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Abstract

Two computational techniques are developed to
calculate the compressible vortex-dominated
flows, The first technique is a finite-volume
Euler Solver which uses four-Stage Runge-Kutta
time stepping with second - and fourth-order
dissipation terms. The technique is applied to
supersonic conical and three-dimensional flows
about sharp - and round-edged delta wings.
Attached and separated-flow solutions have been
obtained depending on the values of damping
coefficients. The second technique 1is an
integral-equation solver of the full potential
equation which uses a volume-integral term in
addition to the <classical surface-integral
terms. The technique is applied to transonic
three-dimensional flows about sharp-edged delta
wings., A hybrid technique which combines the
finite-volume and the integral-equation solvers
is also presented.

Introduction and Background

Prediction of the flow field around highly
swept delta and delta-like wings is still a
challenging problem to the computational fluid
dynamics community. As it is well known, the
flow field is strongly dependent upon the angle
of attack (a) , the sweep back angle (B) and the
free-stream Mach number (M ) . The number of

variables is reduced by one if the normal angle
of attack (a,) and the normal free-stream Mach

number (My) are used, instead of «, B and M_, to

describe the flow field dependence. The new
variables ay and MN are given by the simple
geometric relationships
-1
@y = tan © (tana/cosp) (1)
2 2 1/2
My = M, cos (1 + sina tan®p) (2)
In the early 60's, Stanbrook and Squirel’2

classified the flow field about sharp-edged delta
wings according to ay and My into two main types
- a flow with leading-edge separation and a flow
with an attached flow at the leading-edge. 1In
Figure 1, the former type of flow is referred to
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by region (A) and the latter type of flow is
referred to by regions (B) and (C). In region
(A), the flow separates at the leading edge
(primary separation) and rolls up into a leading-
edge vortex core which creates a suction-pressure
peak on the wing upper surface with an adverse
spanwise pressure gradient, The outboard,
spanwise, boundary-layer flow on the upper
surface separates due to the adverse spanwise
pressure gradient forming a secondary separation
and causing, for laminar-boundary layer flows,
another suction peak 1in the spanwise pressure
distribution. Depending on the flow conditions,
tertiary separation may develop on the outboard
side of the secondary point of separation.

In regions (B) and (C), a detached or an
attached bow shock 1is formed upstream of the
Jeading edge, the flow is attached at the leading
edge, and supersonic flow expansions occur ending
with an inboard conical shock., Depending on the
shock strength, shock induced separation may
develop on the inboard side of shock.

The Stanbrook-Squire diagram was modified by

Vorropoulos and Wendt3 who introduced subregion
(A)) within region (A) where a conical shock was

observed on the suction side under the leading-
edge vortex, The flow in this region, between
the wing surface and the lower surface of the
leading-edge vortex, is analogous to the flow in
a convergent-divergent  channel where the
accelerated supersonic flow ends with a shock,
Again depending on the shock strength, a shock
induced separation may develop on the outboard
side of the shock. This subregion corresponds to
high-subsonic My and moderate @y .

At the same time, Miller and Wood%4»>
expanded the Stanbrook-Squire diagram through an
extensive experimental research program,
Depending on My and Oy s they classified the flow

into seven regions as shown in Figure 2. In
addition to the flows described above, leading-
edge separations with shock waves above the

leading-edge vortex are also possible flows for
subsonic and supersonic My at large Ty .

It is obvious that we are dealing with a
very complex flow field which may include a
leading-edge separation with a secondary
separation, an attached leading-edge flow with an
inboard shock and a possible shock-induced
separation, or a combination of the leading-edge
separation and the inboard shock with secondary
and shock-induced separations. The complexity of
the flow field increases at Tlarge angles of
attack when the leading-edge vortex core breaks
down over the wing. The ultimate complexity of
the flow field is reached during maneuverability



where the flow field will change from one region
to the other along with the effects of time
history of the flow.

In the computational area, a -substantial
volume of research work has recently been and is
still being produced by several investigators to
accurately predict certain types of the many
compiex types of flow fields presented above.
These prediction techniques are based on the full
potential equationss's, the Euler equationsg'23

and the Navier-Stokes equation524"28. In
reference 6, the integral equation solution has
been used through a modified nonlinear discrete-
vortex technique for the incompressible flow to
show the roll-up process of the trailing-edge
vortex into a trajling-edge vortex core and its
interaction with the leading-edge vortex core.
For a delta wing of sweep back angle of 76° at an
angle of attack of 20.5°, it has been shown that
the trailing-edge vortex core is fully formed
within a quarter of a chord length behind the
trailing edge and that the process can be
predicted by an inviscid technique. Higher-order
modeling of the separated flow using local Tinear
vorticity distribution has been introduced in
reference 7 for the steady and unsteady
incompressible flow and accurate flow prediction
has been obtained. This is followed by attacking

the steady transonic-vortex dominated flows
using the integral-equation solution which
includes a volume integral term representing the
full flow compressibitity. The technique is
applied to predict the experimental subregion
(A;) _which was observed by Vorropoulus and
Wendt3.

The steady Euler equations have been used to
calculate the supersonic flows around sharp-edged
delta wings with Tleading-edge separationg’10
while the unsteady Euler equations have been used

to calculate the steady transonicl1713 anq super=
sonicl®23 flows around sharpl1-18,20-23  4p4

round-edged”'21 delta wings. For the transonic
regime, the computed surface pressure has been

dissatisfactory11'13 since the suction-pressure
peak was underpredicted and substantially shifted
toward the Tleading edge. Although some
researchers believe that the problem behind the
predicted location of the suction-pressure peak
is due to the inability of Euler equations, since
they are inviscid equations, to predict the
secondary separation, we strongly believe that
the problem is due to the diffusive effect of the
numerical dissipation. It should be recalled
that the predicted surface pressures using the
panel techniques (inviscid techniques) compared
well with the measured surface pressures where
turbulent-boundary layer flows were maintained on
the wing surface and hence . the secondary
separation had the minimum effect on the surface
pressure.

From our experience with FLO57 for this
range of Mach numbers 0.7-0,85, it has been
conciuded that the dissipation terms, along with

the type, fineness and boundaries of the grids
are the main reasons for this disappointing
prediction, It should be pointed out here that
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the second-order dissipation terms reach their
maximum values in regions of high pressure
gradients which include not only shocks but also
vortical flows. One cure for this problem,
instead of refining the grid, is to shield most
of the wvortical flow from the numerical
dissipation effect by splitting the flow vector
field into two components; one due to the
vortical flow and the other due to the remaining
disturbances 1in the flow. The former is

calculated from the integral equation solver8
while the latter is calculated from the Euler-

equation solverél,

For the supersonic regime with leading-edge
separation, the leeward suction-pressure peak is
not as high as that of the subsonic and transonic
flows since the leading edge vortex is flattened
and hence the flow is less dominated by the
vortex flow as compared to that of the subsonic
and transonic flows, The diffusive effect of the
numerical dissipation on the vortical flow is not
severe and the prediction of the surface pressure
for sharp-edged delta wings wusing the Euler
equations is betterl6-18,20-23  than  that for
subsonic and transonic flows.

It is very interesting here to mention that
for supersonic conical flow solutions of sharp-

edged wings, Murman and his co-workers19,16,22
are reporting agreement of the computed total
pressure losses, irrespective of the level of
dissipation, with the measured ones. Although we
obtained similar results using a similar finite-
volume Euler solver, we are careful not to claim
at the time being that Euler equations solutions
are satisfactory to predict these viscous flow
phenomena, such as the total pressure losses and
vortex breakdown, until the effects of numerical
dissipation are completely resolved.

Solutions for supersonic conical flows have
recently been presented for sharp-edges!3~18,

20-23 3nq for round-leading edgesl7'21. Using
Euler solvers for sharp-edged wings, coarse and

fine grids gave consistent so]utionsu’w’zo’21
while for round-edged wings coarse and fine grids

gave inconsistent solutionsi’-21, By
inconsistent solutions

we mean separated and
attached flow solutions. In particular, Newsome

and Thomas!® have shown that coarse and fine
grids using McCormack's unsplit, explicit,
finite-difference algorithm give inconsistent
solutions while upwind solutions using the flux
vector splitting algorithm are consistent. In
reference 19, Chakravarthy and Ota have shown,
for the same round-edged wing used by Newsome and
Thomas, that a very coarse grid using upwind TVD
scheme gives inconsistent solutions with global
minimum time stepping and with Jlocal time
stepping. Although Newsome and Thomas believe
that the main reason behind the inconsistent
solutions is the grid coarseness, Chakravarthy
and Ota believe that it is due to the use of
local time stepping.

In reference 20 and 21, it has been shown
that separated supersonic conical flow solutions
are obtained for sharp-edged delta wings



irrespective of the level of dissipation (as long
as it is sufficient to produce a stable solution)
or the grid fineness. For round-edged delta
wings, it has been shown that separated-and
attached-flow solutions, using coarse grids, are
dependent on the level of dissipation. It has
been also shown that the solution for round-edged
wings is independent of the way time stepping is
done - Tlocal and global-minimum time stepping
produce the same solution,

Solutions for  supersonic locally-conical

17,18 3nd three-dimensiona125-27 flows and for
subsonic and transonic three-dimensional

flow524’28 have been obtained using the Navier-
Stokes equations. For 1large Reynolds number
flows, fine grids and the corresponding large
computational time are still major problems in
using the Navier-Stokes solvers. In subsonic and
transonic flow applications, diffusive effects of
the numerical dissipation have also been reported
in reference 28.

In this paper, we review the integral
equation approach for transonic vortex-dominated
flows and the finite-volume Euler solver for
supersonic conical and three-dimensional vortex-
dominated flows. Additional results are reported
for the Euler solver at very high angles of
attack where shocks have been captured above and
below the leading-edge vortex depending on the
free-stream Mach number. Also, detailed results
for  three-dimensional supersonic  flow are
presented and compared with the conical
supersonic solution. A hybrid technique which
combines the Euler and integral-equation solvers,
to reduce the effects of numerical dissipation,
is also presented.

Integral-Equation Solver
Formulation
The governing equations of the three-

dimensional, steady, compressible, potential flow
around a wing are given by

e+ @yy +e, = G (3)

p= 1= (- - WPt (4)

G=-2(outov+opm (5)
o PX Py pr

where @ is the total velocity potential, p is the
density, v is the ratio of specific heats, M, is
the free-stream Mach number and u, v, w are the
velocity components of the total velocity V which
is given by the Helmholtz decomposition

V=0as+ Y (6)

where V' is the solenoidal velocity due to the

rotational flow, It should be noticed that
equation (3) 1is obtained from the continuity
equation using the solenoidal property of V' ,
vy =0,
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The formal integral solution to equation (3)
in terms of the velocity field is substituted
into equation (6) to obtain the total velocity at
any field point p

g

v =e + — Le ds
Vp(x,y,z) et 5 €,
r
1w (E,1,0xr
+ﬂ #——————3 ds
g r
1 ¢ w(g,n,0)xr
+ I‘).t #-——————'—3 ds
W r
1 G(ia‘ﬂ.C) -
o I = ¥ (7)
where p(x,y,z) is a field point, e_ is a unit
vector in the free-stream direction, the

subscripts g and w refer to the wing and free-
vortex-sheet surfaces, respectively; q is a

surface source distribution, w is the vorticity;
€, m, § are the coordinates of a source point,

r = [(x-F,)2 + (y—n)2 + (z--t;)zll/2 , G is a source
distribution in the flowfield, For a zero-
thickness wing, the second term on the right-hand
side of equation (7) drops out., Note that the
third term does not have to be a surface integral
of vorticity since a surface integral of doublets
can be equivalently used instead. The fourth
term represents the contribution to the velocity
field due to the free-vortex sheets emanating
from the wing separation lines. Also, this term
can be read as V' since the vorticity region is
lumped into free-vortex sheets, The last term is
a volume integral term representing the total
compressibility in the flow.

Note that the integrand of the volume
integral of equation (7) decreases rapidly with
increasing distance from the wing/vortex system

not only because of the factor (1/r”) but also

because G diminishes rapidly with dincreasing
distance. Consequently, for computational
purposes, the volume integral needs to be

addressed only within the immediate vicinity of
the wing/vortex system. This is one of the major
advantages of the integral equation solvers,

Shock-Capturing Technigue

In the shock-capturing technique, equation
(7) is iteratively solved to satisfy the flow
tangency condition on the wing, Kutta condition
along the separation edges, and the flow-tangency
condition and no-pressure-jump condition on the
free-vortex sheets. The components of the
density gradient Py, P and °, of the compress-

ibility term G ~are calculated using a
backward/central finite~difference scheme.
Backward differencing 1is wused at supersonic

points while central differencing is used at
subsonic points., Details of the computational
technique are given in reference 8.



Application to Transonic Vortex-Dominated Flows

We consider a delta wing with aspect ratio
of 1.5, angle of attack of 15°, and a free-stream
Mach number of 0.7. This case has also been
considered by Rizzi and his co-workers in
references 11 and 13 through a finite-volume
Euler code which uses an 0~0 transfinite grid
consisting of 65x30x42 and 16x49x81;
respectively, Figure 3 shows the computed
leading- and trailing-edge free-vortex lines and
inviscid vortex cores 1in two- and three-
dimensional views.

In Figure 4, we show the spanwise surface
pressure variation at a chord station of 0.8. On
the same figure, we compare the surface pressure

computed by the present method with those
computed by Rizzill and the authors using
FLO57. We also include the experimental data

used by Rizzill, 1t is obvious that the present
method compares favorably with the experimental

data while the Euler solver substantially
underpredicts the suction-pressure peak and
mispredicts the location of the 1eading-edge
vortex core. Even with the recent fine grid1 »
one million grid points, prediction of the
leading-edge vortex core did not improve.

Similar disappointing results have been reported
earlier by Raj and Sikoralz.

Figure 5 shows the cross~flow velocity and
the free-vortex sheets for the same wing behind
the trailing edge in planes normal to the wind
direction. It is seen that the trailing edge
vortex core is fully formed at almost a quarter
of a chord length behind the trailing edge.

Figure 6 shows the spanwise variation of the
axial velocity in the flowfield through the shock
at a chord station of 0.7 for a delta wing of
aspect ratio of 1, angle of attack of 20.5°, and
free-stream Mach number of 0.8. It is obvious
that a curved shock exists and is captured.

Work in Progress

Currently, we are replacing the calculation of
the third and fourth terms of equation (7) by the
newly developed nonlinear hybrid vortex method
which uses an exact set of equations and a
bilinear 7Jocal vorticity distribution. A shock
capturing-shock fitting technique, which was
developed for two-dimensional flows, is added in
the three-dimensional flow problems to sharpen
the shock,

Euler-Equations Solver
Formulation
The conservation form of Euler equations for

three-dimensional unsteady, compressible flow
without external heat addition is

29 , 3, BF 3G _

at+-a—x~ 3y ‘6_2'-0 (8)

where the flow vector field g and the fluxes E, F
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and G are given by

t
[p, pu, pv, ow, pel

q=
2 t
E = [pu, pu” + p, puv, puw, puhl
2 t
F = {pv, puv, pv° + p, pvw, pvh] {9)
2 2
G = [ow, puw, ovw, ow + p, pwh]

In equation (9), the density is p, the velocity
components are u, v, w; the pressure is p and the

‘total energy and enthalpy per unit mass are given

by e = p/p(y-1) + (u2 + v2 + wz)/z and
h=e + p/p, respectively, where vy is the gas
index.,

For steady supersonic flows, equations (8)
and (9) are simplified by assuming conical flow

field. Introducing the conical coordinates
defined by

E=x, n=y/x, & =12z/x (10)
in equation (8), we obtain

2, OF 26 -

X tant et 2E =0 (11)
where

F=F-nEand G=G6CE (12)

The time stepping technique yields, upon reaching
a steady flow, self-similar conical solutions.
Equation (11) 1is solved at x=I. The basic
finite~-volume equation is obtained by integrating
equation (11) at x=1 over mand ¢

[f 2 dn+ g (Fac+Gam +2/feaa=0 (13)

Computational Scheme

Equation {13) is applied at each cell of a
body~-conformed grid which is obtained by using a
modified Joukowski transformation. The resulting
difference equation is given by

(%%) j+1/2, k172 Mye1/2, ke1/2

~ "

4
+ £ (F AZ +G An)
r=l1 r r r r

+ 2 (14)

Ese1/2,k41/2 Mye1/20k41/2 = 0
where AA is the cell area, r refers to the cell-
side number and the half-integer subscript refers
to the centroidal value, Second- and fourth-
order dissipation terms, as proposed by
Jameson 1, are added to equation (14). The level
of dissipation is changed by varying the values



of the damping coefficients €y and € -

The boundary conditions consists of a no-
flux condition along the line of symmetry and on
the wing surface, and a far-field boundary
condition on the outer Dboundary of the
computational domain. Along the line of symmetry
the pressure is extrapolated from the interior
points while on the wing the normal momentum
equation is used to extrapolate the pressure from
the interior points. The far-field condition is
enforced by specifying free-stream conditions on
a large outer boundary such that the bow shock is
captured as a part of the solution.

A modified Joukowski transformation?l has
been used to generate the grid in the L-n plane.

The solution is obtained by using a four-
stage Runge-Kutta time stepping starting from
initial conditions corresponding to the free~
stream conditions which represent an impulsive
entry of the wing into the uniform free-stream
flow.

Applications to Supersonic Conical Sharp-Edged

the trailing edge and after. Moreover, it is
seen that the trailing-edge vortex at the chord
station x=1.03 is captured and it is of opposite

strength to the leading-edge vortex. Obviously,
a fine grid 1is required to obtain better
resolution.

It is seen that the supersonic conical and
three-dimensional solutions obtained by the
finite-volume Euler solver for sharp-edged delta
wings are consistent with the Miller-Wood flow-
classification diagram for the regions where
leading-edge separations exist. For these
regions, the least level of dissipation, as long
as it is sufficient to obtain a stable solution,
produces consistent separated flows. Work is
underway to check the solutions for the attached-
filow regions, where the leading-edge is
supersonic, and to quantitatively compare the
computed results with the experimental data. Our
preliminary comparison with the experimental data
shows  that the suction-pressure peak is
overpredicted.

Applications to Supersonic Conical Round-Edged

Wings

Hing Fiows

In Figure 7, we show the results for a flat-
plate sharp-edged delta wing with a grid size of
65x65 for M_=1.5, «=15% and B=70° . = The cross-

flow velocity, Figure 6.1, shows the leading-edge
vortex and two shocks; a weak shock above the
vortex at its inner boundary and a strong shock
below the vortex. The latter is analogous to the
flow in a convergent-divergent channel flow. The
cross-flow Mach contours, Figure 6.2, and the
surface pressure, Figure 6.3, clearly show the
strong shock formed under the vortex. These
results confirm Yorropoulos and Wendt

observation3 and our calculations using the
integral equation approach. This case 1is
indicated as Fig. 7 on the Miller-Wood diagram,
Figure 2.

In Figure 8, we show the results for a flat-
plate sharp-edged delta wing with a grid size of

65x65  for M_ = 2.4, «=19% and B=700 ., The

results clearly show the leading-edge vortex and
a strong shock above the vortex at its inner
boundary. This case 1is indicated as Fig. 8 on
the Miller-Wood diagram, Figure 2.

In Figure 9, we show the results for a flat
plate sharp-edged delta wing with a grid size of
29x39 for M_ = 2, =107 and =70° . The leading-
edge vortex 1is captured and no shocks are
cdptured, This case 1is indicated as Fig. 9 on
the Miller-Wood diagram, Figure 2.

Figure 10 gives the three-dimensional
solution for the case considered above (Figure 9)
with a grid size of 36x29x39 which has the same
resolution 1in the cross-flow planes as that of
the conical solution (Figure 9). The three
dimensional grid 1is generated by the modified
Joukowski transformation at 36 chord stations.
The results are shown at five chord stations of
0.053, 0.478, 0.829, 0.998 and 1.03, It is seen
that the flow 1is conical on the wing except at
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Figures 11-13 show the results for the supersonic
conical solutions of a round-edged el1igtic—
section delta wing for M_=2, o=107, B=70" and
8=29 (8 is half the vertex angle of the cone in
the plane of symmetry). The grid size in Figures
11 and 12 is 65x65 and the damping coefficients
are (0.25, 0.004) and (0.05, 0.0008). The grid
size in Figure 13 1is 100xi00 and the damping
coefficients for part (A) are (0.25, 0.004) and
for part (B) are (0.4, 0.0064).

Figures 11 and 12 show that separated and
attached-flow solutions are produced depending on
the level of dissipation. Figure 13 [parts (A)
and (B)] shows that with a fine grid an attached-
flow solution is obtained but the Tlevel of
dissipation is substantially affecting the
surface pressure. A growing bump in the surface
pressure, on the inboard side of the shock, is
noticed as the level of dissipation is
increased, This bump in the surface pressure can
be explained as a product of the vorticity shed
from the curved shock (Crocco's theorem) and a
separation bubble produced by the dissipation
terms in the numerical scheme (analogous to the
viscous terms in Navier-Stokes equations). 1In a
coarse-grid solution with sufficient dose of
dissipation the bump grows fast and takes over
the shock region producing a Tleading edge
separation. Although the attached-flow solution
is the solution to be produced by the Euler
equations, the separated-flow solution resembles
the real flow and the Navier-Stokes solution for
this case. It 1is obvious that a reliable
solution (an attached-flow solution) would be
obtained with a very fine grid, a small level of
dissipation and a high-accuracy computer21 (at
least 64-bit word length).  Consequently, the
computational cost will increase and impose a
serious limitation on the practical application
of Euler egquations to real life aerodynamics with
complex geometry.

Currently, we are looking at the problem of



non-uniqueness of the modified differential
equation of the 'difference equation of the
scheme. It is possible that we are dealing with
a singular perturbation problem where a small
parameter is multiplying the highest derivative
(second- and fourth-order dissipation terms) with
insufficient boundary conditions on the velocity
component along the wing surface. The question
to be answered is: Could we render the numerical
solution unique by imposing artificial boundary
conditions at the wing surface and still use the
coarse grid to obtain solutions corresponding to
the real flow? Another related question is: Can
we obtain an attached flow solution keeping the
damping coefficients fixed, starting with a
coarse grid and refining the grid during the time
stepping?

Work in Progress

It is obvious from the solutions obtained so far
that the dissipation level 1is substantially
affecting transonic and supersonic flow solutions
with leading-edge separations. Since the
vortical-flow solutions obtained from the
integral-equation approach are dissipation free
and does not require large computational domain
and since Euler equation solutions are better in
capturing shocks and modeling the large entropy
production across strong shocks, the logical
approach to obtain a reliable solution, over a
wide range of Mach numbers with an acceptable
computational cost, is to combine the two
techniques into a hybrid solver. This s
achieved by splitting the flow-vector field into
two components - a vortical flow field and a flow
field due to the remaining disturbances. The
former is calculated from the integral-equation
technique while the latter is calculated from a
modified Euler-equation technique where most of
the vortical flow field is known a priori.

Concluding Remarks

We have presented two computational techniques
for the transonic and supersonic vortex-dominated

flows - an integral equation technique and a
finite-volume Euler technique. Results are
presented for the two techniques and the

advantages and disadvantages of each technique
have been presented and discussed. Since the
integral equation technique is based on the full
potential equation its solution is limited to low
transonic  regimes. However, the integral
equation technique does not require large
computational domain, On the other hand, the
finite-volume Euler technique is better in
capturing shock waves but its solutions are
affected by the numerical dissipation. A hybrid
technique which combines both techniques has been
proposed to obtain reliable solutions at
acceptable computational costs.,
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