ALGEBRAIC GRID GENERATION ABOUT WING-FUSELAGE BODIES
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Abstract

An algebraic procedure for the generation of
boundary—fitted grids about wing-fuselage configu-
rations is presented. A wing-fuselage configura-
tion is specified by cross sections and mathemati-
cally represented by Coons' patches. A configura-
tion is divided into sections so that several grid
blocks that either adjoin each other or partially
overlap each other can be generated. Each grid
has six exterior surfaces that map into a computa-
tional cube. Grids are first determined on the
six boundary surfaces and then in the interior.
Grid curves that are on the surface of the config-
uration are derived from the intersection of
planes with the Coons' patch definition. Single-
valued functions relating approximate arc lengths
along the grid curves to a computational coordi-
nate define the distribution of grid points. The
two~boundary technique and transfinite interpola-
tion are used to determine the boundary surface
grids that are not on the configuration, and
transfinite interpolation with linear blending
functions is used to determine the interior grid.

Introduction

Grid generation is an essential part of the
numerical solution of systems of partial differen-
tial equations."?® In computational fluid dynam-
ics, grid generation is primarily associated with
the application of finite difference and finite
volume methods to obtain numerical solutions of
various subsets of the Navier-Stokes equations
which will be henceforth called the governing
equations.”? The governing equations are defined
in a physical coordinate system and are then
transformed to an idealized rectangular computa-
tional coordinate system (computational cube).
Additional unknowns called transformation deriva-
tives, which are the elements of the Jacobian
matrix, are introduced into the transformed
governing equations, and the computational
coordinates become new independent variables.

An approach for the discrete determination of
the transformation derivatives is to superimpose a
boundary-fitted grid onto the physical domain
which corresponds to a uniform grid on the compu-
tational domain. Numerically differentiating the
physical grid with respect to the computational
grid and applying matrix operations determine the
transformation derivatives. The process of
determining a “one-to—one"” relationship between
the physical grid and the computational grid from
which the transformation derivatives are computed
is grid generation. The advantages of using
transformed governing equations and grid genera-
tion are: (1) Reduced complexity and added accu-
racy in the application of boundary conditions,
and (2) the ability to increase solution accuracy
in regions with high gradients through grid
clustering.
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For creating grids about wing-fuselage
bodies, an algebraic approach based on Coons'
patch-surface definition,5 the two-boundary grid
generation technique,”*" s and transfinite inter-
polation6 is presented. The process is divided
into five steps:

1. Define the wing and fuselage surfaces and
their intersection (Fig. 1).

2. Determine grids on the wing and fuselage
surfaces which will map to adjoining exterior
sides of a computational cube (Fig. 2).

3. Define outer physical boundaries (grid
curves) corresponding to edges of the computa-
tional cube (Fig. 3).

4. Determine grids on the exterior surfaces
other than the wing and fuselage which correspond
to the remaining exterior sides of the computa-
tional cube (Fig. 4).

5. Determine the interior grid using trans-
finite interpolation with linear blending
functions (Fig. 5).

The primary concepts that are described
herein have been developed in references 7 and 8.
They are amplified and extended in this paper.
The approach combines aircraft-surface definition
concepts that have been developed over many years
and algebraic grid generation concepts. For
complex aircraft configurations, it is recognized
that it is unlikely that a single grid that maps
into a computational cube can be devised. It will
probably require several grids that either adjoin
each other or partially overlap each other. For
the wing-fuselage grids described herein, four
adjoining grids are specified. They are the top-
front, bottom—-front, top-back and bottom-back
grids, and most of the step-by-step demonstration
of the grid generation procedure will be with the
top-front grid.

Wing—-Fuselage Surface Definition

The components of an aircraft can be de-
scribed by the Harris geometry9 in terms of cross
sections. A fuselage is described by cross sec-
tions along the x-body axis, and a wing is de-
scribed as airfoil sections in the spanwise
z-direction (Fig. 6). In turn, each airfoil
section is defined by the coordinates of the
camber line and Ay coordinates. In reference 10
cubic splines are fit along and across the speci-
fied cross—sectional data for each component. The
specified positional data and derivative data
obtained from the spline fits provide corner para-
meters for a Coons' patch-surface definition for
the component. Each patch is of the form

V(u,w) = vcecTwT (1)



where

V(u,w) = [x(u,w) y(u,w) z{u,w)]
v(0,0) V(O0,1) V,(0,0) v,(0,1)
V(1,00 V(1) V,(1,0) V(1,1

B =
V(0,00 Vy(0,1) V(0,00 V,,(0,1)
V(1,00 Vy(1,1) V(1,00 Vi (1,1)

2 =2 1 1
co |3 3 2 1
o] ¢} 1 0
1 0 0 0
U= [u3 u? u 1}, W= [w3 wlw 1],
0<ux<l, 0<wel

The vector-valued function V{(u,w) repre-
sents the Cartesian coordinates (x,y,z) for a
patch definition, and the variables u and w are
independent parametric variables. The limits of
the parametric variables are zero and one and
define the corners of a patch (Fig. 7). The sub-
scripte u and w in matrix B denote differen-
tiation with respect to the parametric independent
variables. Using cubic spline functions to
compute the corner derivatives (only the patch
corner positions are pre-specified) and setting
the cross derivatives equal to zero (lower right
elements of the matrix B), the patch description
is a bi-cubic representation (zero cross deriva-
tives) of the region bounded by the sides of the
patch. An ordered set of patches represent the
surface of a component, and reference 10 describes
a widely available computer program for performing
the splines fits, saving the patch description and
plotting enriched surface components (Fig. 1).

Wing~Fuselage Intersection

In order to map the wing and fuselage sur—
faces into two adjoining planar surfaces in the
computational coordinate system, a method of
determining the intersection of the two surfaces
in the physical coordinate system must be found.
Since the two components are described mathemat-—
ically by sets of patch equations, it is theo-
retically possible to solve the two sets of equa-
tions simultaneously for the intersection;
however, this is not the approach that is taken in
this paper. Instead, the mathematical process of
finding the intersection of a sequence of planes
with the wing and fuselage components, and then
computing the intersection of the planar curves is
used.’ The reason for taking this approach is
that the intersection of arbitrarily defined
planes (three unique points) with the components
of a configuration (accumulation of patch
equations in the intersection region for each com—
ponent) is a facility of the surface~definition
program described in reference 10. The
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plane-patch intersection is obtained by rewriting
equation (1) as

x = UCB(x)cTwWT
y = ucB(y)cTw®
z = UCB(z)CTWT

and substituting the components in the equation of
a plane

ax + by +cz+d =0

where a, b, ¢, and d are constants derived
from a three point description. This leads to the
equation

uewl + d =0 (2)

where

G = aCB(x)CT + bCB(y)CT + cCB(z)CT

is a matrix of constants. Assigning a value to
one of the parametric variables u or w results
in equation (2) becoming a cubic polynomial with
respect to the other parametric variable. Finding
the real root of equation (2) interior to the
patch boundaries for a sequence of the specified
parametric variable defines the curve of the
intersection of a patch and a plane (Fig. 8).

The intersection of a wing-surface component
and a fuselage-surface component is found by first
determining the intersection of the patch defini-
tion of each component with a sequence of planes
along and orthogonal to the x~body axis (Fig. 9).
This is accomplished by using the computer code
described in reference 10 as a kernel that is
driven by another code which specifies the planes,
orders the coordinates, deletes multiple poiats at
the intersection of neighboring patches, and
searches to find the intersection of the planar
curves from the two components (Fig. 10). The
leading point and trailing point of the wing-
fuselage intersection occur where there is only
one intersection point on the plane-patch inter-
section curves. A search is performed by the
driver code to precisely define these terminating
points.

Coordinate Axes, Grids and Indices

For the grids described herein, the physical
point corresponding to the origin of the computa-
tional coordinate system is the leading point of
the wing—fuselage intersection, and the wing-
fuselage intersection curve corresponds to the £-—
axis. When back grids are considered, the §-axis
extends down the fuselage behind the wing. A curve
that will be described at a later point that spans



from the leading wing-fuselage intersection point
to the leading nose point on the fuselage will
correspond to the n—axis, and a curve along the
leading edge of the wing from the wing—fuselage
intersection point to the wing tip will correspond
to the z-axis (Fig. 11). A grid is represented

by F;(I,J,K) where

Fi(1,J,K) = [X4(I,J,K)  Y¥4(I,3,K) 2z4(I,3,K)]

and I =1,2,...L, J=1,2,...M, and
K=1,2,...No The top~front fuselage grid is de-
noted by F(I,J,K). The computational coordi-
nates are related to indices I, J, and K by

£E=(-1D/Q-1),
n=(-1D/M-=-1)
g = (K~ 1)/(N-1)

where I = 1,2,...L, J =
K=1,2,...N.

1,2,¢4.M, and

Fugelage Grid

The fuselage grid computation is preceded by
the computation of a distribution of grid points
on the wing-fuselage intersection curve
(Fi(1,1,1), I =1,2,...L) and along a curve on
top of the fuselage at n =1 (F;(I,M,1), I =
1,2,...L). Note that the configuration is
symmetric about the x-y plane at 2z = 0 (Fig. 1).
The computational £ —coordinate is uniformly discre-
tized on the unit interval 0 < £ < 1, and the
§-coordinate is related by "one-~to-one" functions
to the normalized-approximate arc length along the
wing-fuselage intersection curve and along the
top—-boundary curve. Considering only the top-
front grid, the normalization factors for the arc
lengths are the approximate arc-length value at
the trailing wing—fuselage intersection point and
the approximate arc-length value on the top-
boundary curve at the terminal point which has the
same x-coordinate as the trailing wing-fuselage
intersection point (Fig. 12). The physical
coordinates of the intersection curve and the top-~
boundary curve are related to the normalized ap-—
proximate arc lengths by interpolation into pre-
viously stored tables of coordinates versus arc
lengths. In accordance with the techniques
descyibed in references 6 and 11, grid spacing in
the physical domain is controlled by single-valued
functions relating computational coordinates to
normalized approximate arc lengths. Low slopes in
these functions correspond to a physical grid
concentration and high slopes correspond to
physical-grid dispersions (Fig. 13).

With the distribution of grid points along
the wing-fuselage intersection curve and the
fuselage—~top boundary curve, dense sets of points
are computed on fuselage surface curves and
stored. This is done with the Coons' patch-
surface representation of the fuselage and the

plane-patch intersection capability previously
described. In this case the planes are defined by
three points of which two are on the boundary
curves n =0 and n = 1. The third point is
defined to be on the x-body axis with the
x~coordinate equal to the x—coordinate of the
wing-fuselage grid point (Fig. 14). Using the
computer program described in reference 10 as a
kernel, a driver program specifies the points
defining the plane, orders the plane-patch inter—
section points, deletes multiple points, computes
the approximate arc length along the curves from
the wing-fuselage intersection boundary to the
fuselage~top boundary, and stores the coordinates
of the curves as a function of the normalized
approximate arc length. The distribution of the
grid points in the n-direction 1is obtained in the
same manner as previously discussed for the wing-
fuselage intersection and the top boundary.
Single-valued functions between the n-coordinate
and the normalized approximate arc lengths are
formed where low slopes result in grid concen-
tration and high slopes result in grid dispersion.
Figure 15 shows a fuselage grid with concentra-
tions toward the leading and trailing wing-
fuselage intersection points and toward the wing-
fuselage intersection curve. The fuselage surface
grid is represented by F;(I,J,1),

I=1,2,...L, J=1,2,...M.

Wing Grid

The plane~patch intersection capability and
arc-length spacing=-control functions are again
used to determine the wing grid. Also, the con-
cept of transfinite interpolation” is used to
conform the grid points near the wing—fuselage
intersection to the shape of the wing-fuselage
intersection curve. The process is to first
establish the normalized approximate arc lengths
along the leading and trailing edges of the wing
from the leading and trailing wing-fuselage inter-
section points to the wing tip and to express the
coordinates as tabular functions of the arc
iengths. In accordance with the technique de-
scribed above and in reference 11, a spacing-
control function relating the {-coordinate to the
normalized approximate arc length is determined.
In this paper, the control functions are either
uniform or increase exponentially in the direction
of the wing tip, and the same function is used for
the leading edge and the trailing edge. Given the
spacing distributions and a discrete set of
g—coordinates, physical coordinates Fl(l,l,K),
K=1,2,...N, F{(L,1,K), K =1,2,...N) are com-
puted on the leading edge and the trailing edge of
the wing. For each f-coordinate, a plane—patch
intersection on the wing is computed with the
third point for the plane specified by the X- and
Z-coordinates of the the leading-edge point and a
distinctly different Y-coordinate. Again, the
computer program described in reference 10 is used
as a kernel., A driver code defines the planes,
orders the points from leading edge to trailing
edge, deletes multiple points, and sets up tables
of coordinates as a function of normalized approx-—
imate arc length. The grid-spacing distribution
function for the wing—-fuselage intersection curve
in the E-coordinate direction is used to compute
an intermediate wing-surface grid E(I,K), I =
1,2,...L, K=1,2,,,.N. In order to conform the
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wing-surface grid to the shape of the wing-
fuselage intersection curve the final wing-surface
grid is computed by

Fi(I,1,K) = E(I,K) + [1 - g(X)}[F(L,1,1)

- E(I,1)] (3)
where
kIR = /(N = D] _
Z(K) = —
e -1
I=1,2,...L, K=1,2,...N, and k is positive

constant. Figure 16 shows a wing-fuselage surface
grid with grid concentration toward the wing-
fuselage intersection curve.

Unconstrained Surface Grids

Six physical grid surfaces from the top-front
grid correspond to the six sides of the computa-—
tional cube. Two of the surfaces are constrained
to lie on the prespecified wing and fuselage sur-
faces, and they have been discussed above. The
remaining four grid surfaces are not constrained
to prespecified surfaces, and they are referred to
as the side, front, back, and cap grid surfaces.
The side grid surface can be defined in the x-y
plane down the center of the fuselage. The front,
back, and cap grid surfaces conform to the wing,
fuselage, and side surfaces. Since this grid is
planar and the bottom grid boundary is specified
from the fuselage grid, a two-dimensional version
of the two-boundary technique as described in
references 3 and 11 can be applied directly with
minor changes to preexisting software. Also,
other two-dimensional techniques and software
could be used to generate this grid. Using the
two-boundary technique, only the outer-boundary
grid curve (F;(I,M,N), I =1,2,...L) and the
clustering control for the .cubic-connecting
function must be user specified. The top-front
side grid surface is denoted by F;(I,M,K),
I=1,2,...L, K=1,2,...N.

Defining the side-grid surface specifies the
grid-point distributions for the adjoining-
boundary grid curves for the front and back grid
surfaces (Fig. 17). Also, the grid distributions
along the boundary grid curves for the fuselage
and wing specify two more boundary grid-curve
distributions for the front and back grid surfaces
(Fig. 17). In this paper, the outer boundary grid
curves (F)(I,J,N), J = 1,2,...M, and Fj(L,J,N),
J=1,2,...M) are specified to be planar, and the
distribution of grid points along these curves is
based on normalized approximate arc-length distri-
butions as previously discussed. The front and
back grid surfaces, however, are not planar since
the wing-boundary grid curves are not planar.

A three-dimensional version of the two-boundary
technique is incorporated into the concept of
transfinite interpolation to compute the front and
back grid surfaces. The two-boundary technique is
used to compute intermediate grid surfaces
(E(1,3,K) and E(L,J,K), J = 1,2,...M,

K =1,2,...N) connecting the fuselage-boundary
grid curves to the outer-boundary grid curves.

The only additional information that must be

specified is a control function which defines the
grid clustering along the cubic-—connecting func-—
tion. Transfinite interpolation is used in a
similar manner as in the wing-grid definition. In
this instance, it is used to conform the front and
back grid surfaces to the side-boundary grid curve
and the wing-boundary grid curve. The formulation
is

FI(I)J’K) = E(I’J)K) + Q(J) [FI(I’]-,K) - E(I’l’K)]
+ B(J) [Fl(:[’M’K) - E(I ’M)K)] (4)
where

e-k[(J - /M- 1] _

e-k -1

1

a(J) =1 -

K[ - /M- D] _
B(I) = & A
e -1

and I =1 and L. The parameter k controls the
effect of the side boundaries at J = 1 and M
into the interior grid J = 2,3...M - 1.

All the boundary grid curves for the cap grid
surface are at this point defined (i.e.,
Fi(1,J,N), I =1 and L, J = 1,2...M,

Fi(1,J,8), I =1,2,..L, J =1 and M (Fig. 18)).
It would initially appear that a two-step
transfinite-interpolation formulation similar to
equation (4) could be used to generate the cap
grid surface. The formulation is

E(1,J) = a(I) F (1,J,N) + B(D) F @L,3,0  (5)
where
“[(I - 1)/ - D] _
a(n) =1 -2 = !
e -1
k(I - 1)/ - D] _
B(D) = < n :

e -1

and

F (I,3,L) = E(I,J) +o(3) [F(I,1,N) - E(1,1)]

+u() [F(1,M,N) - E(I,M)] (6)
where
&[(J - /M- D] _
o) =1 -2 . !
ek -1
and
k[ - /M- D] _
u =2 — :
ek -1
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The magnitude of the parameters k and K
extends the effect of the physical-boundary grid
curves into the interior of the grid surface.
Unfortunately, the generation of the cap grid sur-
face using this approach results in an unwanted
indentation of the surface. Possibly there exist
blending functions that would solve this problem,
but they have not been found. A second approach
that solves the indentation problem, but is not
entirely satisfactory, is the specification of
more points on the cap surface and applying bi-
directional tension-spline functions -- first in
the n~direction and then in the §-direction.
Approximate arc length is again used as an inter-
mediate variable, and the resulting cap grid sur-
face (Fi(I,J,N), I =1,2,...L, J = 1,2,...M) is
smooth and has no undesirable indentation
(Fig. 19).

The reason that the second approach is not
entirely satisfactory is that there is no consis-
tent way of identifying where the additional
specified points should be located on the surface.
A third approach is to specify the cap surface by
a Coons' patch definition similar to the fuselage
definition. That is, the cap surface could be
specified by cross-sections along the x-axis.

Grid curves between the wing-tip boundary grid
curve and the top-side boundary grid curve could
be found by using the plane-patch intersection
capability previously described for the fuselage.
The curves would be stored as a function of
normalized approximate arc length and the grid-
point distributions along these curves could be
derived by linear blending with the distributions
of grid points along the front-boundary grid curve
and the back-boundary grid curve.

Interior Grid Computation

Once the exterior grid surfaces corresponding
to the six sides of the computational cube have
been found, an interior grid is described by
transfinite interpolation using linear-blending
functions. That is:

D(I,J,K) = [1 - (K - 1)/(N - D]JIF(1,3,D] (7)

+ (K - /(N - DHF (1,3,0)]

E(1,J,K)

D(1,J,K) (8)
+ [l = (= 1)/ - DIFL,L,K)
- D(I1,L,K] + [(3 - 1)/ - 1})]
[FI(I,M,K) - D(I,M,K)]
F (1,3,K) = E(1,5,K) (9
+[1-@-D/@ - DIFI,IK
- E(1,5,K)] + [(I - /(L - D]
[F,(1,,K) = E(L,J,K)]
where I = 1,2,.0.L, J =1,2,...M, and

K=1,2,...N. Selected interior-grid surfaces
for the top-front grid are shown in Figure 5.

Selected interior-grid surfaces for the top-front
and bottom-front grids are shown in Figure 20.
Figures 21 and 22 show the back-top and bottom
grids. Grid concentrations in the latter figures
are at the leading and trailing edges of the wing
and toward the wing-fuselage intersection.

Other Configurations

There are many topological complexities that
can occur on real wing-fuselage configurations
that have not been considered in this paper. For
instance, placing the wing very high or very low
relative to the fuselage creates toomuch grid con-
centration on the part of the fuselage near the
wing-fuselage intersection. Also, if the wing has
a sharp leading edge, the C-type of grid may not
be satisfactory. On the other hand, the component
parts of the procedure such as surface representa-
tion, patch-plane intersections and the grid spac-
ing control are applicable to a wide variety of
grid generation problems. Two additional examples
with different topological considerations are
shown here. The first example is a canard--
fuselage grid (Fig. 23) where the canard has a
sharp leading edge, and the second example is a
wing tip grid (Fig. 24). The point that is being
made here is that a variety of techniques and
software tools are available for creating grids
about complex configurations. It is likely that
some of these tools will be developed into user
friendly software systems that are highly
efficient.

Conclusions

A boundary-fitted wing-fuselage grid with
several grid clusterings has been produced using
Coons' patch-surface definition, plane-patch in-
tersections, and algebraic interpolation. There
are several conclusions that can be drawn from
this demonstration. They are:

1. It is feasible to specify an aircraft
surface independent of the grid generation pro-
cess, and highly developed techniques and software
developed for linear aerodynamics, and model mak-
ing can be used.

2. A building-block concept where several
adjoining or partially overlapping physical grids
map to a computational cube simplifies the three-
dimensional grid generation process.

3. The intersection of a simple surface
(plane) with the configuration surface establishes
curves along which grid points are distributed.

4. Algebraic grid generation techniques are
readily applied to obtain the boundary and
interior grid of each building block once the grid
on the configuration surface is defined.
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