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Abstract

A detailed experimental investigation of the
leading edge vortex flow over a 75°-swept, sharp-
edged delta wing set at an angle of attack
o = 20° is reported. It has been conducted in
several ONERA wind tunnels and involved flowfield
surveys using a five-hole pressure probe and LDV
techniques. Reynolds number effects are
evidenced, and the structure of the vortical flow
regions is discussed : they are shown to be of
non-conical nature.

Global and local experimental data is then
used to assess the 3-D vortex particle method
being developed at ONERA. Recent improvements to
the method are presented. Various test cases
demonstrate 1its capabilities ; in particular,
computation of the vortex flow over a T70°-swept
delta wing at Q= 20° leads to a remarkably good
agreement with results obtained from other
methods.

I. Introduction

The vortex flow that occurs at the swept
leading edges of slender wings plays an essential
role in the high-angle~of-attack aerodynamics of
fighter aircrafts and missiles. Improving the
knowledge of such flows as well as developing
computational methods for predicting them have
long been research topics of interest(1-4), The
non-conical, complex structure of the leading
edge vortex flow over slender wings is more and
more clearly evidenced by three-dimensional
measuring techniques.

While increasing computer power now allows
the development of computational methods able to

predict a complete three-~dimensional vortical
flowfield, their assessment obviously requires
detailed experimental data for a basic wing

configuration. Consequently, the Aerodynamics
Department at ONERA recently conducted fun-
damental experimental investigations of the sharp
leading edge vortex flow over a T75°-swept delta
wing model at an angle of attack ®=20° ; such
delta wings of A.R. ® 1 have been considered in
many studies so far(5-7), The experiments
involved usual o0il flow visualizations and
pressure measurements at the wall as well as more
advanced techniques : flowfield surveys using a
five~-hole pressure probe, three-dimensional flow
visualizations and LDV measurements.

These tests were performed for a large range
of freestream Reynolds numbers, providing
information in both the laminar and the turbulent
flow cases. The corresponding results are
discussed in the first part of this paper.
Emphasis is put on the topology of the vortical
flowfield through a detailed description of the

On the other hand, the three-dimensional
vortex particle method developed at ONERA already
provided encouraging results on various wing
planforms for both steady and unsteady flows(8-
1), Improvements of the method have been
recently tested for the prediction of 1leading
edge vortex flow over the 75°-swept delta wing.
Therefore, comparisons are presented between
experimental and computational results in the
second part of this paper.

Further comparisons deal with the leading
edge vortex flow over a 70°-swept delta wing, for
which computational results are available from
the VORSEP free vortex sheet method and from an
Euler code(12),

Nomenclature
b local semispan
c chord length
Cp static pressure coefficient
Cpt total pressure coefficient
Req Reynolds number
Vo c
Rec = v
Rey Reynolds number
Vo X
- Rey = 7%
\' velocity vector
U, V,W mean velocity components
Vo freestream velocity
X,Y,Z wind tunnel coordinates
X wing chordwise coordinate
o angle of attack
Q vorticity magnitude
Qx streamwise vorticity

¢ (0w dv
v Gy - o7

1I. Experimental Investigation

II.1. Experimental Set-up

Experimental investigation of the flow over
a 75°-swept, sharp-edged delta wing has been
carried out in three different wind tunnels.
Their respective features and equipment,
specified in Figure 1, allowed the gathering of
complementary experimental data. Two models have
been wused, consisting of a flat plate with
leading edges beveled off at 20° on the lower
surface. One model having a chord length ¢ = 1.45

"m and 247 pressure holes has been studied in the

two largest wind tunnels (F1 and F2). The other
model having a chord length ¢ = 0.5 m has been

mean physical quantities and of their flue- studied in the S2LCh-wind tunnel.
tuations.
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Figure 1. Model definition and test conditions.

The F1 subsonic pressurized wind tunnel uses
the flowfield investigation methods which have

been developed at ONERA for large wind
tunnels(13)., They are based on the computer-
controlled motion of a motorized exploring

device(14), In the case of the large delta wing
model tests, the latter generates plane surfaces
along the wing chord which are perpendicular to
the freestream velocity. Measurements are made
using a five-hole pressure probe that provides
mean values of the velocity vector as well as
local static and total pressure coefficients.

These surveys are performed at a freestream
velocity Vg = 40 m.s-1. The corresponding free-
stream Reynolds number (e = 1.45 m) is
Rec 4 108,

The F2 wind tunnel, a detailed description
of which can be found in reference (15), is well
suited for laser velocimetry. Its velocimeter is
identical in its operating principles with the
one used at S2LCh, but is permanently installed
on a test section especially designed to receive
it. For the present test, it performs 2-D
measurements of the longitudinal (u) and vertical
(w) velocity components.

The S2LCh wind tunnel is a smaller research
facility that allows the use of the ONERA 3-D
laser velocimeter(16), This apparatus, sche-
matically represented in Figure 2, is a 3 coléur
velocimeter used here in the forward scattering
mode. The blue and green beams emitted by one
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argon laser are first split and then focused on
the measurement point, where two patterns of
horizontal and vertical fringes form in a (X,Z)-
plane. The violet beam, emitted by a second
laser, is also split and focused on the
measurement point to form a third pattern of
vertical fringes in a plane inclined at 55° to
the preceding plane., The measurement point is
observed by two Cassegrain telescopes located on
the other side of the test section. One of them
extracts the blue and green components of the
scattered light, the other one the violet
component. Three photomultipliers are associated
with DISA counters connected to a minicomputer
which performs data acquisition and processing,
giving the various statistical quantities of the
flow. This computer also drives the displacements
of the XYZ benches on which the emitting and
collecting modules of the velocimeter are
mounted.

A = 5145w
Ap = 488 m
Ay » 4765 m

: 8w all lines

Lz : 3Won 24765 nm
BS . Beam Splitter

. Bragg Cells 2
D : Dichroic Mirror
F : Filter

SIMULTANEITY INYERFACE

Figure 2. Scheme of ONERA 3-D laser velocimeter.

II.2. General Features of the Flow - Visuali-

zations

Figure 3 presents visualizations of skin-
friction lines, obtained by an oil flow technique
at an incidence 0=20° for three values of the
freestream Reynolds number in the F2 wind tunnel.
The conjectural streamline pattern is shown in
Figure 4 in a plane normal to the wing surface :
it agrees ‘with the visualization. This pattern is
characterized by the existence of a first
separation point S1, origin of the vortex sheet

which, by rolling up around the focus F1i,
constitutes the primary  vortex. A second
separation point 32 1is clearly visible., The

vortex sheet originating at S2 is rolling up
around the second focus F2. A third separation

line seems to be detected by surface
visualizations (Figure 3.c). It leads to the
existence of a third focus F3. Topological

reasons imply the existence of three reattachment
points A1, A2, A3 on the upper surface of the
wing. A1, located in the symmetry plane, is the
only one to be clearly visible in Figures 3.a to
3.c. The reattachment point A2 is probably
located very close to the leading edge and its
location is in fact almost identical with that of

S1. A saddle singular point C1 is present in the
outer flow far above the upper surface (see
visualizations, Figure 9.b). The flow on the
lower surface has not been visualized ; the

streamline pattern presented in Figure 4 with an



attachment point A4 results from symmetry
conditions. It is worth noting that the number of
singular points which ineclude 3 foei (F1, F2, F3)
and 8 half-saddle points (S1,S2, S3, A1, A2, A3,
A4, C1) satisfies the topological rule :

(£ nodes + —;— I half-nodes) =
(L saddle + % I half-saddle) - 1,

knowing that foci and nodes are topologically
equivalent(2,17),

Wall streamline visualizations, made on the
1.45 m chord model, also show the effect of the
nature of the upper surface boundary-layer. In
Figure 3.a, obtained for Re, = 0.7 10%, the
boundary-layer is laminar over the entire upper
surface and the S2 line is located at Y/b = 0.71.
For a higher Reynolds number (Re, = 2.5 10%,
Figure 3.b), transition occurs near the half
chord of the wing. In this case the secondary
separation line S2 bends and is located at Y/b =
0.8 in the turbulent zone. For Rey = 4.1 10%,
transition has moved up into the forward quarter
of the wing and velocities are now high enough to
evidence the separation 1line S3, which is
approximately located at Y/b = 0.91 (Figure 3.c).

a) Re.=0.8 10°®

b)Reg=2.5 108

Laminar

c) Reg=4.1 10°

Figure 3. 0il flow patterns on the wing upper
surface, a = 20°.
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Figure 4. Schematic representation of the flow
structure in a plane normal to the wing.

Figure 5 presents static pressure contours
on the upper surface of the wing at an incidence
a=20° for increasing values of the freestream
Reynolds number. In the laminar flow case (Figure
5.a), the depression that appears under the
primary vortex gives rise to a minimum pressure
coefficient Cp =~ = -1.72. The low pressure area

mi

almost reaches trllle leading edge. As the Reynolds
number increases, we first observe a stronger
pressure decrease in the laminar region and a
secondary minimum appears downstream of the
transition zone ; Cpmin reaches -2.06 for Reg =

5.2 10%. This secondary minimum progressively
moves up towards the apex.

Beyond Re, = 5.2 10‘. on the other hand, the
flow structure does not change significantly as
the Reynolds number increases.

These phenomena can be explained by
considering Figure 6, which displays spanwise
surface pressure distributions for two Reynolds
number values : one corresponding to a laminar
boundary-layer (Rey = 0.54 10%), the other one to
a turbulent boundary-layer (Rey = 4 10%). The
approximate positions of the primary and
secondary vortices are shown in the same figure,
as determined by laser sheet visualizations. In
the laminar case, the separated zone is wider and
originates close to the primary vortex axis.
Thus, it tends to reduce the pressure decrease
induced on the upper surface of the wing by the
primary vortex and to smooth out the pressure up
to the leading edge. In the turbulent case, we
observe an important suction peak induced by the
primary vortex ; the secondary separation line is
located closer to the leading edge.

With the help of flow visualizations and
surface pressure measurements, we were able to
locate the transition zone. Its extent has been
characterized by the respective locations of the
end of the purely laminar boundary-layer and that
of the beginning of fully turbulent flow. The
Reynolds numbers calculated with the distance
between the apex and the two points considered
have been plotted in Figure 7.



The mean location of transition ranges from
Rex = 1.5 10° for w=10° to Rey = 0.95 10° for
a=30°, its evolution being monotonous and the
extent of the transition zone decreasing as the

a) Rec = 10° b) Rec =3.1.10°

Comin=—1.76

c) Rec =4.1.10°
Cpmin = — 201

incidence increases., The curve obtained by
Bummel(6) for a wing of aspect ratio AR=1, that
gives the end of the laminar zone, has also been
drawn in Figure 7.

e) Rec =7.8.10°
Comin = 2.04

d) Rec = 5.2.10°
Comin = — 2.06

Figure 5. Isobar patterns on the wing upper surface, o = 20°, ACp = 0.l
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Flowfield visualizations using laser sheets
allow us to determine the location of the primary
vortex axis in a vertical plane. In Figure 8 are
plotted the reduced coordinates Y¥/b and Z/b of
this axis for several incidence and Reynolds
number values. At constant Reynolds. number, the
vortex is rapidly moving away from the wing as
the incidence increases, while 1its spanwise
coordinate Y/b remains almost constant. On the
other hand, with present results (F2 wind tunnel,

Figure 8.a), it seems more difficult to
characterize the evolution of vortex location as
Reqs varies. Nevertheless taking into consi-

deration Werlé's results(g) for lower Reynolds
numbers, it clearly appears that the vortex moves
closer to the leading edge as Rep increases. This
effect vanishes for high Reynolds numbers
(Req > 10%). Figure 8.b shows that at constant
Reynolds number and incidence, the primary vortex
loeatlon is the same in the sections 5 = 0.28 and

= 0.80 ; that is consistent with the hypothesis
of conical geometry of the primary vortex.

a) b)
2/b a=40a Z/b
06 1 | 06
05} fl 30° 05F a=30° o4
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Figure 8. Location of primary vortex axis :

a) Influence of angle of attack and Reynolds
number, b) Variation of location with angle of
attack and distance from the apex.

II.3. Study of the Mean Velocity Field

The results presented here have been
obtained in the S2LCh wind funnel for
Req = 0.7 10°, by means of five-hole pressure

probe measurements and 3-D laser velocimetry.

Figure 9 compares a water tunnel visuali-
zation obtained by Werlé, on which the secondary
vortex is particularly visible, with a vector
plot of the mean velocity projection in a plane
normal to the freestream velocity Vo, deduced
from wind tunnel measurements. At each measuring
point P of the plane, the projection of the
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velocity vector has been performed along a
direction defined by the line AP, where A is the
apex of the wing. In this way, for conical flow,
the vectors in the projection plane seem to be
tangential to the 1lines displayed by the
visualizations.

Figure 10 shows two kinds of representations
that give an idea of the extent of the rotational
regions. These representations are total pressure
contours, on one hand, and contours of the
streamwise vorticity component, on the other
hand. These results are given for
Rec = 0.7 10° and Reg = 4.1 10% in the section

= 0.6 (laminar and turbulent cases). Still,
Such an increase in Reynolds number does not lead
to fundamental changes in the separated  flow
region :

- as sketen8d im Figure 6, both the primary
and the secondary vortices slightly move towards
the leading edge ; the secondary vortex clearly
decreases in size and moves closer to the wall ;

- the slight decrease in total pressure loss
and streamwise vorticity component observed near
the axis of the primary vortex is not necessarily
significant.

in four different chordwise
sections, the pressure and velocity distributions
for vertical traverses passing  through the
primary vortex core. In order to let these
distributions coincide far from the wing
(Zz/b > 1), we had to multiply each set of values
by a certain coefficient "CD".

Figure 11 shows,

The evolution of these coefficients is given
in Figure 12, which allows us to determine the
departure of the actual flow from conical flow,
for which all of these coefficients would be
equal to 1. Here, the coefficients monotonously
increase along the chord. While they remain
relatively close to 1 for the velocity components
(1.15 is the maximum value), they reach 1.4 for
the static and total pressures.

Therefore, it seems necessary to take into
account the three-dimensional effects in order to
get a good representation of the actual pressures
and velocity.

II.4. Turbulent Field Survey

Measurements carried out at S2LCh using 3-D
laser velocimetry allow us to obtain the six
components of the Reynolds stress tensor. They
are represented in Figures 13 and 14 at the
section 5 = 0.6.

First of all, it is worth noting the high
turbulence level in the three following regions :
primary vortex, separated region, and 1leading
edge vortex sheet. In these regions, the RMS
values Vuz, Y57 and ¥4 most often exceed 0.2 Vo,

and values as high as 0.3 Vo are found in the
leading edge vortex sheet.

The large values measured near the wall in
the vicinity of the secondary separation point
(AP, 0.2) wheré the boundary-layer is
laminar can be explained only by the instability
of the separation line location.



a) Velocity vector field b) Flow visualization (Werlé)
Rec = 0.7.10°, a = 20° Rec =4.10%, a=30°

e e R

Figure 9. Laminar transverse flowfield :
a) velocity vector field Res = 0.7 108, o
b) flow visualization (Werlé) Rep =
a = 30°.

= 20°
4 104,
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Figure 10. Flowfield in a vertical plane x/c ~ 0.6 : a) Total pressure contours,
Acpt = 0.25, b) Streamwise vorticity component contours My = 25.
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Figure 13. (Left) RMS values of velocity com-
ponent  fluctuations in a vertical plane,
@ = 20°, Re, = 0.7 10%, x/c = 0.6.

Figure 14, (Right) Cross-correlation terms in a
vertical plane, a = 20°, Reqs = 0.7 105,
x/c = 0.6,

Figure 14 displays the distributions of the
normalized correlation terms EVVVOZ, Gﬁ?vo’ and
VW/Vg?. The Vi’ term takes on large values in the

region of the leading edge vortex sheet. They
characterize the important shearing stresses
which exist in a 2zone embedded between the
leading edge vortex sheet and the secondary
vortex.
III. Computation of Vortex Flow over
Delta Wings

II11.1. The Three-Dimensional Vortex Particle
Method

The theoretical background and the numerical
implementation of this time-accurate, unsteady
method developed by Rehbach are reported in some
detail in references(18, 19), We shall only
recall its main features here.
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1) The thin 1lifting surface (8) is
discretized by plane panels using a doublet
distribution of constant strength (K) on each
panel., The slip condition on (S) determines (M).

2) Incompressible, inviseid flow in the
computational domain (D) surrounding (S) is
assumed, and it 1is described in terms of
vorticity distribution 3

=Vxv (1)

(V2 velocity vector).

3) The vortex shedding mechanism follows
from Kutta condition-type considerations, leading
to the time discretization of the convection

equation for the doublet strength of edge panels.

4) The time dependent evolution of
vorticity-loaded particles that are shed at each
time step into (D) from the edges of (S) is
governed by the Helmholtz equation 3

= (B T (2)

Dt

5) The local velocity in the entire flow-
field due to the influence of (S) and the vortex
particles can be expressed employing Green's
identity :

- - 1 e 1 =
7= vo+ﬁffJ'D (@raa ;) x Bad+
: : (3)
+I‘—“”S(gra3 —r;)x (n x V) dO
where r = |F| and §i is the outward unit normal

to the surface element d . The vorticity par-
ticles are convected away with the local veloeity
given by (3). Their position and vorticity at
each time step are calculated using predictor-
corrector schemes.

The prediction of the shed vorticity vector
® requires a finite difference computation of Vu
on each panel ¢ this computation entails the
construction of a fine and regularly panelled
grid, especially near the emission points. In
Figure 15, the first grid shown displays rather
large panels at the leading edge ; their skewness
precludes an accurate computation of Vi, espe-
cially for low sweep angles. In addition, this
grid features a certain number of triangular
panels that lead to an overvaluation of
veloecity ¢ disturbances consequently appear in
the development of the streak-lines, as evidenced
in Figure 15.a. On the contrary, a conical grid
featuring panels of constant aspect ratio

(% = 0.5) allows smoother development of the
streak-lines (Figure 15.b). In addition, the
computation converges faster. The corresponding
streamlines have been computed using the
computed, converged velocity field and a small
pseudo-time step that gives remarkably continuous
curves (Figure 15.c¢).

All the computational results presented in
this paper were obtained using a conical grid j
initial data and conditins are defined as
follows @

- the time step wused for the unsteady
calculation, At, corresponds to V, At equals the
mean spacing between adjacent emission points,



and the calculation of shed vorticity does not
associate more than three panels per streak-
line ;

- the initial vorticity vector at a leading
edge emission point is constrained to lie in the
wing plane, in the direction given by

€ = E(g - ¢), i.e., the apex semi-angle ; this
choice of € follows from experimental ob-
servations. The high sweep of the leading edge
imposes the use of this rather arbitrary
constraint ; it is not needed at the trailing
edge emission points. Singularities in the
velocity field resulting from the use of point
vortices are smoothed out wusing a parabolic

velocity profile within a pseudo-viscous radius
Ry.

a) Parallel grid : 272 panels
~ 19 streak-lines
-- 100 iterations for convergence (At = 0.3)
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b) Conical grid : 304 panels of constant a.r. (0.5)
~— 28 streak-lines
~— 80 iterations for convergence {At = 0.3)
~ 2= 15 mn CPU time on CRAY 1S

———

Figure 15. Computation of the vortex flow over
the 75°-swept delta wing, O = 20°.

Tests have been performed by varying the
parameters Ry and € that did not affect the
computational results. Similar tests were per-
formed to validate the following procedures, that
allow a significant reduction in computational
time : particles that come too close together are
merged into a single particle, and the remaining
particles are progressively dissipated once they
have reached a half wing chord downstream of the
trailing edge.

The present computer code has been partially
vectorized : each (¢, &) delta wing configuration
computed using a conical grid (304 panels) and a
time step At = 0.3 requires about 15 mn of CPU
time on a CRAY 1S computer to achieve a converged
value of the normal force (within 1% of its
steady component).
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III.2. Computational Results Compared with

Experiment

A typical result for the present method is
the time-dependent normal force curve
CN f (Iter or T = Iter x Ot) which is presented
in Figure 16 for the 75°-swept delta wing at an
angle of attack & = 20°.

b On

With L.E. separation

Unsteady | .~
omponent

®  Experiment:F1W.T.

L 9

e
Without L.E. separation
o 40 60 go 100 TER
6 12 18 24 30 T=A0txITER

Figure 16. Convergence history for the computed
normal force, O = 20°.

Shedding vortex particles from the trailing
edge only leads to fast convergence towards the
potential normal force value, that agrees well
with a lifting surface solution (Figure 22).

With L.E. and T.E. vortex shedding, the same
regular behaviour towards convergence as in the
potential case is observed, the unsteady component

of the normal force vanishing at CN ®1 3 this
result, as well as the experimental value
CN = 0.9 are obtained by integration of the

pressure distributions. The experimental value
does not include the non-zero 1lift at O = Q°
(CNo % 0.07), that is due to the beveledged lower

surface of the wing.

The
computed

between experimental and
static pressure distributions is
displayed in Figure 17 for three chordwise
stations. At the X = 0.52 station, measurements

from a probe survey close to the upper surface

(% 0.002) agree with the pressure hole
measurements ; however, the latter revealed
pressure variations (ACp/Cp % 0.05) that were
induced by the exploring device interfering with
the flowfield.

comparison

ot

I

The use of the local spanwise coordinate
emphasizes the non-conical features of the flow ?
the same trends appear both in the experimental
and computational results the chordwise
increase in upper surface static pressure as well
as the inboard shift along the chord of the
vortex axis location (which corresponds to the
suction peak).

As compared to experiment, the computed
spanwise location of the vortex axis is too close
to the leading edge : this is mainly due to the
part-span position of the first emission point
downstream of the apex.
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Experiment : F1 W.T. Rec = 4.10°
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Figure 19. Planar view of the velocity vector field, x/c = 0.8, o = 20°.
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Figure 20. Vortex core location, & = 20° :
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Figure 21, Streamwise vorticity component contours (Mix = 25.) in the x/c = 0.8 plane,

a = 20°.
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At each chordwise station, the present
method overvaluates the lower surface pressure
distribution, especially near the leading edge,
where the influence of the accumulation of
vorticity particles is felt ; this influence is
evidenced here by displaying the lower surface
pressure distribution in the potential case.

As regards the structure of the vortical
flowfield, Figure 18 presents experimental and
computational velocity magnitude contours in a

vertical plane at the % = 0.8 chordwise station.
These

curves agree only near the wing upper

surface : this reflects the agreement between
measured and computed upper surface pressure
distributions. The secondary separation is not

predicted by the present method.

The inner part of the computed vortex flow
displays a significant undervaluation of velocity
magnitude that is essentially due to an
undervaluated streamwise velocity component. In
Figure 19, the projection in a vertical plane of
the computed velocity vector field is indeed
similar to that of the experimental velocity
field at the same chordwise station ; this allows

us to locate the computed vortex axis ; its

location 1is presented in Figure 20 for two
chordwise stations above the wing, along with
experimental data.

Taking into account the rather good
agreement of the computed transverse velocity
field with experiment, an attempt to compute the
streamwise vorticity component Qy leads to the
contours displayed against experimental results
in Figure 21 : computation significantly under-
valuates Qyx, but the global behaviour of the
field is captured. On the same figure, the locus
of the streak-lines is shown which corresponds to
the main

vortex dimensions above the wing :
agreement with the corresponding experimental
limit (defined by Qy = 0) is reasonable. Among

the improvements of the method that are presently
being considered, the regularization of the
velocity field induced by the vortex particles,
as suggested in reference (19), should lead to a
quantitatively more accurate prediction of the
vortex structure.

b Cn—-CNg
0
1.5 1 0
With L.E. separation 0
“ -
O 8]
0
0.5
Without L.E. separation
g
-1 1 Crm — Cmo
] 10 20 30 o®
Figure 22. Normal force and pitching moment

curves for the 75°-swept delta wing
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Theory : —— Lamar(20)

~@- Present method.
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In order to demonstrate the capabilities of
the present method, computations have been
performed for several angles of attack up to
a = 35° using the same initial conditions as for
the o = 20° configuration. The corresponding
CN(a) and Cm(CN) curves are presented in Figure
22 : they are compared with the F1 wind tunnel
test results and with computational results by
Lamar(20), The good prediction of potential-type
flow (without L.E. vortex shedding) by the
vorticity particle method is confirmed both at
a = 10° and 30°. As regards vortex flow, the
present method predicts a realistic development
of the normal force vs. O, considering that stall
occurred at o 35° in the wind tunnel. The main
features of the calculated vortex flowfields are
displayed in Figure 23 by views of the streak-
lines for o = 10° and 30°.

Figure 23. Computed streak-lines.

The applicability of the present method is
further illustrated by the computation of vortex
flow over a T0°-swept delta wing at a = 20°
(still using the same initial conditions) ; the
decrease in L.E. sweep leads to a conical grid
comprising 504 panels (a.r. = 0.5). The grid is
shown in Figure 24 along with computed streak-
lines and streamlines. When comparing to the same
representations of Figure 15, one expected sweep
angle effect clearly appears : the vortex has
moved closer to the leading edge. Concerning the
flow structure, Figure 25 displays comparisons of
our results with those obtained by Hoeijmakers
and Rizzi(12), at the £ = 0.6 chordwise station @
we note a very good agreement of the upper
surface pressure distributions. The extension of
vortical flow regions above the wing and the
general features of the vorticity field show a
good agreement as well.



Figure 24. Present method : vortex flow over
the 70°~swept delta wing, o = 20°. a) Rear view
of the streak~lines development ; b) Calculated
streamlines : upper view ; c) Calculated
streamlines : transverse view.
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Figure 25. Computational results over the 70°-
swept delta wing, O = 20°, a) Pressure distri-
bution at x/c = 0.6 ; b) Vortex sheet position
and vorticity magnitude contours.
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Finally, Figure 26 presents a comparison of
experimental and computational results concerning
the vortex axis location above the wing.
Experimental results clearly show a Reynolds

number effect. The theoretical predictions of
Legendre(2) and Smith(21) based on the assumption
of conical flow are presented as reference. It is
expected that the present method will yield
results in better agreement with experimental
results at high Reynolds number as soon as vortex
shedding close to the apex has been improved on.

IV. Concluding remarks

In order to improve the knowledge of the
vortex flow that occurs at the swept leading
edges of slender wings, a fundamental
investigation of the flow over a basic
configuration -75°-swept delta wing, @ = 20°-~ has
been conducted at ONERA.

As expected, increasing the freestream
Reynolds number from 1 10% to b 106 causes strong
changes in the upper surface boudary-layer, the
mean transition location moving up towards the
apex. Spatial - flowfield visualizations wusing
laser sheets evidence the slight effect of this
large Reynolds number variation on the spatial
location of the primary vortex. Furthermore,
five-hole pressure probe surveys do not reveal
any fundamental changes in the structure of the
vortical flowfield over the entire range of
freestream Reynolds numbers.



Otherwise, measurements reveal the non-
conical nature of the vortex flow. Three-
dimensional LDV measurements reveal a high

turbulence level in the primary vortex core and
leading edge vortex sheet, as well as the
presence of large shear stresses in the zone
embedded between the latter and the secondary
vortex. These detailed results obviously
emphasize the need for fine, non-~intrusive
experimental techniques, and provide a valuable
reference data base for assessing three-
dimensional computational methods devoted to the
prediction of such complex flowfields.

It is thus seen that the vortex particle
method yields an accurate representation of the
chordwise evolution of upper surface pressure

distributions. Lower  surface pressure dis-
tribution are, however, significantly over-
predicted. 1Inside the vortex, the computed

streamwise velocity component is underpredicted,
while the more accurate transverse velocity field
enables us to compute the streamwise vorticity
component. Otherwise, global features of the flow
like the spatial extension of the primary vortex
are correctly reproduced.

The capabilities of the method are
demonstrated by its straightforward imple-
mentation for several different values of the
angle of attack. The resulting CN(a) and Cm(CN)

curves are in good agreement with experiment.
Finally, computation of the leading edge vortex
flow over a T70°-swept delta wing at an angle of
attack @ = 20° using the present method leads to
a remarkably good agreement with other methods
(VORSEP, Euler code). Note that the present
method does not require a spatial grid to compute
the flowfield, nor an an initial guess of the
leading edge vortex sheet location.

Further improvements of the vortex particle
method are being considered, such as : a more
accurate computation of 1lower surface pressure,
an alternative numerical determination of VM
allowing the use of non-structured grids that
would allow a better discretization of the apex
region, and a more sophisticated regularization
model for the velocity field inhduced by the
vortex particles. These improvements are to be
included in extensions of the vorticity particle
method presently being developed at ONERA to
compute the vortex flow over wings of arbitrary
thickness. They -should eventually allow to
simulate the secondary vortex.

Further analysis of the large amount of
experimental data obtained on the 75°-swept delta
wing model will provide essential informations to
assess these computational methods.
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