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Abstract

Uncertainty in the accuracy of the calculated
separation line of flows over bodies of revolution
at incidence prompted this examination of numerical

features of the solution of the corresponding
three-dimensional boundary layers. The require-
ments of different marching directions and of

numerical grids are examined. It is shown that the
direction of marching is unimportant provided an
intelligent numerical scheme, such as the Charac-
teristic Box scheme, is used in regions where neg-
ative crossfiow is present. This implies that the
ratio of space to time steps must satisfy a stabil-
ity requirement and tests are conducted to deter-
mine the 1limitations and the consequences of
exceeding them.

Introduction

Solutions of the steady laminar and turbulent
boundary-layer equations for two-dimensional flows
can be obtained for a wide range of flow conditions
with efficient and accurate numerical methods and
with novel interaction procedures as described by
Cebeci, Stewartson and Whitelaw(!) and Cebeci and
whitelaw(2).  Corresponding calculation methods
for three-dimensional flows with separation are,
nowever, in their infancy due partly to diffi-
culties associated with solving the three-
dimensional boundary-layer equations, even for a
given pressure distribution, and to the lack of a
properly formulated interactive scheme. In this
paper, we address the former problem and describe
an accurate numerical procedure and its application
to turbulent flow over a prolate spheroid, for
which analytical expressions are available for the
inviscid pressure distribution. 1In addition, the
experiments of Meier and Kreplin(3), Ramprian,
patel and Choi{4), and Meier et a1.(5:69 can
be used to assist the evaluation of the numerical
procedure.

We will consider the arrangements of Meier et
al.(5) who measured flow and surface character-
istics around a spheroid which has major and minor
axes of 2.4m and 0.4m, respectively, for freestream
velocities of 45 and 55 m/s in the 3m x 3m wind
tunnel of the DFVLR, Géttingen, at an angle of
attack of 10 degrees and with natural and imposed
transition. Calculations of the flows with natural
transition have been reported by Patel and Baek(7)
with their ADI scheme and a two-equation turbulence
(k-g) model, and by Cebeci{B) with Keller's
Box scheme and the Cebeci-Smith algebraic eddy-
viscosity formulation. Even though the sotution
procedures of Patel and Baek, and Cebeci et al.
differed from each other in their numerical and
turbulence-model assumptions, the computed results
were practically the same and in close agreement
with the measurements. Separation occurred in the
downstream region but the accuracy with which the
separation locations were calculated was not pur-
sued since the assumed inviscid-pressure distribu-
tion differed from the measured pressure distribu-
tion in the regions approaching flow separation.
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The subsequent calculations by Meier -and
cebecit9) for the same geometry and imposed
transition also revealed good = agreement with
experiment for most parts of the flow but osciltla-
tions were observed for x > 0.44 and the solutions
broke down at x = 0.615. Oscillations and break-
down of this type are frequently associated with
separation but separation was not observed in the
experiments.

Numerical features of the calculation of these
flows are considered in this paper which shows that
the results can depend on the manner in which the
calculations proceed from one 1ine of symmetry to
the other: this problem is examined in the follow-
ing section. The third section of the paper
examines the dependence of solutions on the numer-
ical mesh and confirms that a stability criterion,
such as that of Courant, Friedrichs and Lewy
(cFL)(10)  must be considered in solving the
three-dimensional equations. The paper ends with
a statement of the more important conclusions.

Comments on the Solution Procedure

The solution of the three-dimensional boundary-
layer equations reguires initial conditions along
two intersecting planes which correspond to the
(x,y) and {(¢,y) planes in the case of a body of
revolution at incidence. Those on the (¢,¥)
plane can be obtained from equations which take
into account the symmetry of the flow conditions
and those on the (x,y) plane depend on the coord-
inate system and require special procedures. With
a body-oriented coordinate system, the geometric
parameters have a singularity at the nose and this
can be removed by transformations so that the
boundary-layer equations can be solved to generate
initial conditions in the (x,y) plane as discussed
by Cebeci, Khattab and stewartson{ ] Here we
shall adopt this procedure, assume that the initial
conditions on the (x,y) plane are generated at x =
%o and discuss the solution of the boundary-layer
equations downstream of this plane.

The flow on a body of revolution at incidence
usually has one plane of symmetry but two inttial
(¢,y) planes, one on the windward side and the
other on the leeward side. The solution of the
full three-dimensional boundary-layer equations can
be obtained at x = xo with initial conditions
generated on either line of symmetry and continued
in the circumferential direction. The marching
procedure raises the question of a preferred direc-
tion and its role in the development of the numer-
ical procedure. To elaborate on this point fur-
ther, consider laminar flow over a prolate spheroid
at o = 6°, for which Figure 1 shows the separa-
tion lines and the 1ine on which circumferential

skin-friction coefficient cg, is zero.(12) In the
region upstream ot the line gf zero cy (Region A)
all u and w velocities are positive, ?n the region
between this line and the two separation lines
(Region B), u is positive and w 1s negative near
the surface, and in the region downstream of the
separation lines (Region C) u and w are negative
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Figure 1. Definition of flow regions on a prolate
spheroid at incidence, (laminar flow,
a = 6°).

near the surface and positive away from the

surface.

The boundary-layer calculations can be per-
formed in Regions A and B for a prescribed pressure
distribution because the flow is attached and solu-
tions can be obtained with 1initial conditions
started on either Tine of symmetry. 1In Region A,
however, it is logical to initiate the calculations
on the windward line because the crossflow velocity
is in the marching direction whereas the crossfiow
direction will be opposite to the marching direc-
tion if they originate on the leeward line. In the
former case, the solutions can be obtained by a
standard numerical procedure such as those of Crank
and Nicolson{!3) or Keller and, in the
latter case, a special numerical method is required
to march in the direction opposite to that of the
flow. Since the accuracy of the standard procedure
is well established, results obtained for region A
can be used to establish the accuracy of the spec-
ial procedure which is required to calculate the
negative crossflow velocities of region B.

Numerical Method and Stability Requirements

In the present study we use the numerical
methods of Keller with the Standard Box (SB) scheme
in regions of positive crossflow velocity and the
Characteristic Box (CB) scheme in the presence of
negative crossflow velocity. A description of the
latter _scheme has been given by Keller{15) and
Cebeci(16,17) for unsteady flows, and by Cebeci
et a1.(12) and cebeci{17) for three-dimensional
flows. In this second case, the accuracy of the
solutions is strongly dependent on the choice of
the net in the circumferential and streamwise
directions and this is examined further with the
net shown in Figure 2 at a given distance y from
the surface and with the assumption that the solu-
tions originate on the leeward line of symmetry;
the symbol x denotes the known solution and the
symbol o denotes the desired solution. The back-
ward characteristic from point P is in the local
streamline direction and intersects the x4_7 line
at £ when there is a positive crossflow velocity
rather than at F when the crossflow velocity is
negative. Since the CB scheme computes the region
EFP, which is known as the domain of dependence of
point P, it ailows the "correct" information to
reach point P from region EFP. It is important
that the domain of stable computations can be
determined a priori and this can be achieved by
determining the ratio B(Z A¢py/8¢) and requiring
that it remains small during the calculations: we
shall refer to this requirement as the CFL-like
condition.
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Figure 2.

The initial conditions in the (¢,y) plane are
generated by the procedure(12) at x4 = -0.90 for
laminar flow and caiculations farther downstream
were obtained for specified Ax-step lengths with
transition specified in accord with the experiments
at x = -0.56. Region A extended to x = -0.72 where
the circumferential skin friction first became zero
and region B from x = -0.72 to -0.48 with negative
crossflow appearing near the leeward line of sym-
metry. The circumferential velocity w was positive
throughout the region -0.48 < x < -0.03, as in
region A, due to the assumption that turbulent flow
began at x = -0.56. However, for x > -0.03, the
negative crossflow reappeared on the leeward line
of symmetry and increased in size with increasing
X. .

Two sets of calculations were performed, the
first in region A for -0.9 < x < -0.72, and the
second in the region defined by x > -0.72. In each
region, wuniform 2.5° increments in ¢ were used
with variable x-step lengths and with different

marching procedures.

The calculations in region A made use of the
SB scheme starting on the windward line of symmetry
and marching towards the leeward side with uniform
Ax-increments of 0.03. They were also performed
with the CB scheme from the leeward line of sym-
metry marching in the windward direction and using
the same grid: the results showed that the CFL-
like parameter increased rapidly with subsequent
breakdown of the solutions. Smaller uniform step-
lengths in the x-direction equal to 0.01 and 0.005,
allowed the calculations to proceed without break-
down and with the expected lower values of the CfL
parameter.

A sample of the results is shown on Table 1 and
in Figure 3 for x = -0.72. We note that the C8
solutions for the streamwise wall shear parameter
f*(0) break down around ¢ =~ 130° where the same
grid (Ax = 0.03) is used in the SB scheme and,
even though the CB solutions from the leeward Tine
of symmetry agree with the SB solutions from the

windward side, they diverge progressively with
increasing ¢. The parameter B, shown 1in fig-
ure '3, increases rapidly with the coarse grid
{(Ax = 0.03). With the smaller Dx-steps
(=0.01, 0.005), however, the two solutions are
in good agreement for all values of ¢ with no
breakdown and considerable reduction in 8.

These resuilts suggest that with the proper grid,
the accuracy of the CB scheme is almost identical
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Table 1.

Comparison of Streamwise Wall Shear Parameter f"(0) Computed with

SB and CB Schemes at x = -0.72

{CB)

Standard Box (SB)

Characteristic Box

|
Ax = 0.01

| ] H |
| | 11 ] |
l_¢° | Ax = 0.03 | Ax = 0.005 |] Ax = 0.03 | | Ax = 0.005 |
| | | i | ] |
| 0 | 0.7294 | 0.7290 H | 0.7293 | 0.7290 ]
] 20 | 0.7231 } 0.7227 1 | 0.7239 | 0.7232 |
| 40 ] 0.7028 ] 0.7024 I | 0.7034 | 0.7028 |
| 60 ] 0.6671 | 0.6669 Il | 0.6673 | 0.6669 |
| 80 | 0.6145 | 0.6141 Il | 0.6141 | 0.6139 |
| 100 | 0.5439 | 0.5433 | | 0.5427 ] 0.5425 |
| 120 | 0.4554 | 0.4554 I | 0.4543 | 0.4541 |
| 130 | 0.4073 ] 0.4078 11 | 0.4054 | 0.4053 f
| 135 | 0.3865 | 0.3845 Il 0.4542 ] 0.3812 | 0.3815 ]
1 140 | 0.3630 | 0.3633 1 0.3448 ] 0.3595 | 0.3598 |
1 145 | 0.3468 | 0.3452 It 0.3447 | 0.3429 | 0.3427 |
| 150 ] 0.3326 | 0.3337 Il 0.3285 | 0.3328 | 0.3320 |
| 160 | 0.3264 | (.3282 il 0.3269 | 0.3304 { 0.3289 |
| 170 | 0.3349 | 0.3371 Il 0.3351 | 0.3383 | 0.3360 |
| 180 | 0.3444 | 0.3443 Il 0.3344 | 0.3450 | 0.3443 |
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Figure 3.

to that of the SB scheme which is second order.
The CFL B s a measure of the numerical accuracy.

Figure 4 permits comparison between the solu-
tions of the CB scheme with two different Ax-spac-
ings at x = -0.78. As can be seen, the wall shear
parameter f"(0) exhibits oscillations with rela-
tively high values of B prior to the breakdown
of the coarse-grid solutions at x = -0.72. How-
ever, with smaller Ax-spacing these oscillations
upstream of x = -0.72 disappear and the solutions
have much smaller values of B.

The calculations for x > -0.72, made use of
three separate x-steps: a constant value of Ax
= 0.03, a step variation with Ax = 0.01 in the
range -0.72 < x < -0.48, 0.03 in the range -0.48 <
x < -0.03 and 0.01 for x > -0.03. The third set
of calculations made use of the same x-steps as in
the second set except that Ax was decreased to
0.005 from 0.07 for 0.40 < x < 1. The calculations
using the first uniform grid in the x-direction
(Ax = 0.03) indicated breakdown of the solutions
at x = 0.69 whereas those with two other spacings

Variation of skin-friction parameter and B with circumferential distance at x =

windward

-0.72.

in x did not. As in region A, two separate march-
ing procedures were used to compute the flow. In
the first, solutions were 1initiated on the wind-
ward line of symmetry and the calculations were
performed by marching from ¢ = 0 to 180°. 1In
regions of positive and negative circumferential
flow velocity, w, the calculations made use of the
SB and CB schemes, respectively. 1In the second
case, the CB scheme was used with solutions initi-
ated on the leeward line of symmetry and marching
towards the windward line of symmetry in regions
of negative w; the rest of the flow was computed
by the SB scheme with solutions initiated on the
Tine of symmetry. Comparison of the
results of the two procedures showed, ‘however, that
the predictions in both cases were essentially the
same and that there was no preferred direction of
marching, With the fixed Ax-spacing, the solu-
tions broke down with solutions originating from
both lines of symmetry.

figure 5 shows the computed results at x = 0.46
which corresponds to x/2a = 0.73 and Figure 6 those
at x = 0.65 corresponding to x/2a = 0.825. The
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results at x = 0.46 may also be compared with

experimental data and the effect of the grid
evaluated.
Figure 5a shows that the coarse grid (Ax =

0.03) predicts the peak in the measured displace-
ment thickness whereas, those computed with the two
fine grids (Ax = 0.01 and 0.005) do not, with
relatively small differences between the results
obtained with the two fine grids. The computed
crossflow angles, designated by vy, are in better
accord with the measurements when computed with the
fine grids, as shown by Fig. 5b. Both fine grid
calculations indicate a maximum crossfiow angle of
around 10, in agreement with the measured value,
and in contrast with the coarse grid results of 12.

Figure 5c allows comparison between the dimen-

sionless wall shear-stress parameters f"(0) and
g"(0), in the x and ¢ directions, respectively,
computed with three Ax-spacings. Both param-

eters are influenced by the Ax-spacing in the
same way and the corresponding variations of B,
Fig. 5d, show the expected decrease with Ax. The

results obtained in region A suggested that the
value of B should be Jess than around 0.4 and
those of Fig. 5d support this conclusion. The
discrepancies between the fine-grid calculations
of Fig. 5a and 5b and the measurements occur in
spite of this support for the numerical accuracy.

Figure 6a and 6b show the crossflow angles and
B-distributions at x = 0.65, a distance consid-
erably downstream from that of the results of Fig.
5, again with three values of Ax spacing. The
crossflow angles with Ax of 0.03 are clearly in
error and this is supported by the very large cor-
responding values of B: an attempt to extend
this calculation further downstream led to break-
down at x = 0.845. As with Fig. 5, there is a
monotonic variation of B with Ax spacing except in
a small region of ¢ where the coarse-grid calcu-
lation oscillates. The fine-grid calculation leads
to values of B which are less than 0.4 and this,
consistent with the previous results, suggests that
this solution is of acceptable accuracy.

Concluding Remarks

Two main conclusions
pages.

stem from the previous
They are concerned with the direction of

1
0 90

#(deg) 180

Variation of skin-friction parameter and B with circumferential distance at x = -0.78.

calculations 1in regions of negative crossflow and
with the need to determine a criterion which will
guide the choice of mesh and ensure acceptable
numerical accuracy.

A special numerical scheme is required to allow
calculations to march against the flow direction
and the Characteristic Box scheme has been used
successfully for this purpose. The accuracy of
numerical schemes such as that based on Keller's
Standard Box, is well established and these can be
used in regions where flow reversals do not occur
in the circumferential direction to establish the
accuracy of the special numerical schemes used to
calculate in the direction opposite to the flow.

The calculations performed for flow around a
body of revolution at incidence show that a param-
eter in the Characteristic Box scheme, defined as
B = 8¢1/0p, can be used as a measure of numerical
accuracy. The results suggest that this parameter,
which is related to the location where the backward
characteristic intersects the previous constant
x-1ine, must not exceed around 0.4.
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