EFFICIENT SOLUTION OF THREE-DIMENSIONAL

ICAS-86-1.3.3

EULER EQUATIONS USING EMBEDDED GRIDS

R. Radespiel

DFVLR,

Institute for Design Aerodynamics

3300 Braunschweig, Fed. Rep. Germany

ABSTRACT

For an efficient solution of three-dimensional
Euler equations block structured grid generation
and Euler codes have been developed which use local
refinement of a coarse base grid to resolve the
flow in regions with high gradients. Coordinate
grids are generated by numerical solution of an el-
liptic system. A new iterative technique for grid
control yields smooth and well distributed grids
even near singular lines of H-type sections. The
flow solver is based on a well known finite volume
Runge-Kutta time stepping scheme . Different proce-
dures for the treatment of the zonal boundaries
are investigated. The codes are used to calculate
transonic flow around DFVLR F4 wing. The results
show that the present grid embedding technique
vields a substantial reduction of camputational
expense without loss of accuracy.

INTRODUCTION

With the advent of fast vector computers a
substantial advancement has been achieved in the
development of efficient methods for the solution
of the Euler equations. Solutions of the Euler
equations give a more physical representation of
inviscid subsonic, transonic and supersonic flow
fields campared to potential flow methods. In par-
ticular the position of vortex sheets behind trai-
ling edges of a lifting surface needs not to be
specified but comes out as a part of the solution.
In regions, where shock waves are present, the
Euler equations allow entropy rise through shock
waves while mass, momentum and energy are conserved
Solutions of the Euler equations are also conside-
red as stepping stones towards the solution of the
time averaged Navier-Stokes equations. On the other
hand the numerical solution of the Fuler equations
requires high computational efforts in terms of
CPU and storage. For an accurate prediction of
transonic flow fields a sufficiently dense coordi-
nate grid is required for regions where the flow
is varying rapidly. Towards the far field where
the flow is varying smoothly it is then desirable
to increase the grid spacing. Following these ideas
three-dimensional Euler codes often use a grid
structure, where the block in the computational do-
main is wrapped around the wing in the physical do-
main, so that one complete boundary plane of the
cube lies on the wing surface (O-grid). However,
these grid structures are not flexible enough for
an integration of additional components as bodies,
nacelles, struts etc.. For these applications an
H-type grid structure is suitable where the wing
surface is located between a lower and an upper
computational block.H-grids will give less resolu-
tion near the wing compared to O-grids with the
same number of total points. Furthermore, the
Copyright © 1986 by ICAS and AIAA. Al rights reserved.
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treatment of more complex configurations will re-—
quire additional grid lines to resolve the inter-
action between the components. It seems unlikely,
that an efficient solution of the Euler equations
for a camplete aircraft configuration can be
achieved using a single global grid, even if an
appropriate grid stretching to the far field could
be specified.

To overcome these difficulties several papers
have been addressed to the development of local
grid refinement techniques.A general patched grid
interface algorithm for 2-D problems has been
given in Ref. 1. The formulation of interface sche-
mes is much simplified if the global base grid is
retained and the patch is refined by doubling the
grid density there. Several recent papers(2,3,4,5,6]
have followed this strategy to adapt the computational
grid to local high gradients of the flow. Signifi-
cant improvements in overall efficiency have been
obtained without introducing too complicated addi-
tional logic into the codes.

In the present study we also follow this idea.
The multiblock structured Euler code used here is
based on the finite volume scheme of Jameson,Schmidt
and Turkel [7]1. Baker et al [4] have given 3-D cal-
culations with grid embedding based on the schemel73
using rather crude grids.Here we present accurate
results for a transonic flow around large aspect
ratio DFVLR F4 wing [8] which have been obtained on
a fine H-grid. The basic cell centered Euler scheme
requires a smooth coordinate grid in regions of
large gradients of the flow.Therefore,the grid ge-
neration method is described in greater detail.The
grids are generated by numerical solution of three
Poisson equations for the coordinates x,y,z as pro-
posed by Thompson et al [9]. Grid control is
achieved by iteratively adjusting the source terms
in the Poisson equations.

The purpose of the present paper 1is to judge
accuracy and effiency of the cell centered finite
volume scheme (7] with grid embedding. As H-type
grids are flexible to treat complex geometries the
present work forms a basis for the development of
a code for a complete transport aircraft.

GRID GENERATION METHOD

Elliptic System
In the present work body fitted grids are gen-

erated by solution of three Poisson equations for
curvilinear coordinates € = C£,n,c37%,

m

where B = [p,0 ,R]T represents source terms to con-
trol the grid spacing. This technique was first pro-



posed by Thompson et al [101 and has been used sub-
sequently by many researchers. Coordinates which
are generated by eqn. (1) are distributed smooth-

ly in the physical domain, even if the distribution
of points at the boundaries is not smooth. Further-
more the source terms P can be choosen in such a
way that coordinate lines are clustered in regions
where high gradients of the flow are expected.
Therefore, the choice of source terms is the main
problem in generating suitable grids.

It is evident that egn. (1) can be more
easily solved by interchanging the role of depen—
dent and independent variables as follows:
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where J denotes the Jacobian J = 3%/5¢ and the
coefficients A to F are functions of the transfor-
mation coefficients which are given in [9]. Speci-
fying the values of ¥ at the boundaries of the
computational domain, eqn. (2) can be solved in the
interior.

Grid Control

A simple method to derive source terms from
a prescribed point distribution has been given by
Middlecoff and Thomas [10]. Let n = const. be a
plane at which a point distribution is prescribed.
Agsume that the coordinate line on which n varies
is crossing that plane orthogonally and that the
curvature of the coordinate line on which n varies
is zero. The source term P then writes

(3)

where s denotes the arc length distribution.
Similar expressions can be derived for source terms
Q and R respectively. Once the source terms P,Q
and R have been evaluated on certain planes of the
computational damain they can be interpolated in
the whole region.

If one wishes to attract grid lines to other
lines in the computational domain (i.e. leading
or trailing edges) one can use additional source
terms as given in [9]. Assume that the lines on
which ¢ varies are to be attracted to the line
£ =[&1,n,2]T. The source term P will then write

"
a sign(&-g1)exp { - b[(&-1) 2+ (n-np)?] }

P
(4)

with empiral constants a,b. Analogous expressions
for source terms Q follow directly.

For O- and C-type grids around wings the use
of egn. (3) yields smooth and well distributed coor-
dinates in the physical domain.In the case of an
H-type grid difficulties arise at the leading edge
of the wing where a grid singularity occurs.In Fig.l
the grid structure used in the present investiga-
tion is sketched. The wing lies between an upper
and a lower camputational cube forming an H-section—
wise structure. The wing tip is wrapped in an O-type
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manner which there gives a better resolution of the
flow compared to an H-type spanwise grid. The grid
structure of Fig. 1 shows inner cuts between upper
and lower cubes. Both coordinates and source terms
have to be specified at these inner boundaries of
the camputational domain to allow a solution of
eqn. (2). Fig. 2a shows a view of a sectionwise H-
grid, which was generated with fixed values of the
coordinates on the plane "ABCD" of Fig. 1 through-
out the solution process. At the inner cut there
is a slope discontinuity which deteriorates the or-
der of accuracy of the flow solver. An alternative
would be not to fix the coordinates on the inner
cut throughout the solution, but to treat this co-
ordinates as interior points. Fig. 2b shows the re-—
sult of this strategy. Here the grid is smooth on
the inner cut but is badly distributed near the
leading edge. The failure of both alternatives is
due to the assumption of orthogonality and van-
ishing curvature when specifying the source terms
at the inner cut according to eqn. (3).

Iterative Grid Control

As both skewness and curvature come out as a
part of the solution and therefore cannot be cal-
culated beforehand an iterative determination of
source terms has been developed. In order to ob-
tain a smooth grid the solution algorithm is opera-
ting on all interior points including inner cuts.
In order to obtain an appropriate point distribu-
tion the source terms are adjusted throughout the
whole solution process. For this purpose we first
choose target planes on which the final solution
should coincide with a specified point distribution.
In the present application the target plane "ABCD"
of Fig. 1 is choosen. Target values of grid stret-
ching (sgg/sg) , can be calculated from the desired
point distribubion on the target plane. Egqn. (3)
will usually be solved by a relaxation method,
which yields new values of the coordinates after
each iteration. From these new coordinates actual
values of s;,./s ¢ can be computed. The difference
between tardget values and actual values of the grid
stretching is used to adjust the source terms at
the target plane as follows:
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To obtain a stable iteration scheme it is necessary
to add a damping term using the derivative of the
difference between target values and actual values
with respect to the iteration nimber. The final
iteration formula then reads:
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Once the source terms (P J2/A) have been ob-

tained on the target plane thej{} can be interpolated
in the entire domain and the relaxation method can
proceed to thenext iteration and so forth. In prac-
tice coefficient values of ¢_=0.05 and c¢=0.5 have
been found to give good convergence propérties in
combination with a line relaxation scheme to solve
eqn. (2). The converged solution will yield a coor-

dinate grid for which (sgg/sg)=(sEE/s£)O is valid



on the target plane and which is smooth in the en-
tire domain. Several views on a grid which has been
generated using iterative grid control will be
given in the following paragraph.

Grid Generation Code

In order to enable the treatment of complex
configurations a multiblock structured grid genera-
tion code has been developed. This approach was
proposed by Lee and Rubbert[12] and has recently
been used by Weatherill et al ©13] and Fritz C141.
A complicated multiply connected computational.
domain is split into a number of simply connected
cubes. Therefore, the structure of the basic re-
laxation routine is independant of the problem un-
der consideration. The logic which is incorporated
into the present code allows a high flexibility
with respect to grid topologies. The boundaries of
each block are divided into an arbitrary number
of segments. Either Dirichlet boundary conditions
can be prescribed or the segment can be treated as
inner cut on which the coordinates are generated
by the solution algorithm.

For an efficient grid generation successive
grid refinement is used. The solution of the coarse
grid is interpolated and used as input for the re—
fined grid calculation. Furthermore there is an
option available for a refinement of an embedded
patch of the grid only. For the present application
the surface grids on the wing, on the far field
boundaries and on the inner cuts of the two block
grid structure in Fig. 1 have been generated alge~
braically. In particular the surface grid of the
wing tip has been smoothed by applying a series of
superellipses £157 to the planform and the thick-
ness of the wing tip. Fig. 3 shows the planform of
DFVLR F4 wing and a view on the surface grid of the
wing tip. The far field boundaries have been located
around 16 chords away fram the wing surface. Ini-
tial source terms have been specified on all boun-
daries using eqn. (3). To obtain a more dense grid
near the leading edge of the wing spanwise grid
lines have been attracted to the leading edge using
eqn. (4).

Once the surface grids and surface source terms
have been specified 3-D linear transfinite interpo-
lation is used to obtain the initial values in the
interior of the computational cubes. The iterative
solution of egn. (2) is then advanced by a conven—
tional successive line relaxation method. Usually
overrelaxation is used for a fast convergence of
these methods. For the present application where
large aspect ratio cells are occurring at the sin-
gular lines of the grid and near the far field the
relaxation factor had to be reduced to a value
around 0.7 to obtain a converged solution. Iterative
grid control according to egn. (5) has been used
on the plane "ABCD" of Fig. 1. The coordinates on
the plane "EFGH" have been fixed throughout the
solution because of the finite trailing edge thick—
ness of DFVLR-F4 wing.

The convergence history of the grid generation
calculation is illustrated in Fig. 4. Three succes-
sive grids have been generated. The maximum change
of x-values in the fine embedded patch is substan-
tially lower compared to the coarse global grids,
because the aspect ratio of the cells in the patch
is smaller compared to those near the far field.

The CPU required for the coamplete calculation was
less than 100 s on CRAY 1S, which is about 5 percent

of the CPU of a converged flow analysis. Fig. 5
shows the sectional grid near the root of the wing.
A view of sectional and spanwise grid distributions
near the tip is given in Fig. 5d. It can be seen
that the present method of grid-control yields
smooth and well distributed coordinates in the
leading edge region of the wing.

EULER EQUATION METHOD

The well known finite volume multistage time
stepping scheme of Ref. [7] is used in a multi-
block structured 3-D Euler code. The development of
the global grid version of this code has been des-
cribed by Radespiel and Kroll [16] including details
how to treat boundaries of the computational domain
and how to handle the I/0 problems of an out of core
code. In the present paper we will briefly intro-
duce the basic scheme and then turn over to the
treatment of embedded patch boundaries.

Basic Scheme
In integral form the Euler equation are written

%Ef!fﬁdn+_£f§

where 0 denotes a fixed region with boundary &0 and
outer normal B. W represents the vector of conserved
quantities, namely mass, momentum and total energy,
and F is the corresponding flux tensor. Semi-~dis-
cretization of egn. (6) separates spatial and time
discretization. The final volume scheme is

as

hds=0

(6)

3
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where hi,qj,k denotes the volume of quadrilateral
cells. Qi,j,k represents the Euler flux balance for
each cell. The fluxes at the cel_l) faces are calcula—
ted from averages of the values W assigned to the
cell centers. To damp out high frequency oscilla-
tions, dissipative terms Dj, 4§,k are added which are
formed by a blend of fourth and second differences,
Multistage Runge-Kutta time stepping schemes are
used to advance to the steady state. In the present
study a 5-stage scheme with two evaluations of dis-
sipative terms is used. Several techniques to ac-
celerate the convergence to the steady state are
applied. These are: local time stepping, enthalpy
damping (71, implicit residual averagingf17] and
successive grid refinement.

Interface Schemes

In the present investigation embedded patches
are formed by dividing the spacing of the base glo-
bal grid. Therefore, rather simple interpolation
formulas can be used to transfer information between
the zones. Fig. 6 shows a view of the patch inter-
face where the grid size ratio is 2. Assume that
the finite volume scheme in the fine grid requires
the value of the variable U at the midpoint of the
cell face S. A first order interpolation in the com-
putational domain then yields

294



1
76 Y1,n,m 16 U1,n+1,m +
1

1
AT U1,n,m+1 * 78 U1,n+1,m+1

The fluxes at the interface cells of the coarse
grid are formed by adding the four corresponding
fluxes of the fine grid. This interface scheme has
been given by Eriksson {51 and is denoted by Scheme
I. Allmaras and Baron [6] have pointed out that
Scheme T allows unstable modes for waves entering
the embedded region (downwind weighting of eqn. (8)).
They propose a simple zeroth order interpolation
which has already been used in Ref. r41:

) (9)

Eqn. (9) is called Scheme II. Conservation at the
interface is enforced in the same way as with
Scheme I. Scheme II is neutrally stable for all
flow directions r61. '

In analogy to the treatment of Buler fluxes
at a patch interface, special interface formulas
for the disipative flux balance Di,5,k have to be
provided. For both Scheme I and Scheme II the dis-
sipative fluxes which are used to form the fourth
difference dissipative terms are set to zero at
patch interfaces.The fluxes, which are used to
form the second difference terms are determined by
taking first differences of each conservation va-
riable. At the patch interfaces these first dif-
ferences are taken using first order and zeroth or-
der interpolation in connection with Scheme T and
Scheme II respectively. This procedure is used for
both coarse and fine grid interface cells and there~
fore it is not conservative. Alternatively some cal-
culations were performed setting the first diffe-
rences to zero at the interfaces. Very similar re-
sults were obtained in both the cases.

Multi-Block Euler Code

Multi-block structured flow codes exhibit a
high flexibility with respect to grid topologies
and grid sizes. Nevertheless the structure of the
basic flow solver is simple and does not require
any I/0 transfer. Furthermore a block structured
Euler code can be extended to allow embedded re-
gions, where time avaraged Navier-Stokes equations
are solved (183. The present code is an extension
of the block structured global grid Euler code CATS
£163. The logic, which is incorporated in CATS di-
vides the boundaries of each block in an arbitrary
number of segments. In the present version the fol-
lowing boundary conditions can be applied on each
segment:

far field
solid wall
inner cut, grid size ratio 1:1

inner cut, grid size ratio 2:1

inner cut, grid size ratio 1:2

The user,who wants to select appropriate boundary
conditions for a particular block structure has to
specify a small number of integer values for each

segment. These integer values steer the boundary
condition routines and link corresponding inner cuts
to each other.

RESULTS

To judge the accuracy and efficiency of the
present code several computations of the transonic
flow around DEFVIR F4 wing [81 are presented. This
configuration has been choosen because it represents
a typical rear loaded transonic design. It has also
been used as test case for transonic flow computa-
tions of two GARTEUR Action Groups where relative
large differences were observed between the results
of the participants.

Fig. 7 shows the convergence history of the
present method. Three successive grids have been
used. The coarse and the medium grids are global
grids. The solutions on the fine grid have been ob-
tained using both a global grid with 128x80x28=
286720 cells (128x28 cells on the wing surface) and
a refined patch which is embedded in the medium
grid with 77882 cells in total (see Fig. 5). The
reduction in averaged 3p/3t is slightly better for
the embedded grid calculation with interface Scheme
I than for the global fine grid. This may be due
to the larger time steps which can be taken for the
cells outside the embedded patch. If interface
Scheme II was applied the CFL number had to be
slightly reduced in order to get a converged solu-
tion. This stands in contradiction to the theore-
tical results of Ref. [6], which were obtained for
a one-dimensional linear model problem.

The influence of finite distance to the far
field boundary of the coordinate grid can be easily
checked with the present H-type sectional grid. We
choose a flow with =0~ and compare the solutions
with free stream boundary conditions at the hori-
zontal far field boundaries with those when the far
field boundaries were treated as solid walls. It is
well known that solid wall boundary conditions will
overestimate the lift, whereas free stream boundary
conditions result in less total lift when compared
to the flow in an infinite domain. For the present
grid, where the far field was located about 16 mean
chords away from the wing,Table 1 shows that the
influence of far field distance on the lift seems
to be less than 1%.

Table 2 gives the 1lift and drag coefficients
for solutions with and without grid embedding. Note
that the coefficients had been frozen to at least
three figures when the computations were terminated.
The results for interface Scheme I are closer to the
global fine grid results than those of Scheme II.
In Fig. 8 pressure distributions are given for wing
sections near root, kink and tip of the wing.The
main features of the flow are well resolved on the
medium grid. The results of the global fine grid
and the embedded fine grid (scheme I) are close
together exept for the pressure peak at the very
blunt leading edge of the root section, where the
embedded patch should be slightly enlarged in up-
stream direction to resolve the flow more accu-
rately (see Fig. 5). Note that the pressure distri-
bution is smooth near the H-grid singularity at the
leading edge. A more detailed comparison between
the solutions is given in Fig. 9-10. Surface pres-
sure distributions and Mach contours are shown at
a midspan section where the spanwise 1ift distribu-
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tion has its maximum. In the contour plots the boun—
daries of the embedded patches are indicated by
dashed lines. Global grid and embedded grid (Scheme
I) results compare very well. The Mach contours for
Scheme II show an unsmooth behaviour at the inter-
faces. Therefore this scheme should be discarded.
In Fig. 11 distributions of total pressure loss at
the midspan station are presented. The total pres-
sure loss is well below one percent upstream of the
shock except a small peak at the leading .edge with
two percent at maximum. The results of Fig. 8-11
indicate that the present numerical solution of the
Euler equations is quite accurate.

In Table 3 CPU~timings on CRAY 1-S vector com-
puter are given. For engineering applications it
should be sufficient to terminate the computations
when 99,5% of the final 1ift has been obtained. If
we adopt this criterion the solution with local
grid refinement is 3.7 times cheaper than the so-
Iution on a global fine grid.A further improvement
may be obtained if more time steps are executed on
the embedded patch than on the coarse global grid.
For example the sweep over the blocks can be ar-
ranged in such a way that always two time steps
are taken on the embedded patch blocks whereas one
time step is executed on the coarse global grid
blocks. Now the solution with local grid refinement
is 4.4 times faster than the solution on a global
fine grid.

CONCLUSIONS

For an efficient solution of the three-dimen-
sional Euler equations both grid generation and
Euler codes have been developed which use locally
refined patches to resolve high gradient regions
of the transonic flow around wings. The grid gene-
rator described here provides smooth and well
distributed H-O-grids. A cell centered finite vo-
lume Fuler code has been extended to include treat-
ment of zonal boundaries, where thé grid spacing
changes. Different boundary schemes have been in-
vestigated for the transonic flow around DFVIR-F4
wing. The results show that local grid refinement
vields a substantial reduction of computational
expense without loss of accuracy.

As both grid generation and Euler codes are
block structured it is easy to adapt them to new
or more complex configurations. Therefore the pre-
sent work forms a basis for the development of a
code for complete aircraft calculations.
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CL CD
Free stream horizontal
far field boundaries 0.7367 0.02507
So1id wall horizontal
far field boundaries 0.7473 0.02490

Table 1: Lift and drag coefficients ob-
tained with different far field
boundary conditions, M_ = 0.75,
a = 09, 64x%20x14 grid

L D
32x20x7 global grid 0.809 0.0422
64x40x14 global grid 0.848 0.0352

128x80%x28 global grid 0.878 0.0331

64x40x14 global grid
78x22x28 embedded grid 0.877 0.0330

Interface SCHEME I

64x40x14 global grid
78x22x28 embedded grid 0.875 0.0335

Interface SCHEME II

Table 2: Total forces for DgVLR F4 wing,
M_ = 0.75,a = 0.84

99.5 3 CL 9%.9 3 CL

128x80x%x28 global grid 6780 s 8830 s
64x40x14 global grid 1810 s 2740 s
78x22x%28 embedded grid
64x40x14 global grid,

n time steps 1550 s 2310 s
78x22%x28 embedded grid,

2n time steps

Teble 3: CPU-timings on CRAY 1-S vector
computer
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Figure 2: Grid control using eqn. (3)
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c) View on leading edge region d) Wing tip region

Figure 5: continued
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without local grid refinement, °
DFVLR F4 wing, M, =0.75, a =0.34
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a) n = 0.067 b) n = 0.324
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Figure 8: DPressure distributions with and Figure 9: Pressure distributions at midspan
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b) Embedded fine patch, interface Scheme I
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c) Embedded fine patch, interface Scheme II

Figure 10: Mach contours at n = 0.51,
DFVLR F4 wing, M_ = 0.75,a =0.84°
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Figure 11: Distribution of total pressure
at midspan station RFVLR F4 wing,
M = 0.75, a = 0.84
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