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Abstract

A numerical method that solves the
Euler equations for compressible flow is
used to study leading-edge vortex dyna-
mics. The particular cases simulated are
subsonic flow M,=0.3 around a twisted and
cambered cranked-and-cropped delta wing at
two angles of attack, a=12.5 and 20 deg.
This geometry induces multiple leading-—
edge vortices in a straining velocity
field that brings about a spiralling flow
instability.The discretization contains
over 600,000 cells and offers sufficient
degrees of freedom in the solution to
exhibit the onset of chaotic vortex flow
that could well lead to vortex bursting.
These two cases are studied to observe the
behaviour of the vortex at high incidence
angles. The simulated results are compared
with wind-tunnel measurements. The agree-~
ment at inboard sections 1is reasonable for
the position and strength of the leading-
edge vortex, but outboard it is poor be-
cause of the complex transition to dis-
ordered vortex flow at the tip. Both the
numerical simulation and the experimental
measurements show that the flow at a=12.5
deg. is unsteady. The computations predict
a premature bursting of the vortex at a=20
deg. and the flow is again steady.

Nomenclature

CL = lift coefficient

SD = drag coefficient

g L= fate-of-strain tensor
ex,ey,ez=Cartesian unit vectors
ED = tgtal flu§ d}ffgrences
H{g)= qV + p[O,ex,e ,ez] flux

M, = freestream Mach number

n = unit normal vector

P = gtatic pressure

Py = total pressure

g = [p,pu,pv,pw] variables

v = velocity vector

u,v,w = Cartesian components of 5
X,y¥,2 = Cartesian coordinates

a = angle of attack

p = density

E = artificial viscosity model
w = vorticity curl Vv
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Introduction

Vortex flows are among the most diffi-~
cult to analyze because of their inher-
ently nonlinear interactions. One there-
fore tries to study a model problem that
contains only one generic aspect of such
flows in a simple setting, free of other
complications, in order to reach a better
understanding. But it is not easy to find
a simple two-~dimensional model problem of
vortex flow, preferrably with an analytic
solution, because many of these are often
time dependent and even unstable. One in-
viscid model, however, of steady flow past
a slender conical delta wing of infinite
length in which a vortex is shed from the
leading edge has been studied numerically
and has offered insight into the nature of
the problem {see the two recent reviewsl-
and the references therein). The vortex in
reality is formed by the rolling up of the
shed shear layer. In the limit of the
vanishing viscosity of the model the shear
layer shrinks in thickness to a vortex
sheet, which coils up into a spiral having
an infinite number of turns. Actually a
vortex core never forms at the center of
this theoretical inviscid spiral, and
hence is unrealistic in terms of detailed
core structure which is a viscous pheno-
mena. In practical computations at most
only a few turns of the coil are accur-
ately resolved before the structure of the
spiral is either lost in the dissipation
inherent in a finite representation, or is
replaced by another model for the core,
e.g. a line vortex. In either case an
accurate and detailed representation of
the core structure is doubtful. But just
outside the core the model does represent
accurately the global guantities like
circulation around the core. And the vor-~-
tex sheet is the appropriate model to
study the dynamics and stability of the
rollup process since its inflexional vel-
ocity profile suggests that an instability
would be inviscid in nature. Although one
might expect a Rayleigh -instability,
Moore®' ", making the two-diménsional time-
dependent analogy, has analyzed the prob-
lem of the coiling sheet and found it to
be marginally stable to 2D disturbances,
the shortest wave-lengths being the least
stable. The stretching of the sheet as it
winds tighter into the spiral is the sta-~
bilizing process. In addition computa-
tional models have been formulated for the
corresponding 3D problem where the wing is
given a trailing edge and so truncated to
a finite length. If the flow is subsonic,
it cannot be strictly conical. The upwash
at the trailing edge then produces a 3D



disturbance that makes the flow locally
nonconical, but a number of numerical
computations®™® indicate that the result-
ing sheet structure still remains stable
even in equally high resolution simul-
ations as the one we present here, alt-
hough a recent result may indicate a
splitting of the core vorticityg. Evid-
ently the disturbance is not great enough
to upset stability. Flows such as these,
we believe, can be characterized as being
of low helicity and hence are relatively
stable.

The question we wish to raise here is:
what happens to stability if the wing
configuration is fundamentally nonconical
and the flow is high speed and compress-—
ible? A good example of such a wing has a
cranked delta planform, which is currently
attracting considerable practical inte-
rest. In general the flowfield can be
thought of as one with high helicity. At
some angle of attack a vortex sheet is
shed from the leading edge, but the pre-
cise dynamics of the sheet are not well
understood. For example, is one single
contiguous sheet shed along the entire
leading edge, or do two distinct vortices
form, and under what conditions the vorti-
cal features remain stable are still open
questions.

In an earlier numerical investigationlo
of this wing in subsonic flow M_,=0.3 but
at the lower angle of attack a=10 deg.,
the vortex shed from the leading edge
developed a spiralling mode in space but
was steady in time. The computations
agreed with the experiments reasonably
well in board, and both indicated the loss
of a coherent vortex outboard of the
crank. We speculated that this unstable
spiralling mode was the onset of a dis-
ordered vortex flow, and possibly the
precursor of vortex bursting. In this
paper we continue to explore this issue in
the thrust of a numerical experiment of-
fering high resolution in the mesh. The
wing is the same but the incidence angle
is higher in the hope of providing at
least some preliminary insight on the
nature of the spiralling mode and the
behaviour of the computational model based
on the Euler equations of motion. The
results indicate that the sheet remains
intact after undergoing the disturbance of
the crank but it does not wrap around into
a double-branched spiral. Instead the
disturbance creates waves on the sheet
which grow streamwise and tend to break up
the sheet near the trailing edge. The
increase in the overall 1lift on the wing
in going from 10 deg., to 12.5 deg.
incidence suggests that only a small
fraction of the energy in the coherent
vortex structure is being drained off to
support the chaotic features. But because
the flow still possesses substantial 1ift,
we do not believe the vortical structure
has broken down completely in the usual
sense. At 12.5 deg, however, the flow is
not steady. At 20 deg. incidence the com-
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puted flow is steady but a very signifi-
cant part of the energy of the coherent
vortex has been drained off, and the vor-
tex appears to have burst.

Vorticity and Flow Instability

The concept of a cranked delta wing is
a hybrid one. The design goal "is to
achieve the gualities of the low-aspect-
ratio wing, high isobar sweep across mid-
span and vortex lift at high speed, and to
improve the tip-stalling behaviour at low
speeds. Since cranked delta wings have
been studied mostly at low speeds, our
discussion begins for the case of incom-
pressible flow. At some angle of attack a
vortex sheet is shed from the leading
edge. Figure 1 outlines three possible
scenarios for the dynamics of that sheet.
The wing is sketched with a side edge at
the tip which gives rise to a tip vortex,
but our discussion is concerned mainly
with what happens at the crank in the
leading edge. The model Hoeiljmakers uses
to study this configuration assumes that
at the crank the sheet remains intact but
the change in sweep angle sets up a dis-
turbance that causes the sheet to coil up
into a double-branched spiral (Fig. la).
In the scenario of Brennenstuhl and
Hummel *“, based on wind tunnel observa-
tions, the sheet tears at the crank (Fig.
1b) and leaves a section inboard whose two
free edges spiral up to form an inboard
vortex which is not fed beyond the crank.
The section outboard, if a sheet is shed
at all, also rolls up into the outboard
vortex. In both scenarios two distinct
vortices of like sign are created and
rotate about one another. The flow struc-
ture 1is taken to be stable and composed
only of large-scale motions. As the angle
of attack increases the co-rotating vorti-
ces have been observed to merge before
reaching the trailing edge. At still
higher angles of attack the occurence of
vortex breakdown was reportedlz. This then
leads to the third scenario (Fig. 1lc) that
suggests that the tearing process may
bring about an instability in the sheet,
which is a precursor to complete break-
down. Two vortices still form here, but
the sheet shreds at the crank, and to-
gether with the two cores, they all dis-
integrate into a less-ordered, but stand-
ing-wave pattern, of vortical structures.
Helicity would be high. The details of
this scenario are still one of conjecture,
for there is not yet any clear-cut experi-
mental evidence to tell us anything else
with more certainty.

The basis for belief in the likelihood
of the last scenario being correct rests
on the inviscid instability of the vorti-
cal motion. Let us sketch how this might
come about by analogy to simpler situa-
tions. Consider first the simple case of
an isolated vortex filament in an inviscid
and incompressible fluid. A varying curva-



ture immediately induces a torsion. The
coupling of these two phenomena, curvature
and torsion, was studied by Betchov for
the case of a plane vortex filament of
variable curvature. The different segments
of the filament move out of the plane at
different induced velocities, and thus it
acquires torsion. In general, if a curve
moves under the influence of its own seg-
ments, two equations can be constructed
specifying the evolution of the radius of
curvature and of the torsion. Betchov
studied these equations for the case of a
helicoidal filament and found that it
moves in space with a translation velocity
and a rotation producing a tangential vel-
ocity. He found two opposing mechanisms in
the system of equations, one an intensifi-
cation of the torsion and the other a
dispersion of the torsion, but the ana-
lysis indicates that the filament may find
a statistical equilibrium between the two.
He speculated that it might be one step on
the way to the onset of chaotic motion.

This process describes a way that a
single filament may undergo growth and
diminishment simultaneously but still
achieve a balanced state in equilibrium.
Snow!" has found that a three- dimensional
disturbance can set off an instability in
a vortical flow with a highly sheared
azimuthal velocity component. Both of
these cases at least suggest the possi-
bility of a mechanism to transfer energy
from large-scale to small-scale motion,
the so- called energy cascade.

Everything we have said so far pertains
to low-speed incompressible flow. Even
less is known about the compressible situ-
ation, including what takes place at
breakdown!®716 “But the strong demand for
practical knowledge about this case moti-
vates us to explore it numerically. To
begin the discussion, the dynamics now are
governed by the vorticity equation for
compressible nonisentropic flow with vel=-
ocity ¥

o 1
=58 * o7 (grad pxgrad p) (1)
where w= curl Y and £ is the rate-of-
strain tensor ;

6= $(grad V + gradT¥)

At transonic speed we can expect the
vorticity to be amplified by variations in
density, through non-isentropic processes
like shock waves (the second term on the
right), and by stretching in a straining
velocity field (the first term on the
right). The inboard vortex creates a
straining velocity, but since the vorti=-
city is nearly parallel to the velocity,
the stretching term is rather small, and
so also is the helicity. The vorticity in
the shear layer, however, must follow the
leading edge, so at the crank it takes a
new direction and it seems likely that the
stretching term will be large in this re-
gion. For the same reason the helicity,
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defined as Yr+w, may reach a local maximum.
We may find, therefore, an intensification
of vorticity taking place in the vicinity
of the crank. Once that happens it becomes
a hopelessly complex situation to come to
grips with, and the dynamics of vorticity
can only be foretold by a numerical sol-
ution of the governing equations.

Motivated by the practical interest in
this case, the aim of this paper is to
carry out an exploratory numerical com-
putation based on the Euler equations for
compressible flow around a cranked delta
wing in order to reach at least a prelimi-~
nary understanding of the dynamics of the
vortex features. By these simulations,
using even the highest numerical resol-
ution possible, we cannot, however, hope
to answer all the outstanding questions
surrounding this problem. Our goal is more
in the spirit of tracing a broad outline
of the phenomena involved, along with
offering some elementary explanations for
their presence, as a means to establish a
suitable phenomenological model. This may
help to guide the way to more fruitful
analysis in the future.

Numerical-Simulation Procedure

Let us first look more closely at two
alternative computational models for in-
viscid incompressible vortex flow.
Hoeijmakers® has devised a method based
upon a panel technique that inserts a
vortex sheet into the solution as a dis-~
continuity and adjusts it to be compatible
with the surrounding potential field,
usually termed vortex-sheet fitting. The
strong point of this approach is the abs-
ence of diffusion of the sheet, while its
limitation 1is that the overall starting
location and topology of the sheet must be
specified before hand. An alternative is
to solve the incompressible Euler equ-
ations numerically on a grid. The vortex
sheet, smeared out over a number of mesh
cells, then is obtained automatically as
part of the numerical solution, usually
termed vortex-sheet capturing7. Its weak-
ness is that all the flow features must be
supported by the mesh, and this implies a
certain amount of dissipation that varies
with the spacing of the mesh. Thus a vor-
tex sheet diffuses over a number of cells.
On the other hand the strong point of this
approach is that no information about the
topology of the sheet needs to be speci-~
fied prior to the solution. The smeared
sheet can meander exactly as it likes,
provided there are sufficient grid points
to maintain its general structure. A re-
cent comparison of results from these two
methods for incompressible flow past a
conical delta wing of finite length shows
remarkable agreement in the position and
strength of the vortical featureslt’., It
demonstrates that even with a mesh of less
than 80 000 cells the diffusion has not
brought about any substantial deteri-
oration in the overall accuracy of the re-
sults.



Since all flow features naturally dif-
fuse in any numerical simulation, they are
sharpest when resolved with the highest
possible density of mesh points allowed by
the size of current super-computer me-
mories. Therefore we have used Eriksson's
method of transfinite interpolation to
construct a boundary-conforming 0-0 type
mesh with just over 600 000 cells around
the cranked delta wing (Fig. 2), the
finest mesh that we can work with at this
time. The mesh spacing shown here sets the
scale of the shortest modes resolvable in
the flow.

The Euler equations for compressible
flow can be expressed as an integral bal-
ance of the conservation laws

% Iflq avol + [[H(q)ep ds= [[T as (2)

where g is the vector with elements of
mass and momentum. Since the total ent-
halpy in the steady flow under consider-
ation here is constant, the energy equ-
ation is not needed in the system. The
inviscid flux quantity H{g)°*n represents
the net flux of g transported across, plus
the pressure p acting on, the surface §
surrounding the volume of fluid. The term
T is the artificial viscosity model. It
has the property of an energg sink for the
shortest modes, i.e. (d/dt)g<<0 summed
over all the cells including those at the
boundaries. Thus the method is dissipa-
tive. The finite-volume scheme then dis-
cretizes (2) by assuming that q is a cell-
averaged quantity located in the center of
the cell, and the flux term H{q)°n is
defined only at the cell faces by averag-
ing the values on each side. With these
definitions and calling the cell surfaces
in the three cooordinate directions of the
mesh §;, §5, and Sy, we obtain the finite
volume form for cell ijk

gfqijk"‘[él (B'SI )+5J(H'SJ)+5K(H'SK) ]ijk=

= (61+6J+5K)T (3)
where 8;(B°8;)=(H*81) 4 -(HSy) ;. is
the cen%eredIdiffergnéglogerato%.lAlégre
detailed description of the method is
given in Ref. 19. With the appropriate
boundary conditions we integrate this last
equation with the two-level three-stage
scheme

9o = q"

q := gy + At _FD{q,)

q" 1= q, + At[1/2 FD(q,) + 1/2 FD{q')
n+l _ o O m
q 1= gg + At1/2 FD(qgy) + 1/2 FD(gq")

that steps the solution forward in time.
Because a local time step At is used, true
time accuracy is not obtained. But when a
steady state exists, the procedure is
capable to reach it, and when one does not
exist, the pseudo-time iterations do not
converge. The method has been under devel-
opment for a number of years. It is well-
tested, and in an extensive series of com-
parisons with other methods it has proven
to be accurate and reliable??,
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Data Structure and Methodology for Vector
Processing

The nature of the vector instructions
in current supercomputers emphasizes rapid
operations upon contiguous cells in me-
mory. A three-dimensional structure suit-
able for vector processing is correctly
visualized as consisting of a collection
of adjacent pencils of memory cells with
suitable boundary conditions. In conjunc-
tion with the data-structure design, key
features of the vector processing proce-
dure are: 1) separate storage arrays are
assigned for the dependent variables q,
flux component F, and flux differences FD,
2) one extra unit is dimensioned for each
computational direction to hold the bound-
ary conditions, and 3) flux differences
are taken throughout the entire field by
off~setting the starting location of the
flux vector F. In this way all of the work
in updating interior points is exclusively
vector operations without any data motion.
The vector lengths obtained are long,
containing about 50,000 elements, and span
3D subsets of the data. This high degree
of vectorization allows processing very
large data sets most effectively.

Simulated Vortex Flowfield

The flow model (2) and (3) that we have
described dissipates phenomena whose wave-
length is on the order of the mesh spac-
ing. The smaller we make the mesh spacing
by adding more grid points, -the finer the
scale~length of the phenomena that we can
resolve without it being obliterated by
the dissipation. In this way the simul-
ation procedure acts as a low-pass filter
on the features we observe where the cut-
off wave-length is set by the fineness of
the mesh (Fig. 3). The usual mesh dimen-
sions, say about 80,000 cells, can support
only the large-scale features, which we
presume are stable. But what happens if we
use a much finer mesh? Smaller scale fea-
tures, if they are present, will then be
represented in the numerical solution. And
it is just these short waves that Moore's
stability analysis3' suggests are the
most unstable.

We have hypothesized that, given a
sufficient number of grid points to re-
solve the shed shear layer and limit its
diffusion, the numerical solution of the
Euler equations does provide useful infor-
mation about the dynamics of the free
shear layer around the cranked delta
wing In particular if the resolution is
sharp enough, one may determine whether
the shed sheet is stable, as in scenarios
1 and 2, or unstable, as in scenario 3.
Furthermore, we have conjectured that if
the sheet is unstable to short-wave per-
turbations, small-scale motions will be
generated and supported by energy trans-
ferred from the large-scale motionl?, If
so the model will reflect the inertial
range in the energy spectrum sketched in



Fig. 3. In our model the transfer of
energy must be a steady process, similar
at least in this regard to the one dis-
cussed by Betchov.

If this line of attack on the problem
is to succeed, we must be able to refine
the mesh sufficiently so that the resolved
spectrum reaches far enough into the small
scales in order to capture the suspected
unstable modes. If it does not, we will
never see the instability. The recent
construction of a CYBER 205 supercomputer
with 16 M words of real memory just now
allows the use of more dense meshes than
what was possible before. Of course there
will always be those modes that are smal-
ler than the resolution of our mesh, no
matter how big our computer is. And we can
say nothing about these modes. All we can
do is construct several meshes of varying
mesh fineness, and then compare the sol-
utions computed upon them in order to
establish the trend as the resolution
increases, as we have done in Ref. 10.

Results of Numerical Experiment

The structures in the flowfields are
surveyed by contour plots of the flow
properties, primarily normalized static
pressure l--p/pt°° to identify shock waves
and expansion regions, and total pressure
coefficient l—pt/pt°° to show the shear
layers and the shocks. By comparing these
two sets of contours together, one can
differentiate the shear layers from the
shocks. Selected views of contours of Mach
number are presented also. The two sol-
ution are obtained on the same mesh having
the identical number of cells in each of
the coordinate dimensions (160%x48x80).

The contour lines on the wing surface
in both cases indicate that a dramatic
change in the footprint of the vortex
takes place in the vicinity of the leading
edge crank. The change is one from ordered
vortex flow inboard of the crank to di~
sordered flow outboard which is due, we
believe, to the spiralling motion brought
about by the torsional forces in a curving
vortex filament. We saw this same feature
at 10 deg. incidence alsol®/2l A1l three
results suggest the third scenario where
the vortex sheet shed form the leading
edge tears at the crank and then develops
unstable high-spatial-frequency modes. At
10 «deg. incidence these modes are stable,
i.e. they are standing waves and do not
change with time. We also found that these
high-frequency modes are fed by a rela-
tively small drain of energy from the
large-scale coherent vortex flow. This
situation changes at the two higher inci-
dence angles we investigate here.

a) Incidence «=12.5 deg.

For conditions M,=0.3 ®=12.5 deg. Fig.
4 presents contour lines of the flow on
the upper surface of the wing and in a
mesh surface intersecting the wing along a
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constant local chord station. The contours
reveal a strong and ordered vortex from
the apex up to the crank where it is dis-
persed and becomes disordered. The lift
and drag computed for this case C;=0.634,
Cp=0.124, compare well with those measured
in a wind tunnel experiment 2 Cp,=0.66,
Cn=0.14. This good agreement, however, is
misleading because after 1500 time iter=-
ations the computed solution is not
steady. During the last 300 iterations the
lift coefficient oscillates above and
below the level of 0.65 by as much as 30%.
The designers of this wing have reported
that the measurements also suggest un-
steady flow. It would appear then that
unlike the case at 10 deg. incidence, this
case is one of unstable modes oscillating
in both space and time.

b) Incidence «a 20 deg.

Figure 5 surveys the flow computed for
Mo=0.3 =20 deg. in the same way as Fig.
4. The footprint here also breaks up at
the crank, but now the pressure trough is
not as deep as in Fig. 4, so the ordered
vortex inboard of the crank is not as
strong. This corresponds to a substantial
loss in 1lift. The coefficents for this
computed case are C;=0.516 and Cp=0.182 ,
and they are very steady. In contrast to
the previous case, convergence was reached
in 500 time iterations and 1lift and drag
were absolutely steady during the last 100
iterations. These observations might
suggest that at 10 deg. incidence unstable
modes are present but steady and drain
only a small fraction of the energy in the
coherent flow, at 12.5 deg. these modes
become unsteady, and at 20 deg. they drain
off so much energy that the vortex has
burst and the flow becomes steady again.
The experiment, however, contradicts the
conclusion of vortex bursting because the
measured 1lift and drag are much higher
C;,=0.88 Cp=0.32. Although there may be
reasons for these great differences, the
experimental model included the fuselage
for example, which may be shedding nose
vortices that somehow stabilize the flow,
one must conclude that the computer simul-
ation falsely predicts vortex bursting in
this case.

A further comparsion with experiment
provides additional insight. Figure 6
contains the chordwise comparison at 4
span locations of the surface pressures
computed in the fine mesh with those mea-
sured in the wind tunnel??. (Because it is
so thin, the tip section of the model
contains only upper-surface taps.) The
physical model includes a fuselage, but
the numerical one does not. On the lower
surface the agreement of all results is
guite good. On the upper surface the in-
board sections at y/b=0,25 and 0.50 show
good agreement for the position and
strength of the vortex as evidenced by the
suction peaks it produces. The agreement
in the next two sections is considerably
worse, however. Near the crank at y/b=0.75
a discernible vortex suction peak is found



but it is weaker and broader and somewhat
downstream of the measured one. In the tip
section y/b=0.9 there are no peaks in
either the computed or the measured
values, and this suggests the absence of
acoherent vortex. Quantitatively, however,
both sets of computed pressures differ
from the measured values by as much as a
factor of two at the leading edge. Poss-
ible explanations for this discrepancy may
be the influence of the fuselage of the
model, including the shedding of nose
vortices, and aeroelastic effects at the
tip of the model. It seems more likely,
however, that the flow in these two sec-
tions are undergoing a complex transition
from a coherent leading- edge vortex in-
board to a disordered vortex flow at the
tip, and it is difficult to model this
situation. For flows at low angle of
attack the model also has produced results
in good agreement with a panel method?l,

Figure 7 displays the way lift varies
with angle of attack o in our computations
presented here and previouslylo' and
compares it with that measured experi-
mentally. The numerical simulation appears
to predict vortex bursting prematurely.

Final Remarks

Vortical flows are among the most
baffling for the fluid dynamicist to
understand. They are susceptible to insta-
bilities, they can develop local regions
of extreme velocity and vorticity, and
they are inherently nonlinear. So they are
prime subjects for numerical study. Here
one aspect of vortical flow, the behaviour
of the leading edge vortex over a cranked
delta wing at high incidence has been
studied. With sufficient degrees of free-
dom given to the solution by the mesh
size, small-scale torsional-wave effects
due to the cranked leading edge have been
observed in the flowfield. At 12.5 deg.
incidence high 1lift is still maintained,
and both the experiments and the comput-
ations indicate that the vortex has not
burst. The flow, however, is unstady. Wind
tunnel measurements verify that the re-
sults of the numerical simulation bears a
certain amount of realism. At the highest
incidence a=20 deg., the computer simul-
ation indicates that the flow is steady
but the leading edge vortex has burst. The
experiments, however, show a stronger
vortex that has not burst.
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Three scenarios for the dynamics of the shed sheet:

a) intact sheet with
double~branched spiral, b) sheet tears but 1s stable, ¢} sheet tears and
in unstable.
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Fig. 2a) 0-0 type mesh with 160 x 48 x 80 cells around a
cranked delta wing.

465



Fig. 2b) Twist angles of cranked delta.
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Fig. 3 The numerical method acts as a low-pass filter on the solution.
The more points added to the mesh, the higher the wave number
resolved.
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PRESSURE

TOTAL PRESSURE

Flowfield computed with fine mesh of 160 x 48 x 80 cells. Mx=0.3,

& =12.5 deg. Contours of normalized pressure 1-p/pt_ , Mach number,

and total pressure 1~pt/pt,. Over wing and upper surface.
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Fig. 5 Flowfield computed with fine mech of 160 x 48 x 80 cells. M_=0.3,
o =20 deg. Contours of normallized pressure 1-p/pt, » Mach number,

and total pressure 1-pt/pPt, . Over wing and on upper surface.
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Fig. 6 Surface pressure coefficients Cp computed with the fine mesh and
compared with wind tunnel measurements along chordwise sections.
a) Me=0.3, a=12.5 deqg.
b) Me=0.3, a=20 deg
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Fig. 7 Variation of lift CL with angle of attack

(see also Ref. 10 and 21).
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