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The author presents an original, hybrid, analyti~
cal-numerical method for the design of the optimum-
optimorum shape of the integrated wing fuselage con-
figuration, for which all its geometrical characte-
ristics (i.e. cambers, twists, thicknesses and also
the planprojections of the wing and of the fuselage)
are simultaneously determined in order to obtain a
minimum drag, at cruising Mach number M_. The design
of the optimum-optimorum shape of the integrated
wing-fuselage configuration needs 5 seconds computer
time, on Cyber 175.

I. Introduction

, Previous theoretical considerations of the author
\1)‘(10), lead to the conclusion that the drag of
supersonic aircraft can be greatly reduced if the
conventional wings are replaced with fully-optimized
delta wings (called by the author optimum-optimorum
delta wings).

The next step of the drag reduction of the entire
aircraft is to design optimum-optimorum shapes of
integrated wing-fuselage configurations.

A wing~-fuselage configuration is here considered
as a wing alone, which surface is discontinuous along
the junction lines between the wing and the fuselage.
If, additionally, the wing and the fuselage have the
same tangent surfaces in each point of their juncti-
on lines, the equivalent wing of the wing-fuselage
configuration is here called integréted wing.

The design of optimum~optimorum integrated wing

leads to the solving of two mathematical problems.
- The first problem consists in the determination
of the solution of a three-dimensional boundary va-
lue problem for the dimensionless axial disturbance
velocity u on the wing-fuselage configuration.

The downwash w is supposed to be piecewise appro-
ximated in form of superposition of homogeneous po-
lynoms in two variables.

The solution given here by the author for u in in-
tegrated form fulfils a three~dimensional hyperbolic
partial differential equation and the boundary con-
ditions on the wing and fuselage, at the infinity
(forward) and also on the characteristic Mach cone
of the apex of the wing-fuselage configuration. Addi-
tionally, this solution for u is matched with a boun-
dary layer solution. This solution for u is obtained
by using the results of high conical flow theory of
Germain (11), the hydrodynamic analogy of Carafoli
(12),113) 414 the principle of minimum singularities
(14 (15)
- The second mathematical problem consists in the
determination of the optimum-optimorum shape of the
integrated wing.

The determination of this shape leads to the sol-
ving of an extended variational problem for the drag
functional cd(t), which consists in the simultaneous
determination of the equations Z(t)(xl,xz) and
Z'(t)(xl,xz) of the shapes of wing and fuselage sur-
faces (which enter as unknown functions in the drag
functignal Cd<t)) and of the similarity parameters
V and V of the planprojections of wing and fuselage
(which enter in the boundary of the drag functional
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Cd(t)) in such a manner that the drag attains its
minimum, for a given cruising Mach number M.

An original hybrid, numerical-analytical method
(called also graphic-analytical method), is here
presented in order to approach the solution. The
graphic-analytical method is a further application
of the optimum-optimorum theory of the author (6),
which will be presented below.

II. The Optimum - Optimorum Theory
for Integrated Wings

The optimum-optimorum theory was introduced by the
author (21,(3), (4),(5),(6) for the wing alone. It
allows also the determination of the here called op-
timum-optimorum integrated wing among a given class
of integrated wings. The integrated wings belonging
to a class are defined by means of their geometrical
and aerodynamical properties.

Two integrated wings belong to the same class if:
- their planforms can be related through affine
transformations. Both planforms are defined by the
same number of free similarity parameters (vy,v,,..
vn) with the same significance;

- their surfaces are piecewise generated (or appro-
ximated) in the form of superpositions of homo-
geneous polynoms of the same degrees. The coeffici-
ents of these polynoms are free parameters;

-~ the integrated wings satisfy the same auxiliary
conditions.

In order to solve this enlarged variational pro-
blem for the drag-functional Cd(t) (of the optimum-
optimorum integrated wing) with free boundary the
author uses its hybrid, graphic-analytical method (2),
(3),(4) ,(5),( 6), which reduces the computer time
necessary for the determination of the fully-optimi-
zed shape of the integrated wing. This method starts
for the remark that the dependance of the drag func-
tional C versus the coefficients of the polynoms
{(which approximate the surfaces of the integrated
wing) is of quadratic form, while the dependance
versus the similarity parameters of the planform are
nonlinear and very complicated.

The method presents two steps.
~ In the first step the set of similarity parameters
of the planform (vl,vz,..,vn) are considered as gi-
ven. The boundary of the drag functional Cg t) s
now a priori known. The optimal values of the coef-
ficients of polynomial expansions of the surface of
the integrated wing are obtained by solving a linear,
algebraic system. These optimal coefficients deter-
mine uniquely the value of the drag functional Ca t),
for the prescribed set of similarity parameters of
the planform.

- In the second step, through systematical variation
of the set of similarity parameters, each point of
what is termed here lower-limit hypersurface of the
drag functional Cg i.e.

(t)

(Cs opt = f(vl, vz,..,vn), (1)
can be analytically determined. The '"position" of the
minimum of the hypersurface is determined numerical-

ly (or graphically) and gives the best set of simi-
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larity parameters (vl,vz,..,vn) of the planform, as
presented in Fig.l, for two similarity parameters.

The optimal set of similarity parameters together
with a chosen area S, of the planprojection determi-
ne the shape of the planform of the optimum-optimo-
rum integrated wing of the class. The optimum-opti-
morum integrated wing is exactly this optimal inte-
grated wing (corresponding to this optimal set of
similarity parameters). The minimum value of the
"ordinate" of the hypersurface represents the drag
coefficient of the optimum-optimorum integrated wing
of the class.

The above theory was previously used by the aut-
hor (3)-(10) ana (18) for the effective design of
the shape of optimum-optimorum delta wing Adela, pre
sented in Fig.2. This wing has a minimum drag at
cruising Mach number M_ = 2 and presents a low drag
and a high 1lift for a great range of Mach numbers
and angles of attack.

For the effective design of the optimum-optimorum
shape of the integrated delta wing it is firstly ne-
cessary to solve the boundary value problem for the
axial disturbance velocity u of the wing-fuselage
configuration.

III. Determination of the Solution of the Three -
Dimensional Boundary Value Problem of the Axial
Disturbance Velocity u of the Integrated Delta Wing

Let us refer the integrated thick, lifting delta
wing to a three~orthogonal system of axes Ox,x,x, ha-
ving the apex O of the wing as origin. The plane
Ox;x; is the plane of symmetry of the integrated
wing and the axis Ox, is the bisectrix of the angle
of the integrated wing, in the plane Ox;%,, at its
apex (the shockfree entry direction).

The integrated thick, lifting delta wing surface
is supposed to be flattened in the plane Ox,x, pre-
sented in Fig.3a.

The integrated thick, lifting delta wing is con-
sidered in a parallel stream with the undisturbed
velocity 6&, at moderate angle of attack a (measured
between the Ox,- axis and 9_ ).

In the framework of linearised theory for flatte-
ned integrated thick, lifting delta wings at modera-
te angle of attack o, in the boundary value problem

V2

|
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'
| v///“(cd )opt opt

Fig.l The Lower-Limit Hypersurface (I)
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concerning the determination of the axial disturban-
ce velocity u the effect of lift can be separated
from the effect of thickness.

Further the following two delta wing components
will be separately considered:

- the thin integrated delta wing which is the skele-
ton surface of the thick, lifting integrated delta
wing and is considered at the same angle of attacka
and,

-~ the thick~symmetrical integrated delta wing which
has the same thickness distribution as the thick,
lifting integrated delta wing, but its skeleton sur-
face is plane. This component is considered at zero
angle of attack.

The skeleton surface Z(xl,xz) of the integrated
delta wing is supposed to be continuous, but, for
the sake of generality, the thickness distributions
Z*(xl,xz) on the lateral sides OA1C1 and oa,C, (cor-
responding to the wing) and 2'*(x;,x%,) on the cen-
tral part OC,C, (corresponding to the fuselage) are
supposed to be different. Further this wing will be
called initial integrated delta wing.

The author introduced, (2),03),04),(5) a well-
suited affine transformation in order to obtain di-
mensionless coordinates

X
N (2
1

(y=% , 4 =— , v=BgL, V=

B =V - 1"

A transformed integrated delta wing is obtained,
which has the maximal depth 1 and the half-span 1
(Fig.3b). The traces C; and 62 of the junction lines
OC; and OC, (between the wing and the fuselage) have
the following positions on the axis éy (parallel to
axis 0%.) ¥ = * V/v.

The transformed integrated delta wing is placed
in a supersonic flow with the cruising Mach number

M=Vi1+v2',

The skeleton surface Z(il,iz) of the transformed

Sy =WS5cm?
Vo =6llcn’
lopt = b:2hy=0.481
b =16703cm

; _ hy =17362cm

! T =Vy:S¥2=0035

0 2cm

Fig.2 The Optimum-Optimorum Delta Wing Adela
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Fig.3a,b Initial and Transformed Integrated Wings

integrated delta wing is also continuous but the
thickness distributions Z*(xl,xz) and Z*(%,,%,) on
the lateral sides OA101 and O& ,C, (corresponding to
the wing) and 6C1C2 (correspondlng to the fuselage)
are different.

Between the equations of the skeletons Z(x;,x,)
and Z(xl,x ) and the thickness distributions
Z*(xy,x,), 2Z' (xl,xz) and Z*(xl,x )y, Z¥(x%_,%. ) (in
corresponding points through the transformation (2))
of the initial and transformed integrated delta wing
components there are the following relations

Z=h % , 2*¥=h &x ,

tk — Zk
1 1 zZi*=h Z

(3)

Between the dimensionless axial disturbance velo-
cities u, u* and 4, 4* and the dimensionless down~
washes w, w*, w'* and %, W*, w* of the initial and
transformed integrated delta wing components there
are the following relations:

' (4a)

)
I
*
kY
*
it
E 3

, W'* o= @ (4b)

Further the assumption is made that the downwas-
hes %, #w* and w* are expressed in form of superposi-
tions of homogeneous polynomes in %, and %, i.e.

- for the thin component of the transformed integra-
ted wing

m-1
1 ik
2w o 19

k=0

N
@ = Zi’f

m:

(5)

(0]
P

- for the thick-symmetrical component of the trans-

formed integrated wing, if k < [§] < 1

N m-1

- LJm-1 k
= fr* | g

! g;% ! k=0 m-k-1,k |Y| ©
and

N m-1
@t o= G-l Fk 51k
) g;f o mkelk 9l "

if |§] < k. Here k = /v is supposed to be constant.

The coefficients Wjj, Wiy and Wi, and the simila-
rity parameter v are unknown and will be determined
through the fully-~optimization process.

The axial disturbance velocity U on the thin com-
ponent of the transformed integrated thick,lifting
delta wing, which has eventually also a central ridge,
according to (2),(3),(4),{16) "o ¢ the form

EG)

n=1 g=0
~1
E(L‘)
2. 2q -1 [1
+ Cn 2 ¥~ * cosh —_— . (8)
o1 /2q 2

and the axial disturbance velocity u* of the thick-
symmetrical component of the transformed integrated
thick,lifting delta wing is, as in (2),(3) (5,017,

) 2
N, i) o2, B
a* = > %, > 7 +
n=1 =0 2.2
1-v7y
n-~1 a 1 q 1
e o - ) _
+ Gnq y [Eosh R1 + (-1)* cosh RZJ
n~1 q -1 a -1
+ E g H;q ¥ [Eosh M1 + (~1)* cosh M%] +
q=0
# ST 78 . %% cosn L [ 1 . (9)
- n,2q -y
q=1 v2§2

Here the following notations will be made
R, = -\/(1+v)(1—vg) l R, = " ’(1+v)(1+v§)| (10a)
2(V~v¥) 2 (V+vy) :

and
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M = A1+V) (1-vF) M, =—\/_(_1_fl’_)_(_“_'l’_¥)_ (10b)
2v(1~-9) 2v (1+%)

The coefficients of U for the thin transformed
integrated delta wing are related to the coeffici-
ents of the downwashes w and the coefficients of U*
for the thick-symmetrical transformed integrated
delta wing are related to the coefficients of the
downwashes #* and W* through the following linear
and homogeneous relations

. n-1 (n)
A = E § a LW . 11
n29 55 2943 n-j-1,3 (an
al (n)
§ ; wx o Lt DR WE L) (12)
qu:J n-j-1,3 29,3 'n-j-1,3
The constants aé n) ﬁ;é?g, pz(n} etc. are func-

tions only of the 31m11ar1ty parame%er V.

IV. The Variational Problem of the Optimum-Optimorum

Thick, Lifting Integrated Delta Wing

The variational problem concerning the determina~
tion of the optimum-optimorum shape of the thick,
lifting integrated delta wing leads to the determi~
nation of the coefficients Wiy and ler le of the
downwashes w and w*, w* (of the thln and, respecti~
vely, thick-symmetrical delta wing component) and
of the similarity parameter v of the planprojection
in such a manner that the drag functional Cét) of
the thick, 1lifting integrated delta wing presents a
minimum (at cruising Mach number M, ). The integrated
delta wing must additionally satisfy the following
auxiliary conditions:

- the lift and pitching moment coefficients Cy, Gm
are given and the axial disturbance velocity u (of
the thin wing component) must cancel along the lea-
ding edges of the wing in order to avoid the birth
of leading edge vortices and to cancel the induced
drag (at cruising Mach number). It results:

0 0 - m, Uy > g = 0 (13a,b,c)
- the relative volumes T and t'
lage are given:

of the wing and fuse-

T =T, y T' = Té (14a,b)

~ the surface of the integrated wing has zero-thick-
ness along the leading edges

ZH(x; .y =2) = 0; (15)
- the surface of the integrated wing must be conti~
nuous of class Cy along the junction line between

the wing and fuselage

(%, ¥y =c¢') = 2%, y=c'), (16a)

Z* (x r Yy =c') =Z'*(x1 , y=2c¢ch), (16b)
* X

Z;z(x1 ry=c') = Z;{;(x1 , Yy =c"), (16¢)

~ the surface of the integrated wing is of zero-
thickness along the trailing edge

Z*(x1 = h1 R x2) =0 , Z'*(x1 = 0
(17a,b)
The auxiliary conditions (13a,b,c) concern only

the thin integrated wing component and the auxiliary

= h1 ’ x2)

conditions (l4a,b)-(17a,b) affect only the thick-
symmetrical integrated wing component.

Taking also into account that, in the frame of
linearised theory, the interference dr?g between the
wing components vanishes, the drag C of the thick,
lifting integrated wing is to be obtained through
the addition of the drag Cy and Cé of the thin and
thick-symmetrical integrated wing components i.e.

cét) =Cq +C§ . (18)
If the classical variational problem concerning
the optimization of the shape of the surface of the
integrated thick, lifting wing with given planpro-
jection (and therefore with given similarity parame-
ter v) 1is firstly considered, it is possible to split
it into two independent variational problems concer-
ning the wing components, i.e.
- the variational problem concerning the determina-~
tion of the shape of the surface of the thin inte-
grated delta wing component in order to obtain

Cq = min. (19)

with the auxiliary conditions (13a,b,c);

- the variational problem related with the determi-

nation of the shape of the surface of the thick-sym-
metrical integrated wing component in such a manner

that

C4 = min. (20)
with the auxiliary conditions (14a,b),(15),(16a,b,c)
and (17a,b).

The classical variational problem concerning the
optimization of the wing components, for a given va-
lue of the similarity parameter v, shall be firstly
treated. After that, the graphic-analytical method
for the performing of the fully-optimization of the
thick, 1ifting integrated delta wing will be presented.

V. Determination of the Optimum Shape of the Thin
Integrated Delta Wing

The determination of the optimum shape of the thin
integrated delta wing components leads to the deter-
mination of the values of coefficients W;j: in such a
manner that the drag coefficient Cy reaches its mini-
mum and the auxiliary conditions (13a,b,c) are satis-
fied.

According to the formulas (2)-(9), between the
aerodynamic characteristics of the initial and the
transformed thin integrated wings there exists the
following relations

c, =2 ¢

2 0 ! Cm =% Cm , C.=28%C (21)

a a -
The auxiliary conditions (13a,b,c) can be written

in the following form for the transformed integrated

thin wing:

- the given coefficient C

L

. N n-1_ e,
C H E z AW, . = (22)

n=1 5=0 "3 n-3-L,3 2

~ the given pitching moment Cm

. N n-1 Cm
= T % . A (23)

T n=t 320 nj n-j-1,3 L

-~ the cancellation of the axial disturbance veloci-
ty u along the leading edges
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Fe 22 S0y Fegy,y 7 O 2a)
(t =0,1,..., (N-1) ).

The drag coefficient Cq of the thin integrated
delta wing takes the following form

N N m~1 n-1

%ZZZZ

n=1 m=1 k=0 j=0

c, = i >
Comk Tmek-1,% "n-3-1,3 (25)

The expressions Anj, nj’ wuj and Qnmkj depend
only on the similarity parameter v.

The variational problem concerning the determina-
tion of the minimum of the drag functional Cg with
the auxiliary conditions (13a,b,c) leads to the fol-
lowing variational problem without auxiliary condi-
tions for Hamiltons operator H:

- R (> 2, &
HELH=L4(Cq+ A 7'Cy+ c, § ; AtFt) (26)
t=1
In this formula A(i), A(2) ang At denote Lagrange's

multipliers.

The extremum of H is obtained by vanishing its
first variation (8H = 0). By cancellation of the co-
efficients of each independent variation <Swe<S the
following equations are obtained

N n-~1

E:Z E:Z o+ 0

W +
n,8+0+1,6,3 6+0+1,n,j,0} Yh-3-1, 3

(1) % 2) & ~

(
A9+G+1,0 + A T + A P

0+g+1,0 g+a+1 "8+0+1,0

(27)
£ b+0+1 SN, 8 =0,1,..., (N=1) )

These equations together with the auxiliary con-
ditions (22),(23) and (24) form a linear algebraic
system of equations which determines uniquely the
optimum values of the coefficients wec as well as
the Lagrange's multipliers X(lh 2 62) and Ag.

The variational problem concerning the optimiza~
tion of the thin integrated delta wing component,
for a given value of the similarity parameter v is
solved.

VI. Determination of the Optimum Shape of the Thick-
Symmetrical Integrated Delta Wing

The determination of the optimum shape of the
thick-symmetrical integrated delta wing component
leads to the determlnatlon of the values of the co-
efficients wl:1 and wl] in such a manner that the
drag coefficient Cd attains its minimum and the au-
xiliary conditions (14a,b),(15),(16a,b,c),{17a,b)
are satisfied. .

The equations of the surface Z* and Z* of the
thick-symmetrical transformed integrated delta wing
are obtained from downwashes W* and W* as follows

Z* =\r% dil + f(iz) , Z* = f W d§1 + £(%y) (28a,b)

The arbitrary functions %(x } and %(xz) are deter~
mined in such a manner that the auxiliary conditions
{17a,p) are satisfied. The equations of the surfaces
Z* and Z* of the transformed, thick-symmetrical in-
tegrated delta wing take the following forms

N m-~1
=-331>% m'k N EN LS ) (29)
m=1 k=0

N m-1 w
= m-k- 5 1K LI-k
D RO NG~ = I NN (30)
m=1 k=0

The conditions (17a,b) are now fulfilled and must
be eliminated from the auxiliary conditions of the
variational problem of the thick-symmetrical inte-
grated delta wing. According to (2),(3),(6),(7),(9)
and (4b) the remaining auxiliary conditions (14)-(16)
can be written for the transformed thick-symmetrical
integrated delta wing component in the following
form:

- the cancellation of the thickness of the wingalong
its leading edges is of the form

N N m-1 ()

E, = > 1 d W 0 (31)
t =il k=0 mk m-k-1, k

(t =0,1,...,(-1) )

and 67 is Kroenecker's Symbol;

- the continuity of class Cq of the surface along
the junction line between the wing and the fuselage
leads to the following relations

(t)

: =
e m=t+1 %:g -1,k " mek-1,%) =0 32
(t = 0,1, (N-1) )
& ZN =l :
%= m=t+1 %;g S hke1,x T VRek-1,0 =0 B39
(t=0,1,_.., (N-1) )
- o )
e mt+1 g:z : o x-1,k " mek-1,6) =0 G
(t =0,1,..., (N-1) )

~ the condition of given
is of the form

relative volume of the wing

N m-1
od x Sak =
T E:Z Tmk “m-k-1,k ~ "0
m=1 k=0

Ve

il

(35)

- the condition of given relative volume of the fu-

selage is of the form

N m-1

=212t @ k-1 = 70

m=1 k=0

V!

(36)

The drag coefficient 63 of the thick-symmetrical
integrated transformed delta wing is of the form:

N n-1 n-1
S35 IS Gy oy

n=1 m=1 k=0 3=0 n-j-1.3
* Oﬁ&kg VE e,y ke x Y (ﬁﬁmkj W -5-1,3
Oy Thoser, ) Gé-k-1,g} (37
The coeff1c1ents dét) ”%E) @éi), Qéi), %mk' ;mk

and Qnmkjv Qnmk]r Qnmkj and pnmkj depend only on
the similarity parameter v (because k = 9/v is con=-
sidered here constant).

The variational problem concerning the determina-
tion of the minimum of the drag functional Cé with
the auxiliary conditions (14)~(16) leads to the va-
riational problem without auxiliary conditions for
Hamilton's operator

H¥ = ¢ B* = g(ck + W@y
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™1
2]
+
=
Q:
+
=3
e
~—
-~

N
%;Z t t t 't tt (38)

: 1 2 - -
In this formula u( ), u( ), Her Hes nt, Ny are

Lagrange's multipliers. If the first variation of H¥
is cancelled, i.e. the coefficient of each indepen-
dent variation éweo and 8Wgg are annulated, the
following equations are obtained:

N n-~1

S ‘
E:: EZZ n 6+0+1,0,3 * SZe+0+1,n,j,c

wE .+
n=1 j=0 n=3-1.3

Qv + O* w¥
(Qn,e+c+1,c,j Qe+c+1,n,j,c) wn—j—l,;} *

(1)%
8+0+1,0

(t)

E:Z(“ (t) + 0 &
t B+0+l,0 t “6+0+1,0

s (%)

u

~(t)

A ge+o+1,c e 8+0+1,0 =0 (39)
and
N n-1 N .
a* + G *
g:—}’jgo G2 evor1,0 ¥ Foiort,n, 9,00 Tmego1,9 *
(S0 * + {1

w*
n,8+o+1,0,3 8+0+1,n,j,c ) wn—j—l,j:] *

L (1)
8+0+1,0

(2) -

_ L ()
s 0+o+1,0

n g9+o+1 g

[1=
3

t=1

= T(t)
t "8+0+l,0

(6 =0,1,2,...,

=0 (40)

(N-1) ) , (1 2 648+1 £ N)

These equations together with the auxiliary con-
ditions (14)-(16) form a linear algebraic system of
equations which determines unlquely the optimum va-
lues of the coefficients we and wec as well as the
values of Lagrange's multlpllers u(l Y] ), Hg o
fig, ng and ﬁt. The variational problem concerning
the optimization of the thick-symmetrical integrated
Jelta wing component (for a given value of v) is
solved.

VII. Determination of the Optimum-Optimorum Shape of
the Thick, Lifting Integrated Delta Wing

The determination of the optimum-optimorum shape
of the thick, lifting integrated delta wing reduces
to the extremization of the total Hamilton's opera-
tor uit)

{t) ~(t)

= L(H + H*).

H zZ LH (41)
Here H and H* represent Hamilton's operators for the
thin and thick-symmetrical wing components of the

transformed thick, lifting integrated delta wingand
are given in (26) and (38). The extremum of H(t

is
obtained by the vanishing of its first variation,
( ) N-1 N-o-1 &
SEEICRREE SR RO
D BE*
+ W weO’ + Y (Sw’éo_ ) =0 (42)
8o 8o
(6 =0,1,2,..., (N-1) ) , {1 £ 6+0+1 2 N)

Taking into account that the variations &%
5w, 6W§G and 8% are independent, it results in
the equations

aﬁ(t)

gt =0 (43)
v

%Ew__ =0 (44)
8o

BE*_ _ SH* (45a,b)
o1k ’ ik

Bweo aweo

(6 =0,1,2,..., (N=1) ) , (1 £ 8+0+1 £ N)

The equations (44) and (45a,b) lead to the equa-
tions (27) and (39),(40) and the equation (43) is a
coupling equation between the variational problems
of the wing components (taken separately). The egua-
tions (27),(39),(40) and (43) together with the au-~
xiliary conditions (22),(23),(24) and (32),(33),(35)
and (36) form a non-linear transcendental system of
equations, which can be used for the fully-analyti-
cal determination of the coefficients Wgy, Wgg and
w¥ of the downwashes %, W* and ®W* and also of the
similarity parameters A, A2, (D), w2y,
ut, ng and ng. The solution of this transcendental,
non-linear system is very difficult to be directly
found.

That is the reason that, instead of this original
fully-analytical method, the author proposes the hy-
brid, numerical-analytical method (called also pre-
viously graphic-analytical method) which is better
suited for the calculation on digital computers
The author has firstly pr gosed it in (2 )'(5}
generally formulated it in and applied it for the de—
sign of the optimum-optimorum shape of the delta
wing alone as in (6),(7),(81},(3),

Starting from the remark that, for each given va-
lue of the similarity parameter v, this non-~linear,
transcendental system reduces to a linear algebraic
system and a point of the limit line one can be ob-
tained in a classical way.

Through systematical variation of the similarity
parameter v the entire limit line can be found in
discrete form. The position of the limit line, which
is numerically determined, represents the optimal va-
lue of the similarity parameter v (v = wynt) and the
optimal thick, lifting integrated delta wing, which
corresponds to this value of v, is at the same time
the optimum-optimorum thick, lifting integrated del-
ta wing. As in Fig.4 the limit line for the thick,
lifting integrated delta wing can be obtained through
the addition of the ordinates of the limit lines of
the thin and thick-symmetrical integrated delta wing
components (for each given value of the similarity
parameter V).

According to the graphic-analytical method the
solution of the non-linear, transcendental system of
equations for the determination of the optimum-opti-
morum shape of the integrated wing (i.e. wing-fuse-
lage configuration) leads to the solving of a set
of linear algebraic systems as presented above.

The parameters which determine the shape of the
optimum-optimorum integrated wing are:

- the optimal values of the similarity parameters v
and Vv (V = Kv);

- the optlmum—optlmorum values of the coefficients
Wog s wec and weg of the downwashes W, #* and w*.

If in the non-linear, transcendental system of
equations for the determination of the optimum-opti-
morum shape of the integrated wing the coefficients
Gec and V are cancelled and the equations (32),(33),
(34) and (36) are neglected, the non~linear, trans-
cendental system of equations for the determination
of the optlmum-optlmorum shape of the wing alone,
previously given in (3 '(6§ , are cbtained.

The optimum-optimorum wing alone (for the crui-
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Fig.4 Limit Lines of Integrated Wing

sing Mach number M_ = 2) has a convex shape in the
vicinity of the apex and a wave form in the neigh- -
bourhood of the trailing edges. If the optimum-opti-
morum integrated delta wing is now taken into consi-
deration the modificationm in the shape, due to the
fuselage integration, is very important, as it can
be observed in the Fig.5 for the transversal secti-
ons xq = 0,6(at the same cruising Mach number M= 2).

VIII. Agreement with Experimental Results

In order to check the accuracy of this theory
concerning the prediction of the aerodynamic charac-
teristics, a wedged delta wing fitted with a conical
fuselage, Fig.6, was tested in the frame work of a
research contract*, by the author and collabora-
tors**, in trisonic wind tunnel (section 60 x 60 cm2)
of the DFVLR-KOln***, The theoretically predicted
values of the lift coefficient Cyp and pitching mo-
ment coefficient Cp according to the above theory
are in very good agreement with the experimental re-
sults for the range of Mach numbers Mp = 1,3 = 2,2)
and angles of attack o (|a| < 20°) taken here into
consideration, as it is shown in Fig.(7a,b -~ 9a,b).

The dependences of lift- and pitching moment co-
efficients Cy and Cp versus the angle of attack a
are linear in supersonic flow also at higher angle
of attack o as in Fig.7a,b and in (23),(25
The variations of lift~ and pitching moment coeffi-
cients Cy and Cp with respect to the Mach number M
are non-linear as it can be observed in Fig.(7a,b -

So = WScm?
Vo =9615cm’
I = b:2h=0481
1 b =16703cm
Az
T b = 17362cm
t =1709¢cm
¥ =562°
Ve =8249cm’
¢ =2Bcm
‘ i - 70
[ 4o b =7 ,
—— T = VpS32=0102

Fig.6 Delta Wing Fitted with Fuselage

Fig.5 Transversal Sections of the Optimum-Optimorum
Isolated and Integrated Wings

9a,b).

This agreement between theory and experiment is
due to the accuracy of the solutions of the bounda-
ry value problems for the axial disturbance veloci~
ties U and U* given in formulas (7) and (8).

These solutions for u and #i* present the follo-
wing advantages in comparison with the ones obtained
in the frame of slender body theory (27),(28),(29),
(30)

- they fulfil the full-linearised partial differen-
tial equation, which: is hyperbolic, includes the in-
fluence of Mach number M, (in the similarity parame-
ter v) and does not need any restrictions concerning
the magnitude of span;

- the boundary conditions along the characteristice
surface, i.e., the Mach cone of the apex of the inte-
grated wing, and at the infinity (forward) are satisfied;
- according to the hydrodynamic analogy of Carafoli
(12),(13) the sinqularities in these solutions

of u and u* are located only along the singular
lines :(i.e. along the leading edges of the wing,
along the junction lines of the wing-fuselage confi-
guration etc.) and therefore are easier to be applied
as the solutions for axial disturbance velocities
given in <29)'(30), which are obtained by using sin-
gularities located on the whole wing surface;

- these singularities are chosen accordin? to the
principle of minimum singularities (14), (15) ang the-
refore the potential solutions for u and u* given
here are matched with a boundary layer solution (in
the first approximation);

- the solutions (8) and (9) for u and u* can be also
used for the calculation of pressure distribution and
of aerodynamic characteristics of the wing-fuselage
configurations given in discrete form. The surfaces
of the wing and fuselage (i.e. Z(x{,x%p)and Z({(xj,x3))
can be piecewise approximated in form of polynomial
expansions and the coefficients of downwashes w, w*
and w* are to be obtained by using the two-dimengio-
nal minimal guadratic error similar as in (2) . );
~ the time of calculation of the aerodynamic charac-
teristics of the wing fitted with fuselage, by using

*) supported by the Deutsche Forschungsgemein-
schaft (DFG)

together with Dipl.-Ing. H. Esch, Dipl.-Ing. K.
Feuerrohr (DFVLR), Ing. A. Scheich, Dipl.-Ing.
D. Faliagas (Department of Aerodynamics of
RWTH-Aachen)

Deutsche Forschungs- und Versuchsanstalt fur
Luft- und Raumfahrt (DFVLR)

**)

***)
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programmes according to this theory is less than 2
seconds- on Cyber 175;

- the theoretical results concerning the determina-
tion of aerodynamic characteristics by using the for-
mulas (8) and (9) for % and U* are in very good
agreement with experimental results for a large
range of supersonic Mach numbers and angles of at-
tack because the supersonic flow remains attached
to the wing and wing-fuselage configuration even at
higher angle of attack o and at lower supersonic
Mach number M.

The theoretical predicted distribution of the
pressure coefficient Cp according to this theory was
also compared with experimental results for a large
range of Mach numbers M, and angles of attack a by
the author and its collaborators as in (2),(9),(22),
(24) | The following results are obtained:
~ at moderate angles of attack (cca. |a] < 10°) and
higher supersonic Mach numbers (cca. Me > 1,4) the
influence of leading edge vortices on pressure coef-
ficient Cp can be neglected. This range of super-—
sonic Mach numbers and angles of attack includes al-
so the cruising flight for which the shape of super-
sonic transport aircraft is to be optimized. There-
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Pig.10 Double Wedged Delta Wing

OF OPTIMIZED AND OF EQUIVALENT DOUBLE
WEDGED DELTA WINGS

Theoreticol and Experimental Results
) --+:Optimized Delta Wing Adela
=l —soDouble Wedged Detta Wing

ol Mosth e

Fig. lla,b Comparison between the Lift Coefficients of the Optimum~Optimorum Delta Wing

fore I have used the solutions (8) and (9) for u and
U* as starting point for the fully-optimization of
the shape of the surface of the integrated wing-fu-
selage configuration.

- At higher angles of attack (10° < |al < 25°) and
lower supersonic Mach numbers (1,25 < M, < 1,4) the
influence of leading edge vortices on the pressure
coefficient C, occurs on the upper side of the wing
in the region located in the vicinity of leading ed-
ges.

In order to better predict the pressure coeffici-
ent C4, including the effect of leading edge vorti-
ces, at lower supersonic Mach numbers and at higher
angles of attack the author has recently obtained an
approximated solution of Euler equations in spectral
form by using the splitting technique and by inclu-
ding the solution for 4 and 4* formerly given as mo-
dules in the expression of this generalised solution.

This generalised solution presents the advantages
to be matched with the boundary layer solution and
to converge to the linearised solutions (8) and (9)
for % and 4* for small perturbations (i.e. also at
the infinity (forward)).

The comparison between the linearised and the ge-
neralised solutions can be used also for the deter-
mination of the intensity of leading edge vortices
and for the estimation of the position of vortex
core.

The optimum-optimorum integrated wing-fuselage
configuration presents the following advantages:

- due to the optimization the drag is minimum (at
cruising Mach number) and low for a large range of
Mach numbers and angles of attack;

-~ due to the Kutta condition (13c) along its leading
edges the induced drag disappears at cruising Mach
number and is low for a large range of Mach numbers
and angles of attack.

The leading edge vortices disappear (at cruising
Mach number) and are of very small intensity for a
large. range of Mach numbers and angles of attack-.

Another important consequence of the auxiliary
condition (13c) is the gain in 1lift of the optimum-
optimorum configurations presented here. In order to
illustrate this property of the optimum-optimorum del-
ta wing Adela, Fig.2, an dquivalent double wedged
delta wing (i.e. a wing which has the same planpro-

OF OPTIMIZED AND OF EQUIVALENT DOUBLE
WEDGED DELTA WINGS

Theoreticol and Experimental Results
--+2 Optimized Delta Wing Adela
G o —esDouble Wedged Delta Wing

08 Ma=20

Adela and of

the Bquivalent Double Wedged Delta Wing
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jection and the same volume as the optimum-optimorum
delta wing Adela) is also considered. (Fig.10)

The 1ift coefficients of these two wings are com-
pared at the same conditions (i.e. at the same Mach
numbers and angles of attack) the gain in lift of
the optimum-optimorum delta wing Adela is very im-
portant as it can be seen in Fig.lla,b for the Mach
numbers M, = 1,4 and My, = 2,0. The increasing in
1ift of the optimum-optimorum wings and wing-fusela~
ge configurations due to the Kutta-condition on lea-
ding edges can be obtained only by a good suited
coupling of each camber  and twist of its skeleton
surfaces.as in (24).

- Due to the auxiliary conditions (32)~(34) the sur-
face of the optimum-optimorum wing-fuselage configu-
ration is integrated and looks like a wing alone.

Tt allows also the partial or total integration of
the engine nacelles inside the thickness of the in-
tegrated wing;

- last but not least, according to the optimum-opti-
morum theory of the author, all the geometrical cha-
racteristics (i.e. the distributions of cambers,
twists, thicknesses and also the similarity parame-
ters v and Vv of the planprojections) of the optimum-
optimorum integrated wing-fuselage configuration are
simultaneously optimized. This simultaneity of opti-
mization is very accurate. The succesive optimizati-
on of each single geometrical parameter of the con-
figuration (by keeping the others constant) is inac-
curate due to the interdependence of the geometrical
parameters!

The optimum-optimorum theory is the single theory
which allows the simultaneous optimization of all
geometrical parameters of the surface and also of the
planprojection of the wing-fuselage configuratior.

A good choice of the similarity parameters v and v
of the planprojections of the wing and of the fuse-
lage plays animportant role in the drag reduction
as it can be observed in the Fig.4.

Conclusions

The hybrid analytical-numerical computational me-
thod for the determination of the optimum-optimorum
shape of the integrated wing-fuselage configuration
presents the following advantages:

- is accurate because it allows the simultaneous op-
timization of all the geometrical parameters of the
wing-fuselage configuration;

- is the single method which give also the optimal
geometrical parameters of the planprojection;

- is flexible, i.e. it allows, without difficulty,
the addition or the suppression of some auxiliary
conditions, the change of cruising Mach number: (cho-
sen for the optimization);

- is fast, the computation of the optimum-optimorum
shape of the integrated wing-fuselage configuration
needs 5 seconds computer time by Cyber 175.

The optimum-optimorum shape of the wing-fuselage
configuration, proposed by the author, presents the
following advantages:

- has reduced dragand high lift for a large range of
Mach numbers and angles of attack:;

- makes possible the total integration of aircraft
configuration (the engine nacelles can be also easy
integrated inside the thickness of the wing-fuselage
configuration);

The very good and fast prediction of the aerody-
namic characteristics of the optimized and non-opti-
mized wing-fuselage configurations (also at higher
angles of attack and lower supersonic Mach numbers)
can be very useful for the calculation of the re-~
entry of the space-shuttle in the earth atmosphere.

In conclusion, I propose the optimum-optimorum

integrated wing-fuselage configuration for the de-
sign of future generation of integrated supersonic
aircraft and space-shuttle.
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