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Abstract

Modern aircraft, in particular fighters, are cha-
racterized by a high degree of geometrical com-
plexity. To master such complicated geometries in
transonic computations, one often has to rely on
small disturbance (TSP) formulations on Cartesian
grids. Wing boundary conditions are then easily
imposed using thin-wing theory while fuselage
boundary conditions usually are more difficult to
implement. This paper presents a numerical method
for solving the TSP equation about a complex slen-
der configuration emphasizing a consistent treat-
ment of the boundary conditions on the fuselage
surface. The basic concept is a decomposition in
two coupled inner and outer problems using the
theory of matched asymptotic expansions. The outer
problem is discretized using a standard 3D finite
difference scheme. The inner problem, enforcing
the fuselage boundary conditions, is solved as a
sequence of cross-flow problems using a linear 2D
panel method. Several test runs on a CRAY-1 com-
puter have demonstrated the reliability and ro-
bustness of the above procedure. Computed pressure
distributions for a number of 3D cases, including
one of fighter type, are in good agreement with
wind tunnel test data.

1. Introduction

In practical aerodynamic design and analysis work
there is a wide scale of methodological needs
ranging from linear panel methods up to more ela-
borate non-linear techniques. Although in recent
years great progress has been made to Euler and
Navier—-Stokes methods(¢) (8), they still are
complicated and expensive to operate in 3D for
most every day engineering work. In particular,
they reguire an efficient and flexible grid gene-
ration process that still has to be invented to
cover all different details of an aircraft in a
rapid and efficient way.

Two decades ago, Woodward(i$), among others,
developed a panel method that became a widespread

tool in many aircraft industries. With this simple
put flexible method a large variety of aerodynamic

problems could be tackled includinge e.g. wing-
pody combinations, exXternal stores, and static
aeroelasticity(s). The results obtained gave
qualitative and quantitative guidelines for many
aerodynamic problems and opened up the use of
computational aerodynamics in practise.
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Recalling the rapid evolution of non-linear compu-
tational methods during the seventies(?), it
should now be possible to develop a similar prac-
tical method as flexible and accessable as Wood-
ward's but now including also non-linear transo-
nic flow. Steps in this direction were taken ear-
iier e.g. by Boppet¢). The present paper is

aiming at the same goal but the approach is some-
wnat different.

One key feature to the success of the Woodward-
type panel method was the simple treatment of the
poundary conditions which were applied on mean
surfaces or interference shells. This enabled ra-
pid and flexible changes of the geometry without
having to repanel the computed object. The back-
ground to this of course lies in the small dis-—
turbance assumption. Hence, using the same philo-
sophy in non-linear transonic flow we are led to
the transonic small perturbation (TSP) formulation
that would give us a similar flexibility.

A numerical example shown in this paper indicates
that a TSP formulation, even for a relatively
thick airfoil in 2D, gives results well within
engineering accuracy compared to full potential or
Euler solutions. This is if the boundary con-
ditions are properly treated and higher order
terms are correctly implemented.

The present method utilizes the fact that in tran-
sonic flow the lateral interaction is very stiff
and almost incompressible. Hence, an inner linear
cross—-flow equation is coupled to an outer non-
linear TSP equation using the theory of matched
asymptotic expansions(2’). This coupling is
fulfilled along a rectangular parallelepiped en-
closing the aircraft fuselage. The boundary condi-
tions on 1lifting surfaces are imposed on mean
-surfaces. Thus, a flexible method is found for
complicated configurations using a simple carte-
sian grid for the outer flow.

The method is capable of handling fighter type
configurations including lifting surfaces, fuse-
lage with canopy and air intake, and a vertical
fin. External loads will be incorporated in the
near future. Techniques using local grid refine-
ments are also studied and a convenient data
structure for this has been found.

Efforts to incorporate fuselage effects using a
linear panel method were reported earlier(14).
However, the interactive transonic coupling of
inner and outer flow fields was not considered.



2. Basic Concept: Coupled Inner and Quter Problems

We shall consider three~dimensional flow about a
combination of a thin wing, W, and a slender body
mounted on a sting, B, at a small angle of attack,
a, relative to a subsonic free stream of velocity
U, and Mach numper M_ close to unity. The configu-
ration is symmetric with respect to the xz-plane
of a Cartesian coordinate system (x,y,z) having
its x-axis aligned with the longitudinal axis of
the body, cf. Figure 1.

Figure 1. Cartesian coordinate system.

Assuming irrotational flow we introduce the
velocity potential ¢ and the disturbance poten-
tial ¢ related by

¢=Um[xcosa+zsina+¢].

(1)

Normalizing to U _=%1 the local Mach number M for
small disturbances is given by(*®)

M2=M;+M;(3—(2-7)M;)¢X. (2)
Here 9=1.4 is the specific heat ratio.

For an isclated wing of thickness ratio r <<1
thin wing theory gives (2} W
Te=(1-M2 + = i3 ).
o=(1-N2)9, +9  +¢, =O(r) (3a)

Close to the wing this relation can be simplified
to

¢zz=o(’$")' (3b)
For an isolated body of thickness ratio rb<<l
slender body theory gives

T¢=0(rz), (4a)
or, close to the body,

Lozt +6,,=0(rz). (4b)

Let us define an infinite parallelepiped P, with
edges parallel to the x-axis, encompassing the
body and the innermost part of the wing. The inte-
rior.and exterior of P outside W and B is denoted
by P7 and Pe, respectively. Motivated by egquation
(3) and (4) we now require the disturbance poten—
tial ¢ for the wing/body combination to satisfy

. e
in P,

in BT,

T$=0 (5a)

L¢=0 (5b)
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These outer and inner equations are coupled via
compatibility conditions on the surface 8P of P,
where ¢ and its normal derivative ¢_ are requi-
red to be continuous, cf. Figure 2

L.

l - - =
H - //" //
L -

3D
grid

Linear

Line: Quter
nonlinear
problem:Lo =0 hiem: Tg =0

Figure 2. Coupled inner and outer problems.

To formulate boundary conditions for the wing we
write the equation satisfied by a point (X,y,z) on
the wing surface 8W as

z -~ Z2(x,y) =0 on awW,
where Z(x,y) denotes one of the two functions
Z-(x,y) and 2Z*(x,y) defining the lower and upper
wing surface, respectively. The tangential flow
boundary condition is then given by

Vé'(—zx,-gy,l)=o on 9w,

or, using (1) with |af<<1,

¢Z—(1+¢X)ZX+¢yZy-—a on aw. (5)
As suggested by (3b), outside P this condition is
imposed on a plane mean surface 9W° at a con-
stant z=Z° rather than on the physical wing sur-
face 3W. Equation (5a) is then extended to hold
in P® defined as the exterior of P outside awe.

It is important to keep the term (l+¢k) multi-

plying ZX in (6), c.f. Section 6 below.

The potential ¢ is continuous except in points
(x,y,2°) on the wake downstream of 3W°. Here

the Kutta condition admits potential jumps edqual
to the circulation I'(y), i.e., potential jumps
which do not depend on x. The circulation distri-
bution I'(y) is given by the difference in poten-
tial between the upper and lower wing surfaces at
the trailing edge.

The tangential flow condition on the body surface

0B is given by
‘V¢-(nX,ny,nZ)=O on 3B,

where (nX,n ,nZ) is the outward unit normal on

the body sugface. Expressing this as a condition

for the normal derivative ¢n given by



¢, =(¢y,0,)(ng,n, ) ¥nisn?  on 3B,

we obtain, using (1) with [a[<<l and I¢X[<<1,

= =(-n_=- 24n2 o . 7
¢, n(x,y,z)=( n_ anz)/;/nynZ n 9B (7)
This type of condition is also used on that part
of the wing surface 8W which is inside P.

In the far field, except for Trefftz' plane, we
impose Dirichlet boundary conditions ¢=g with g
given by the expressions derived by Klunker (%)
for a thin wing. In Trefftz' plane NI given by

M={(x,y,2) :x=constant-e}

representing downstream infinity we decompose ¢
as ¢=¢'+¢". Here ¢'=g is given by Klunker's
expressions and ¢" represents the influence of
the body. To determine ¢" we solve L¢"=0 in N
with the boundary condition ¢"=h-g , cf. (7},
imposed on the sting contour. The function g de-
pends on the circulation I’ and has to be upda-
ted during the solution process.

3. Discretization

The outer and inner problems introduced in the
previcus section are restricted to finite computa-
tional domains D°=P°()D and D'=P'NID, where D is
defined by

D={(x,y,2): xminSx<zmax,0<ySymax,zminsz<zmax}.

The far field boundary conditions are imposed on
the boundary 8D of D as described in Section 2.

We shall now in turn discuss discretization in D¢,
in D', and in Trefftz' plane Il at x=xmax. We de-
note the inner solution, i.e., the restriction of
¢ to D1, by y=y(x;y,z) to emphasize the two di-
mensional character of the inner problem.

Discretization of the ‘outer problem

The outer problem is given by

T¢=(1-M’)¢XX+¢yy+¢ZZ=0 in D°, (8a)
¢Z=(l+¢X)ZX+¢yZy—a on dwe, (8b)
¢n=wn on 3PD, (8c)
¢=g on 3DNPe. (84d)

The governing non-linear operator T is of mixed
type being elliptic in subsonic regions (M<l) and
hyperbolic in supersonic regions (M»l). The right
hand sides of the boundary conditions all depend
on the solution and must be determined iterative-
ly. This procedure is discussed in Section 5.

Equation (B8a) is discretized using Murman's type-
dependent fully conservative scheme(11) on a Car-
tesian grid, see Figure 3.
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Figure 3. Example of cartesian computationa! grid in the wing
plane and in two cross cuts containing air intake and
wing.

Below we give the resulting difference eguations
for a uniform grid indexed by 1i,3j,k with grid size
Ax,Ay, Az, i.e., ¢ijk;¢(iAx,jAy,kAz). We use

the convention that indices which are omitted have
the value i,3, or k, i.e., ¢i+7=¢i+1,jk and so

on. With

8 1-M2-M2(3~(2-9)M2)(&x) -2 (¢ b 3.1) /2,

ijk =
i3 = 0 if Sijk>0 (subsonic flow),
Hijk = 1 if sijk<0 (supersonic flowj,

Pijk = 8541 (A%)72(8;_17265+65,1),
91k = (BY)~2(@5-1-2035+9 341)
Tk = (82)-2(6x_1-2¢, 1)

the difference approximation of (8a) reads

(A=dg 53P5 511, jKP -1,k P91 5T 13670 (92)
We note that upstream differencing is used in the
x-direction in case of supersonic flow.

Let (xi,y-,z°) be a point on the wing mean surfa-
ce oW°, which is placed halfway between two grid
planes indexed by K and K+1, say. The boundary
condition (8b) is imposed by defining

"

ik (8z)-*{¢ _~(82)-2(¢,=6, )}, (o)
(82)-1{(B2) - ($K+1-0K) =Pz},

U}

Lij,Kk+1

with ¢, taken from (8b). The Kutta condition is



implemented by defining

Figx = B2)-{ey 2epep Tl

n

Tij,ke1 = (82) 2 {otT-20 g, 1+oy, o

in points (xi,yj,Z°) on the wake.

Discretization of the inner problem

The inner problem is given by

i

Ly=dyytd,,=0  in D7, (10a)
wn=h on (3BUsW)ND, (10b)
v=¢ on oPfD. (10c)

This problem has an entirely different character
from the outer problem (8) since the governing
operator L is linear and two-dimensional.

For each grid plane P; at xsx; we discretize (10)
in the intersection D;=P;ND” using a panel meth-
od. The boundary

9D;=(3BUBWUBP)ND;
of D; is replaced by a family of straight panels
where each panel has a constant source distribu-
tion. Downstream of the wing we also introduce

doublet panels along the wake contour awunni,
see Figure 4.

I
/ Le =0 Le=0 J
Source
panels
Doublet
panels
7
= N
i \\\\\\
N
Lg =0 \\\***_““N__I T
i

Figure 4. Example of panelling of cross cuts containing wing
(left) or wake (right),

The doublet strengths are given by the potentijal
jumps at the wing trailing edge. The source
strengths are determined so that the boundary
conditions are satisfied in the panel mid
points. For each D; we obtain a dense linear
system of equations and the discrete problem can
be written

A;S;=Bj, 15iSimax. (11)
Here {1;}, {s;}, ana {Bi} denote the system ma-
trices, source strength vectors, and right hand
sides, respectively.
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Remark: The wing frequently requires a higher re-
solition power of the grid than is necessary, or
even applicable if the the quality of the defining
geometry is poor, for the body. In such cases it
is sufficient to solve (11) for a subset of
{i=l..imax} and use a non-oscillatory interpola-
tion procedure(!) to get normal derivatives on

3P in intermediate planes required in (8c).

Discretization in Trefftz' plane

In Trefftz plane Il we solve the Laplacian problem

L6=6_+68_ =0 in N\B, (12a)
Yy 22

# =h- on 9B I, (12b)

n %n
where g and h were introduced in Section 2. This
problem is discretized and solved by a panel
method as described in the previous subsection.
The disturbance potential ¢ in I is then given

by ¢=6+g.

4. Relaxation Procedure

The discrete outer problem (9) is solved by succe-
sive line over relaxations. In each iteration cy-
cle the grid is swept plane by plane in the x-
direction and within each plane line by line in
the y-direction with only one line sweep in each
plane per cycle.

Let ¢ and ¢+
after one iteration cycle.
termediate potential ¢' by

denote the potentials before and
Further, define an in-

¢rzw -t +(l-w-1)¢,

where w is the over relaxation factor, below

chosen as 1.8. Then ¢* is given by(3}

(l' q =0, (13)

L] 1
i3k 15K
250

= 5 —2{ht ~Dg!

=5, (807293 2016, 0,

. : R
4 5P s o1, 3kPio1, 5K

where in subsonic flow, i.e., "i

Pisk

[

9 g = (897065 20156, ),

it

Fige = (B2)7(ep_ym2eprer )
i.e., u, 1,

and: in supersonic flow, 1jk=

S35 AX) 7205 172094207 47050

).

ijk
]

ik

n

(By)-2(¢* -¢*-¢ +¢.
=173 3 i

Fise = (A2) -2 (0% 4=205+05 )

Introducing c=¢*-¢ we finally rewrite (13) in
correction form ending up with a tridiagonal
linear system

Tick_1+iéck+T3Ck+1 = -R-t1ci_1-t2Cj_1. (14)



Here the residual R and the coefficients

T1 IT2I
T3,t1,t2 are given by

R = (Immy 5 Py sty 4 5kPiot, skt 9i kT ik

T, = (A2)-2,

Ty, = -(A%)-2{20-(1-u;)8;~205_ 155 1}
~(Ay)-#{20-2 (1-u;)+u;} - 2(82)-2,

T; = (Az)-%,

by = (Ax)-2(1-ui)si=2u5 4859 o

t, = (Ay):.

The discrete inner problem was fomulated above as
a sequernce of dense linear systems,

cf. (11). Due to the compatibility condition (10c)
the vectors Bj are solution dependent and must be
determined in an iterative fashion. Since (15)
thus has to be solved several times with different
right hand sides we invert each A; and save the
inverse matrices on seccndary storage. A special
computation with the boundary condition (10c)
omitted and panels along the wing/pody perimeter
in (10b) only is done to find an initial approxi-~
mation y° to y.

5. Iterative Coupling Procedure

The coupling between the outer and inner problems
is effected by the compatibility conditions (8c)
and (10c). We may view the solving of (10) as a
procedure for updating the boundary condition
(8c). Rather than performing a large number of
sweeps according to (14) with ¢y fixed in (8c) we
use the following strategy:

Step 0: Compute a start approximation y° as de-
scribed above and solve (14) for ¢+
with ¢=0.

Step 1: Perform a sequence of relaxation sweeps
according to (14) with the normal deriva-
tive of y on the parallelepiped surface,
¥y, in the boundary condition (8c), upda-
ted by solving (15) for each sweep. Pro-
ceed until the maximum change in “h from
one sweep to the next has decreased by
half a decade.

Step 2: Perform a sequence of relaxation sweeps
according to (14) keeping ¥, in (8c)
fixed. Proceed until the maximum potential
correction cmax from one sweep to the next
has decreased by half a decade.

Repeat step 1 and 2 until some stopping criterion
is satisfied, typically cmax<l0-4.

Updating of the solution dependent boundary condi-
tions (8b) and (8d) is done similarly with the
test guantity in step 1 replaced by "maximum
change in ¢Z on the wing surface" and "maximum
change in circulation", respectively.
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A schematic picture of the iterative solution pro-
cedure is given in Figure 5.

START

RELAXATION
SWEEPS

20
SOLVE Lg =0 |PANEL
METHOD
e
——] 3D

SOLVE T8 =0: | ZiniTe
UPDATE ¢ DIFFE-
LINE BY LINE | RENCES

[
<

STOP

Figure 5. Iteration process.

6. Numerical Computations

We shall use the method described above to compute
pressure distributions in transonic flow for three
different configurations: an analytically defined
bumpy and indented body(!2), the RAE wing/body
compination(13), and a wing/fuselage fighter
configuration which has been wind tunnel tested by
SAAB. We also give some results from 2D calcula-
tions on a NACAQQO1lZ profile to indicate the pos-
sible gain in accuracy one can make by using a
higher order TSP formulation. The normalized pres-
sure coefficient Cp is computed using the formula

- $2 .

Cp = =20y = (1-M2)oZ - d:zy z

Computational grids

For each configuration we use a sequence of non-
uniform Cartesian computational grids of the type
shown in Figure 3, Section 2.

The mean surface of the wing is placed halfway
between two herizontal grid planes z=2z)p and z=zZp 1.
Vertical grid planes cutting the wing have related
spacings in the xX- and y-directions so that at

each span station Y=Y 3 the x~coordinate of the
leading edge is halfway between two grid planes
¥X=x; and X=xj,q1. The y-coordinate of the wing tip
is halfway between two grid planes y=yj and y=yj+1.
The step size Az across the mean plane of the

wing is typically 50% larger than the minimum step
size AxX across the leading edge.



The resolution power of each grid is controlled by
four parameters setting the relative resolution at
the nose of the body, at the body/sting junction,
at the wing root leading edge, and at the wing tip
leading edge. For the RAE wing/body these parame-
ters were 5%, 5%, 4%, 4%, resulting in 927,000
points for the finest grid. The corresponding data
for the fighter configuration was 2%, 5%, 1%, 5%,
and 3.4 million points. The results presented for
the analytically defined body were obtained on a
grid with 45,000 points.

Computed pressure distributions

Results for the analytically defined body is shown
in Figure 6. Computed pressures are in good agree-
ment with wind tunnel data. We note that the posi-
tive peak in the computed C_-curve on the indented
part of the surface is less pronounced in the wind
tunnel data, probably because of viscous boundary
layer effects.

Figure 7 shows results for the RAE wing/body com-
bination in a lifting case. We note that the suc-
tion peaks on the body surface induced by the
presence of the wing are remarkably accurate. In
the domain just upstream of the wing the increase
in pressure due to flow stagnation is underpre-
dicted. Qualitatively, leaving out the ¢., term in
the inner problem will have this effect, as can be
seen by applying Gre~n's formula to the TSP-
equation (5a) inside he parallelepiped P.

The pressure distributions on the RAE wing is
given at three different spanwise locations in
Figure 7. The agreement between computations and
experiments is good and the shock is in its right
position. At the wing tip the suction peak is
underpredicted due to an insufficient resolution
power of the grid in this region. We also note a
certain disagreement at the trailing edge close to
the body.

Results for the fighter configuration are shown in
Figure 8. The fuselage geometry of this wind tun-
nel model contains some noise since it has been
obtained by digitizing from a drawing. Neverthe-—
less, the body pressure signature characterized by
the suction peak over the canopy is in good agree-
ment with wind tunnel data. The wing pressures,
including shock positions, are accurately de-
scribed except at the leading edge, where a finer
grid is required.

Let us finally remark, that computed pressure
distributions on the body surface are of good
quality also for the coarse grids. The fine grids
are however necessary to produce accurate results
on the wing surface. This is in particular so in
the leading edge region, where even the finest
discretization levels used here have been insuf-
ficient to catch the suction peak properly. A
requirement of say 0.1% grid size relative to

the local chord along a swept leading edge will
however result in a tremendous amount of points
if a strictly cartesian grid is used. Work is now
in progress to allow for local grid refinement to
overcome this difficulty.
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Convergence history

A sequence of grids was used for each configura-
tion. The solutions on coarse grids served as ini-
tial approximations for the fine grids. The stop-
ping criterion was cmax<l0-+4, where cmax denotes
the maximum potential correction. For the fighter
configuration the convergence was driven further
to cmax<10-% with hardly noticable changes in

the pressure values.

The convergence history for cmax is shown in Fig-
ure 9. When boundary condition updating is acti-
vated, as described in Section 5, we get a tempo-
rary increase in cmax. During the subsequent iter-
ations, however, cmax decreases rapidly and soon
recovers its value prior to the update period.

For the RAE wing/body combination the average re-
duction factor for cmax was 0.88 and the CPU-time
on CRAY-1A was 300 seconds on the finest grid.

The corresponding figures for the fighter configu-
ration was 0.85 and 400 seconds (to cmax=10-+%).

Some 2D results with a higher order TSP method.

The boundary condition (6) in Section 2 includes ¢x
and ¢y terms. In some (standard) TSP formulations
these terms are omitted. To improve the accuracy

of the TSP formulation further, one can augment

the operator T in {(3a) by including all perturba-
tion terms of second order with respect to the
relative thickness r,. The results of these modi-
fications may give a significant improvement as
shown in Figure 10.

Conclusions

We have presented a small disturbance formulation
for transonic flow computations about wing/fusela-
ge configurations. The concept of the method has
been verified and the numerical process is rapidly
converging.

Computed pressure distributions on several confi-
gurations, including a modern fighter, show good
agreement with wind tunnel test data. In particu-
iar, wing/body interactions are well described.

Accurate results in the wing leading edge region
requires computational grids of high resolution
power. Grid point reduction by local grid refine~
ment seems to be an attractive possibility to re-
duce the computational costs in such cases. So far
encouraging results have been obtained for the
ONERA M6 wing using a hierarchy of embedded stair-
case shaped grids along the leading edge.
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Figure 6. Comparison between computed pressure signatures
and wind tunnel data for an analytically defined
body at zero angle of attack. The Mach number is
Moo = 0.95.
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Figure 7. Computed and experimental (13) pressure distribu- Figure 7. (Continued)
tions for the RAE wing/body combination at Wing pressures and body pressures above and below
Mo, = 0.90 and o = 19, dorsal and ventral line pres- the wing for the RAE wing/body.
sures.
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bination (top) and a fighter configuration (bottom).
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Figure 10, Pressure distributions on a NACAQ0012 profile at
Mo = 0.75 and o= 2° computed with different
TSP formulations.
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