profiles

protrusion height | i

apparent origin

Fig. 12: Apparent origin of a riblet surface.
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velocity profile smooth surface riblet reference grid

/

F=const ! u=const
B 4 M [\l i

y L EEEEERYE K | _
| e | S e S
7 d . B A
_r s
2 2
I'_"Zg
W, -plane W,,- plane W,-plane

Fig. 13: Conformal transformations leading to the viscous flow on a sawtooth riblet surface.
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60°

Fig. 14: u-velocity and fluid shear force distribution of the viscous flow on a sawtooth riblet
surface. Riblet half-angle « = 60°,

1059



e §

h

' le 45°
Fig. 15: Sawtooth riblet, half-angle 4509,
S
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B 30°
Fig. 16: Sawtooth riblet, half-angle 30°,
S
h
22.5°
Fig., 17: Sawtooth riblet, half-angle 22.5¢°.
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blade riblet,eq.(22)
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Fig. 18: Protrusion height as a function of geometrical height for different types of riblets,

W, -plane Ws-plane W,-plane

Fig. 19: Conformal transformations leading to the viscous flow on a blade riblet surface.
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Fig. 20: u-velocity and fluid shear force distribution of the viscous flow on a blade riblet
surface. Blade height h/s = 0.25.
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Fig. 21: Blade riblet, height h/g = 0.5,

Fig. 22: Blade riblet, height h/g = 0.75.
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Fig. 23: Blade riblet, height h/g = 1.0

mapping circle
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W, - plane W;-plane W,-plane

Fig. 24: Conformal transformations leading to the viscous flow on a riblet surface with scal-
loped cross section,
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Fig. 25: u-velocity and fluid shear distribution of the viscous flow on a scalloped riblet sur-
face. Riblet height h/s = 0.25, parameter 3/} = 1.155’protrusion height hp/s = 0.155.

b
N

Fig. 26: Scalloped riblet with nearly semi-circular cross section. Riblet height h/a = 0.50,
parameter 28/} = 1,192, protrusion height hp/s = 0.192.

e § ————

Fig. 27: (S)czalléoped riblet; height h/g = 1.00, parameter 8/, = 1.0325, protrusion height hp/g =
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Fig. 28: Blade riblet with rounded edge, configura-
tion and flow distribution. Riblet height
h/s = 0.50, parameter 2/y, = 0.773, protru-
sion height Np/g =  0.179, maximum
thickness t/s = 0.0740.
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Fig. 29: Convex riblet, u-velocity and shear force
distribution. Riblet height h/g = 0.50,
ﬁarameter */n = 0.1305, protrusion height

p/s = 0.0724.

15

Fig. 30: Convex riblet, riblet height b/q = 1.00,
ﬁarameter */m = 0.0275, protrusion height
p/g = 0.0767.
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Fig. 31:

Short three-dimensional riblets in a stag-
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Fig. 32! 1Interlocking scales with staggered riblets
on a hammerhead shark.

Fig. 33: Interlocking scales with staggered riblets
on a great white shark.
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electrolyt plexiglass

L O 0.6
! AC.2V,
0]
10KHz
vl 3-D riblet,Fig. 36
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riblet | o
electrode
A = sawtooth riblet .
1Ka v 04 } experiment
-h + = blade riblet
p
s o = theory } semi-circular riblet
T O = experiment
03
Fig. 34: Schematic diagram of the electrolytic ex-
periment.
symmetry plane insulating coating
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A -...?0- Fig. 35: Protrusion height. Electrolytic experiments
i S=83mm versus theory.
!

continuation of real riblet

Fig. 36: Dimensions of the three-dimensional riblet
demonstration electrode.
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Fig. 37: Setup of the electrolytic experiments.
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