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Abstract

A computational method based on a finite-
volumg, multistage Runge-Kutta pseudo-time-
stepping algorithm to solve the three-
dimensional Euler equations is used to
s%mulate free vortices generated by separa-
tion of flow along the edges of swept,
slender wings at moderate-to-high angles of

attack. The flow 1is impulsively started
and the vortices are automatically captur-
ed. Two issues are specifically addressed:

(1) Sensitivity of the solutions to artifi-

cial. viscosity, and (2) Effect of grid
density on the results. Computed results
for a cropped-delta wing, an arrow wing,

and a strake-wing-body
correlated with experimental data and,
wherever possible, with predictions of
other numerical methods. Relatively small
changes in the subsonic solutions are
noticed with variations in the magnitude of
artificial viscosity and grid density, as
long as the free vortices are generated
along sharp edges. The correlations
presented here provide an added measure of
confidence in computational simulations
using the Euler equations. The present
investigation also raises some new issues
related to vortex instabilities.

confiquration are

Introduction

The accurate computational simulation of
three-dimensional flows dominated by the
interaction of free vortices with lifting
surfaces is of considerable interest to
aircraft designers. This problem is of
special significance for supersonic-cruise
aircraft which have highly swept slender
wings for desirable performance in cruise.
buring low-speed flight and transonic
maneuvering at moderate-to-high angles of
attack, the flow invariably separates from
the leading edges resulting in the forma-
tion of free vortices above the wing.
Significant improvements in aerodynamic
performance can be derived by careful
generation and control of these vortices,
as illustrated in Figure 1. At present, a

designer has to rely on extensive and
costly wind-tunnel tests for necessary
data. Accurate, efficient, and reliable
computational methods for free-vortex flow
simulation are needed to complement the
experimental tests. It is important to
note that the ability to model the non-

linear aerodynamics of the configurations
exhibiting free-vortex flows 1is a crucial
requirement for these methods.
Copyright © 1986 by 1ICAS and AIAA. All rights reserved.
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Figure 1., Benefits of Vortex Flow for Slen-
der Swept Wings

Research on free~vortex flow simulation has
produced a number of computational methods.
At one end of the spectrum are the vortex-
lattice [1-4) and free-vortex-sheet (FVS)
methods [5,6]. Since they are based on a
linearized potential-flow formulation, the
vortices have to be explicitly modeled
either indirectly, using the suction analo-
gy of Polhamus [7] or directly using singu-
larity distributions [4,5]). For the
latter, the location and shape of the
vortices have to be determined iteratively,
since the rotational flows cannot evolve as
a part of the solution of a potential flow
code. At the other end of the spectrum are
field methods based on Reynolds-averaged
Navier-Stokes equations [8], which provide
an essentially complete fluid-dynamic
model. Their use offers a major advantage
in that the 1leading-edge vortices evolve
naturally as a part of the solution.
However, the available methods are not
suitable for routine practical applications
due to the exorbitant requirements of
computational resources and the lack of a
suitable universal turbulence model.
Ongoing developments of supercomputers and
research in turbulent flow simulations
promise to overcome these obstacles in the
coming years.

Recent advances in numerical algorithms to
solve the Euler equations [9,10] provide an

attractive and cost-effective alternative
to using Navier-Stokes codes. Their abili-
ty to automatically capture regions of

rotational flows has been demonstrated in
several investigations [11~15]. In this
paper, results for a cropped-delta wing, an
arrow wing, and a strake-wing-body configu-
ration are presented that specifically
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address two critical issues related to the
use of the Euler «codes: (1) Sensitivity of
the solution to artificial viscosity; and
(2) Effect of grid density on the results.

A Three-dimensional Euler

T Aerodynamic
Methed, TEAM, is

used in the present
Investigation, Its algorithm - is briefly
outlined in the next section, followed by
correlation of computed results with
experimental data in the Results & Discus-
sion section.

Three-dimensional Euler Aerodynamic Method

The explicit pseudo-time-stepping, finite-
volume algorithm of Jameson et al. [9]
forms the core of the TEAM code. Only the
basic features are highlighted in this
section. Additional details can be found
in References 9, 10, 12, 14, 16, and 17.

In this algorithm, the region surrounding a
given configuration is subdivided into
small hexahedral cells. These cells may,
in principle, be constructed in any conven-
ient manner; only the Cartesian coordinates
on the cell vertices are required. The
version of the code used in this investiga-
tion can accommodate cells arranged accord-
ing to boundary-conforming C-H, C-0, 0-0,
or O-H topologies. The C-H topology is

illustrated in Figure 2; others may be
analogously defined.

C — CURVE

{n = CONSTANT)

H — PLANE

{¢ = CONSTANT) ROOT

Figure 2., C-~H Topology

In each of the «cells, the semi-discrete
approximations to the time-dependent Euler
equations, representing mass, momentum, and
energy conservation, are integrated using a
multistage Runge-Kutta scheme. Convergence
to steady state is typically achieved in a
few hundred time steps, since the step size
for each cell is determined by local
stability restrictions. 1In contrast, thou-
sands of steps are required when using a
conventional explicit scheme with a global
minimum-step size. Enthalpy damping and
implicit residual smoothing further reduce
the number of time steps required to reach
the steady state. Appropriate nonreflect-
ing boundary conditions are wused at the
far-field boundaries. A no-normal-flow
condition is imposed on the solid surface.
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The finite-volume spatial discretization
reduces to a central-difference scheme
which is formally second-order accurate for
smooth grids. This scheme is augmented by
adaptive dissipation terms (also known as
artificial or numerical viscosity) in order
to suppress its well-known tendency for
odd-even point decoupling, to capture
shocks automatically, and to minimize pre-
and post-shock oscillations. The dissipa-
tion terms, composed of second and fourth
differences, are constructed such that
their values are small compared to those of
the convective terms, except in some
isolated regions. Therefore, possible
contamination of an inviscid solution of
the Euler equations is localized.

coefficient (VIS-2) of
the second-difference terms is scaled by
the second derivative of static pressure.
This introduces a larger amount of dissipa-
tion where it 1is needed the most -- near
shocks and stagnation points ~-- to suppress
wiggles and overshoots. Elsewhere, their
contribution is small. The fourth-differ-
ence terms are scaled by a user-input coef-
ficient, VIS-4, divided by 64. Similar
scalings have been used by other investiga-

The user-specified

tors [9,17]. These terms provide the
necessary background dissipation to sup-
press the high-frequency error components
and thereby minimize aliasing errors. They
are turned off in regions where their
values are smaller than those of the
second-order terms. The input values of

VIS-2 and VIS-4 are typically of order one.
Their effect on the solution is discussed
in the following section.

Results & Discussion

In this section, <corrrelations of results
computed using the TEAM code with experi-
mental data are presented for three cases:
a cropped-delta wing, an arrow wing, and a
strake-wing-body configuration. For each
case, the entire domain is initialized to
free-stream conditions. This is equivalent
to impulsively starting the configuration.
No Kutta condition is explicitly applied.
A brief discussion of the role of numerical
dissipation in generating the free vortices
follows the presentation of the results.

Cropped-Delta Wing

A cropped-delta wing having an aspect ratio
of 0.87, a leading-edge sweep of 63 degrees
and a taper ratio of 0.4 is analyzed with

the free stream at a Mach number of 0.3 and
the wing at an angle of attack of 19.95
degrees. All edges of this wing are sharp;
therefore, the point of flow separation is
unambiguously fixed at these edges. The
results presented here illustrate the
effect of varying the coefficients of the
dissipation terms as well as the grid den-
sity on the solution.

Two 0-0 grids, one having 24,576 (64x32x12)
cells and the other with 110,592 (96x48x24)
cells, are used. For the coarse grid, the
wing is defined by 64 cells in the chord-
wise direction (32 each on the upper and



lower surfaces) and 12
wise direction between
tip. The corresponding numbers for the
fine grid are 96 (48 each on the upper and
lower surfaces) and 24. The grids were
generated using the Boundary Integral Grid
(BIG) generation technique [18]. A typical
distribution of cells for the fine grid is
shown in Figure 3.

cells in the span-
the root and the

Figure 3. Oblique View of 96x48x24 0-0 Grid
about Cropped Delta Wing
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the average residual for the coarse-grid
analysis is shown in Figure 4(a). The
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Figure 4(a). Effect of Numerical Dissipa-

tion on Convergence Rate for
Cropped Delta Wing

to the root-mean-
error in the mass-

average residual refers
square value of the
conservation equation. = The corresponding
convergence histories for the lift coeffi-
cient are shown in Figure 4(b). The drama-
tic impact of varying the value of VIS-4 is
quite clear from these results. It should
be noted that varying the values of VIS-2,
while holding constant the value of VIS-4,
leads to rather small changes in the aero-
dynamic parameters as well as the surface
pressure distributions, as shown in Figure
5. Of course, larger values of VIS-2 tend
to diffuse the vortex.
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Figure 4(b). Effect of Numerical Dissipa-
tion on Lift Convergence for
Cropped Delta Wing

To obtain the same level of convergence for
the fine grid analysis as for the coarse
grid, the value of VIS-4 had to be increas-
ed to 3.0 while keeping VIS-2 fixed at
0.05. This reflects the effect of reduced
cell size which decreases the magnitude of
the fourth-difference terms. Computed
cross-plane surface pressure distributions
for the two grids are compared in Figure 6.
Increasing the number of cells results in a

better resolution of the flow field,
especially in the central sections of the
wing. However, the differences are minimal

for all practical purposes.

In Figure 7, the cross-~plane surface pres-
sure distributions computed wusing the TEAM
code are correlated with the predictions of
the FVS code, conical theory, and measured
data of Luckring, et al. [6]. 1In general,
the TEAM results are in good agreement with
those of the FVS code. Since the latter
has no numerical wviscosity, the present
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Figure 5. Effect of VIs-2 Variation on

Surface Pressure Distribution for
Cropped Delta Wing

‘correlations confirm that TEAM’s artificial
viscosity has not significantly corrupted
the global features of this inviscid solu-
tion to the Euler equations. Both of these
codes fail to capture the secondary vorti-
ces resulting from boundary-layer separa-

tion, the presence of which is strongly
suggested by the experimental data. This
absence of secondary vortices in the

computed results
for the lateral
and the

is primarily responsible
shift between the computed
measured pressure peaks. The

computed cross-plane velocity vector plots
presented in Figure 8 show the location of
the free vortex relative to the wing.

The correlations for
the ability of the
global features of

this wing demonstrate
TEAM code to simulate

inviscid leading-edge
vortex flows at high angle of attack and
low Mach numbers. It must be noted that
the free vortices are automatically captur-~
ed by the TEAM code, whereas the FVS code
requires their explicit modeling.
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Arrow Wing

An arrow wing with an aspect ratio of 1.4,
a leading-edge sweep of 71.2 degrees, and a
taper ratio of 0.1 is the second case
considered here. The wing is composed of
airfoil sections that are approximately
three percent thick, Computations were
carried out using two 0-0 grids, one having
24,320 (76x20x16) cells and the other with
109,440 (96x38x30) cells. The grids were
generated using the BIG code. A partial
view of the denser
9(aj).
and sharp leading
grids of which are
and 9(c).

grid is shown in Figure
Results are presented for both round
edges, the corresponding
in Figures 9(b)

shown

LS

Planform View of 96x38x30
Grid about Arrow Wing

Ll

Figure 9(b). Typical Chordwise Grid Section
about Round Leading-edge Arrow
Wing

Figure 9(c). Typical Chordwise Grid Section
about Sharp Leading-edge Arrow

Wing
In Figure 10, computed aerodynamic para-
meters for the round leading-edge wing

using the denser grid at a free-stream Mach
number of 0.85 and at angles of attack of
4.0, 7.9, and 15.8 degrees are correlated

with experimental data [19]. The overall
agreement is satisfactory. It must be
noted that the wind-tunnel test was for a
wing-body configuration, and the data

figure correspond to the

presented in this
using measured pressures

integrated values
on the wing.

The effect of grid density on the solution
for this wing is illustrated by the corre-
lations of the computed pressure distribu-
tions with measured values presented next.
For the round leading-edge wing at 15.8-
degree angle-of-attack, the correlations at
four cross-plane stations are shown in
Figure 1l(a). Similar correlations for the
sharp leading-edge wing are presented in
Figure 11(b). The surface-pressure levels
and the vortex locations show considerable
dependence on the grid density. This
reflects the inadequacy of the coarse grid
to model a flow that 1is quite complex due
to the presence of shocks in addition to
the free wvortices. In contrast, the
subsonic-flow results of the sharp-edged
cropped-delta wing exhibit much less
sensitivity to the grid density.
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The next set of results shows the effect of
leading-edge shape. The computed cross-
plane pressure distributions for the round
and sharp 1leading-edge wings are compared
to each other for the coarse-grid analysis
in Figure 12(a) and for the fine grid in
Figure 12(b). It is interesting to note
that the effect of the leading-edge shape
is rather 1localized to the leading-edge

region for both grids. On each of the
grids, global features of the flow are
essentially the same. " The experimental
data also show minimal effect of the

leading-edge shape on the flow field.

The results presented here demonstrate
TEAM’s ability to model the free vortex
flow at transonic Mach numbers. However,
the solutions exhibit considerable depen-
dence on grid density. Additional studies
using denser grids are “required to validate
the code. Even though the effect of
leading-edge shape on the computed results
is minimal, further study is required in
light of recent investigations [20,21]
where the results for round-edge configura-~
tions are found to be sensitive to varia-
tions in grid density and numerical
dissipation.

Strake-Wing-Body

The last set of results presented in this
paper is for a strake-wing-body configura-
tion [22], shown schematically in Figure
13. The wing has biconvex airfoils, and
both the strake and wing have sharp leading
edges. A 96x32x32 C-H grid (98,304 cells)
generated using the PACMAPS (PArabolic and
Conformal MAPping with Shearing) technique
T23] was used. An obligue view of the grid
is shown in Figure 14. The fuselage is

treated as a bump on the plane of symmetry.
There are seventeen C curves between the
strake-wing/fuselage juncture and the fuse-
lage crown. The strake-wing (and wing
itself for wing-body analysis) is defined
by 60 cells (30 each on the upper and lower
surfaces) in the chordwise direction and 22
cells in the spanwise direction between the
root and the tip sections.

values of computed 1lift coefficient for
strake-on configuration at a free-stream
Mach number of 0.5 are compared with exper-
imental data [22] 4in Figure 15. Two
observations deserve mention here: (1) A
steady-state solution could not be obtained
for the 30-degree angle-of-attack case,
whereas the average residual decreased by
four to five orders of magnitude for other
cases, as shown in Figure 16. Different
values of numerical dissipation coeffi-
cients did not affect this lack of conver-
gence. (2) There 'is excellent agreement
between the computed and measured values at
lower angles of attack but not at higher
ones.

As regards the first observation, a closer
examination of the flow field revealed the
probable cause of this unsteadiness to be a
"vortex burst."” It is illustrated in
Figure 17 by the velocity vectors at three

cross-plane stations at three different
stages in the solution process. Since
pseudo-time stepping was used, the

unconverged solution is not physically
meaningful except perhaps in a gqgualitative
sense. Similar behavior has been observed
in the computational simulation of a
cropped-delta wing [24] and a cranked-delta
wing [25,26]. Time-accurate calculation
suggests itself as an alternative for
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further analysis but the associated prohi-
bitive cost is the major obstacle at
present. It is nevertheless interesting to
note that this angle of attack falls in the
region where the experimental data exhibit
the effects of vortex burst.

There are at least two possible sources of
discrepancies between converged solutions
at higher angles of attack and measurements
as shown in Figure 15. The first involves
the vortices generated by the separation of
boundary layer on the forebody at angles of
attack higher than 15 degrees. Their pres-
ence 1is confirmed by oil-flow patterns
shown in Reference 27. These vortices are
not automatically captured by the inviscid
Euler code. The second is the relatively
sparse cell distribution away from the

Figure 14. Oblique View of C-H Grid about
Strake-Wing-Body Configuration
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Figure 16. Convergence History for Strake-

on Configuration

surface. With increasing angle of attack,
the vortices move farther away from the
strake-wing surface where they cannot be

adequately resolved, due to the coarseness

of the grid. Further analysis of this
factor is continuing at the time of
writing.,

Correlation between the computed and
measured values for strake-off configura-
tion is also shown in Figure 15. For this

case, a steady-state solution could not be
obtained for the 18-degree angle-of-attack
case. The cross-plane velocity vectors
presented in Figure 18 clearly illustrate
the source of this unsteadiness as a vortex
instability over the aft part of the wing.
The stabilizing effect of the strake is
also demonstrated by these correlations.
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vorticity and Numerical Dissipation

The appearance of
state solutions
presented here
glance, since
are inviscid.

vorticity in the steady-
of the Euler equations
may be puzzling at first
the differential egquations
However, one possible source
of vorticity is contained in Crocco’s
theorem [28] which relates gradients of
entropy, or total pressure, to gradients of
vorticity for inviscid compressible flows.
For computed flows containing captured
shocks of wvariable strength, the shocks
provide an obvious source of entropy gradi-
ents. Of course, the explicitly added
numerical dissipation terms are crucial for
capturing these shocks. Even for flows
without shocks, the numerical dissipation
can produce significant total pressure
losses {(or entropy gradients) in certain
regions containing large flow gradients,
e.g., near stagnation points. Inaccuracies
related to the numerical implementation of
the no-normal-flow boundary condition near
sharp edges and regions of large curvature
can further increase these losses.

Based on the results
paper and other
authors, it may be
tion of vortices

presented in this
investigations by the

concluded that genera-
about sharp-edged wings
due to the total pressure losses is quite
insensitive to the actual magnitude of the
numerical dissipation, as long as there is
some. It is not, however, very surprising,
considering the observed Reynolds-number
independence of a large class of leading-
edge vortex flows for slender wings with
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sharp edges. Other recent investigations
[21,26] have led to similar observations.

Interpretation of separated-flow results
for wings with rounded edges requires more
caution. The total losses due to numerical

dissipation depend upon grid density, user-
specified coefficients, and flow gradients
{21]. Results for the arrow wing presented
above and similar results of Hitzel and
Schmidt [11] suggest that the Euler solu-
tions may provide meaningful data as long
as the radius of curvature is relatively
small. Further validation is required to
provide useful guidelines to the designers.

Concluding Remarks

The correlations shown in this paper illus-
trate the capability of the TEAM code to
capture vortices resulting from flow sepa-
ration along the leading edges and side
edges of gwept, slender wings at moderate~-
to~-high angles of attack. Unlike the
procedures based on velocity potential,
such as the free-vortex-sheet technique, it
is not required to explicitly model the
vortices. They appear automatically
wherever the flow requires them. 1In addi-
tion, the same code can be used for analy-
sis throughout the entire flight regime,

Based on the experience to date, the
following observations related to the
effect of numerical dissipation and grid

density may be made:



® A larger amount of fourth-order dissi-
pation may be required to obtain
converged solutions when wusing finer
grids. The results presented here and
in other numerical experiments suggest
that the effect of this dissipation on
the accuracy of the solution is insig-
nificant, as long as it stays small
compared to the convective terms.

Input values for the coefficient of
the second-order dissipation terms
should be small so that the regions of
high gradients are properly captured
but not unduly diffused.

Fine tuning of the dissipation coeffi-
cients is not required to obtain
results of engineering accuracy. For
most cases, acceptable results are
obtained for sets of coefficients
differing by factors of two to three.
Global features of computed free-
vortex flows about sharp-edge wings
are relatively insensitive to grid
densities for subsonic flows.
course, the flow field is better
resolved on finer grids. The same is
not necessarily true for wings with
round edges.
For certain flow configurations, the
pseudo~time marching Euler solutions
do not reach a steady state because
the free vortices exhibit local insta-
bilities. This issue requires further
investigation.

Use of Euler codes appears to
tive alternative to using the
codes which require greater
resources and suffer from

turbulence modeling. This

true for flows that are
Reynolds number-independent and whose
primary features are not significantly
altered by the vortices generated by sepa-
ration of the boundary layer along smooth

be an attrac-
Navier~Stokes
computational
empiricism of
is especially

practically

surfaces. With ongoing wvalidation, the
present approach promises to result in an
effective method for simulating vortex-
dominated high-angle-of-attack flows for

engineering applications.

Acknowledgment

This investigation is entirely supported by
Lockheed-California Company’s Independent
Research and Development program. The
development of the TEAM code used in this
study is partially funded by a U. S. Air
Force contract. The support and encourage-
ment of Luis Miranda, Manager, Computation-
al & Advanced Aerodynamics Department, is
gratefully acknowledged. Thanks are due to
Dr. J. M. Luckring of NASA-Langley Research
Center for supplying tabulated data for the
cropped-delta wing.

of"

616

10.

11.

References

Lamar, J.E., "Extension of Leading-
Edge-Suction Analogy to Wings with
Separated Flow Around the Side Edges at
Subsonic Speeds,” NASA TR R-428, Octob-
er 1974.

Lamar, J.E. and Gloss, B.B., "Subsonic
Aerodynamic Characteristics of Interac-
ting Lifting Surfaces with Separated
Flow Around Sharp Edges Predicted by a
Vortex-Lattice Method," NASA TN D-7921,
September 1975.

Lan, C.E. and Chang, Jen-Fu, "Calcula-
tion of Vortex Lift Effect for Cambered

Wings by Suction 2analogy," NASA CR
3449, July 1981.
Mehrotra, S.C. and Lan, C.E., "A Theo-

retical Investigation of the Aerodynam-
ics of Low-Aspect-Ratio Wings with
Partial Leading-Edge Separation," NASA
CR-145304, 1978.

Tinoco, E.N.,
and Epton, M.A., "An Improved Panel
Method for the Solution of Three-~
dimensional Leading-edge Vortex Flows,"
NASA CR-3273, July 1980.

Johnson, F.T., Lu, P.,

Luckring, J.M., Schoonover, W.E., and
Frink, N.T., "Recent Advances in Apply-
ing Free Vortex Sheet Theory for the
Estimation of Vortex Flow
Aerodynamics," AIAA 82-0095, 20th Aero-
space Sciences Meeting, Orlando,
Florida, January 11-14, 1982.

Polhamus, E.C., "A Concept of the
Vortex Lift of Sharp Edge Delta Wings
Based on a Leading-Edge-Suction
Analogy," NASA TN D-3767, 1966.

Fujii, K. and Kutler, P., "Numerical
Simulation of the Leading-Edge Separa=-
tion vVortex for a Wing and Strake-Wing
Configuration," AIAA Paper 83-1908-CP,
6th Computational Fluid Dynamics
Conference, Danvers, Massachusetts,
July 13-15, 1983.

Schmidt, Ww., and Turkel,
E., "Numerical Solutions of the Euler
Equations by Finite Volume Methods
Using Runge-Kutta Time-Stepping
Schemes," AIAA Paper 81-1259, 14th
Fluid and Plasma Dynamics Conference,
Palo Alto, California, June 23-25,
1981.

Jameson, A.,

Rizzi, A., "Damped Euler Equation
Method to Compute Transonic Flow Around
Wing-Body Combinations," AIAA Journal,
vol. 20, No. 10, October + PP
1321-1328.

Hitzel, S.M. and Schmidt, W., "Slender
Wings with Leading-Edge Vortex Separa-
tion: A Challenge for Panel Methods and
Euler Solvers," AIAA Journal of
Aircraft, Vvol. 21, WNo. 10, October
1984, pp. 751-759.




12.

13.

14.

15.

16.

17.

18.

19.

20.

Raj, P. and Sikora, J.S., "Free-Vortex
Flows: Recent Encounters with an Euler
Code,” AIAA Paper 84-0135, 22nd Aero-
space Sciences Meeting, Reno, Nevada,

January 9-12, 1984.

Rizzi, A., "Computer Simulation of Non-
potential Flows Around Wings," Aeronau-
tical Journal, June/July 1984, pp. 238~
248.

Raj, P., "Computational Simulation of
Free-Vortex Flows Using An Euler Code,"
ICAS-84-1.3.1, 14th Congress of the
International Council of the Aeronau-
tical Sciences, Toulouse, France,
September 9-14, 1984.

Rizzi, A. and Eriksson, L.E., "Computa-
tion of 1Inviscid Incompressible Flow
With Rotation,"” Journal of Fluid
Mechanics, Vol. 153, 1985, pp. 275-312.

Jameson, A. and Baker, T.J., "Solution
of the Euler Equations for Complex
Configurations,” AIAA Paper 83-1929-CP,
6th Computational Fluid Dynamics
Conference, Danvers, Massachusetts,
July 13-15, 1983.

Agarwal, R.K. and Deese,
sonic Wing-Body
Euler Equations,”
21st Aerospace

J.E., "Tran-
‘Calculations Using
AIAA Paper 83-0501,
Sciences Meeting, Reno,

Nevada, January 10-13, 1983.

Sikora, J.S. and Miranda, L.R.,
"Boundary Integral Grid Generation
Technique," AIAA Paper 85-4088, 3rd
Applied Aerodynamics Conference,
Colorado Springs, Colorado, October 14-
16, 1985.

Manro, M.E., Manning, K.J.R.,
Hallstaff, T.H., and Rogers, J.T.,
"Transonic Pressure Measurements and

Comparison of Theory to Experiment for
an Arrow-Wing Configuration,” NASA CR-
2610, August 1976.

Newsome, R.W., "Buler and Navier-Stokes
Solutions for Flow Over a Conical Delta
Wing," AIAA Journal, Vol. 24, No. 4,
April 1986, pp. 552-561.

21.

22.

23.

24.

25.

617

26.

27.

28.

Kandil, O0.A. and Chaug, A., "Numerical

Dissipation Effect in Finite-volume
Euler Solutions for Conical Vortex-
Dominated Flows," ICCM86-K.8, Inter-
national Conference on Computational
Mechanics, Tokyo, Japan, May 25-29,
1986.

Luckring, J.M., "Subsonic Longitudinal
and Lateral Aerodynamic Characteristics
for a Systematic Series of Strake-Wing
Configurations,"” NASA Technical Memo-
randum 78642, February 1979.

Raj, P., "PACMAPS: A Three-dimensional
Grid Generation Method, Version 1.0,"
LR 30811, Lockheed-California Company,

October 1984.

Raj, P. and Long, L.N., "An Euler Aero-
dynamic Method for Leading-Edge Vortex
Flow Simulation," Vortex Flow Aero-
dynamics Conference, NASA-Langley

Research Center, October 8-10, 1985.
Rizzi, A. and Purcell, C.J., "Numerical
Experiment with Inviscid Vortex-

Stretched Flow Around a Cranked Delta
Wing: Subsonic Speed," AIAA Paper 85-
4080, 3rd Applied Aerodynamics Confer-
ence, Colorado Springs, Colorado,
October 14-16, 1985.

and Rizzi, A., "Applica-
tions of Euler Equations to Sharp Edge
Delta Wings With Leading Edge
Vortices," AGARD, Symposium on Applica-
tion of Computational Fluid Dynamics in
Aeronautics, Aix-en-Provence, France,
April 7-10, 1986.

Murman, E.M.

M., "Flow Visualization
Studies of a General Research Fighter
Model Employing a Strake-Wing Concept
at Subsonic Speeds," NASA Technical
Memorandum 80057, August 1979.

Luckring, J.

and Roshko, A., "Ele-

Liepmann, H. W.
John Wiley &

ments of Gasdynamics,"”
Sons, Inc., 1957, p. 193.



