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Abstract

This paper describes a method for solving the equa-
tion for inviscid, irrotational, compressible, potential flow
about a propeller. The equation is written in a non-inertial
system of coordinates rotating with the propeller in which
the problem becomes a steady one. The solution is con-
structed by superimposing a solution to the compressible
equation on an “incompressible” or “wake” solution. A
“modal” or “shape” function method provides a procedure
for solving the integral equation resulting from application
of the final boundary condition to the superposed solution.
Results are presented for an increasing number of control
points and modal functions. A comparison of compress-
ible and incompressible circulation distributions is also in-
cluded.
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o helical coordinate =6+ z

¢  perturbation velocity potential
®  total velocity potential

w  propeller angular velocity
Subscripts

1 incompressible
¢ compressible
n  nth term in a series

s  somic
Superscripts

quantity in inertial coordinates
Hankel transformed quantity; dimensionless quantity
vector
! perturbation quantity; inner Hankel integral form
+  ahead of propeller
—  behind propeller

*  dimensionless quantity

1. Introduction

A large number of propeller analysis methods exist,
and designers currently use nearly all of them to some ex-
tent. The methods have enjoyed varying degrees of accep-
tance, largely due to their great variation in complexity
and the corresponding variation in accuracy.

The Blade Element~-Momentum method is, perhaps,
the most widely used since it is easily implemented. It
roughly corresponds to the strip theory for wings and,
like the strip theory, does not account for the effects of
aerodynamic induction. Vortex methods encompass those
which compute induced velocities due to a trailing vor-
tex system. This idea, attributed to Betz and recounted
by Prandtl!, has been implemented by direct solution of
the governing potential equation ~ Goldstein?, Reissner®,
and Theodorsen* ~ and by computation of induced veloc-
ities by the law of Biot and Savart ~ Glauert® and, more
recently, Shiao, Chang et. al., and Glatt et. al. ({refs.
6-9). The above methods basically deal with incompress-
ible flow, though empirical or semi—empirical Mach numbe
corrections may be incorporated into them.

Three authors in particular have had some success us-
ing the method of matched asymptotic expansions in the
analysis of rotors. Pierce and Vaidyanathan !° studied in-
compressible, unsteady, helicopter—type rotor blades using



this approach. Johansson!! used matched asymptotic ex-
pansions to study helicopter-type rotors and propellers in
compressible, steady flow.

Propellers have been analyzed using computational
fluid dynamical methods with, so far, limited success (ref.
12). C F D, however, promises better results in the future
for accurate propeller flow field prediction.

Potential singularity methods, including various forms
of lifting surface and paneling techniques, comprise the
most popular of the advanced propeller analysis meth-
ods. Ffowcs Williams and Hawkings'® developed the foun-
dation of this approach for surfaces in arbitrary motion,
though their work particularly related to acoustic theory.
Most aerodynamic applications utilize only the mono— and
dipole solutions (sources and doublets), neglecting the non-
linear quadrupole solution. Further relevant acoustic— re-
lated work was done by Farrasat!* and Schmitz and Yu'®

Several authors have pursued the potential singular-
ity approach from the aerodynamic standpoint. Dat!® and
Runyan'’ developed a general lifting surface theory for
wings and propellers in compressible, unsteady flow. The
incompressible propeller cases were specialized by Ker-
win 18 (steady), Summa'® (unsteady), and Jacobs and
Tsakonas®® (unsteady). Long* specifically used Ffowcs
Williams-—

Hawkings acoustic singularities to determine aerodynamic
loads on propellers.

The Integral-Equation approach to the problem of
computing the aerodynamics of propellers has been ex-
tensively studied. The kernel functions for all cases above
have been determined and most have been implemented
for purposes of application. Unfortunately, the lifting sur-
face/kernel method for rotors has proven tedious due to
the large number of control points required for accurate
calculations. The present work focuses on an alternative
solution method for finding aerodynamic loads on a pro-
peller in order to simplify the computational procedures
and requirements.

Most of the theories mentioned above were developed
for an observer in an inertial reference frame. Transfer-
ring the problem to a coordinate system rotating with the
propeller leads to the ability to treat the boundary con-
ditions as steady ones (uniform inflow) or, at least in the
same terms as those for a vibrating wing (non-uniform
inflow or vibrating blade). In this non-inertial reference
frame, the Integral-Equation approach is still valid, but
with the potential doublet transferred to the rotating sys-
tem. However, in attempting to avoid the computational
complexities of kernel function solution, this work deals di-
rectly with solving the compressible potential equation in
rotating coordinates.

Davidson?? and Busemann?® studied this problem for
the case of a propeller in a wind tunnel. The work in
this paper is based on their approach, but with boundary
conditions suitable to a propeller operating in free air. The
method is applicable to unsteady flow about propellers,
but only the steady case is extensively studied here.

2. Development of the Compressible Flow Equation

for Propellers in Potential Flow
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Except in the vicinity of the propeller and its wake,
the flow field due to a advancing propeller in a spacejﬁxed,
or inertial, coordinate system may be considered irrota-
tional and isentropic. This approach treats the viscous
drag on the blade as inconsequential to the general theory.
Given a total potential, ®, of the total velocity V, the
governing equation of the flow is
av: 8%®

1y DV ov: o
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The velocity in the inertial system may be written as a
superposition of the oncoming velocity, Uk, and the per-
turbation, #'. As long as all components of #' are small
relative to U, the linearized version of the above equation
applies. The assumption of small 4 implies that the in-
duced velocity due to rotation of the propeller blade must
be small compared with U. It can be argued for thin
blade airfoils that | &' | will always be much less than
Vwirf+ U? where w is the propeller angular velocity.
However, to ensure | &' | << U, the oncoming velocity
must be on the same order as wr. Thus, the linearized
analysis holds only for lightly-loaded, or high advance ra-
tio, propellers.

Figure 2.1 -- Coordinate System

Assuming, then, high advance ratio, the above equa-

tion reduces to
vipme 2P - Ly 28 T8
$oM e T 2 gzdi | o
where @ now represents the perturbation velocity po-
tential 7 and f refer to the variables in a translating
coordinate system, and a represents the ambient speed

of sound.

Though equation (2.1) above is usually derived in a
Cartesian system of coordinates, one can show that the
same equation holds, to first order, in th cylindrical sys-
tem, (?,5,2), since the variations occur only in higher
order terms. The Laplacian, however, must be considered
in cylindrical coordinates. Note that a boundary cor%di-
tion to (2.1) must specify tangency of flow at the rotating
propeller blade.



Conversion to Rotating Coordinates

Consider a transformation to a blade-fixed coordinate
system which rotates with the propeller at angular velocity,
w. This non-inertial system, (r,0,2,t), is defined by:

, 0=
t=

é+wz
i

z2=2

Performing these coordinate transformations gives the un-
steady, linearized potential equation in the rotating sys-
tem:

1 8%p 1 8%
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where M, = £ is the radially varying apparent Mach

a
number in the angular direction.

Boundary Conditions

In general, the solution to a linearized lifting body
problem is subject to the following conditions:

1.)  Tangency of the flow at the body surface;

2.)  Vanishing (or at least finiteness) of disturbances
an infinite distance away from the body and its
wake; and

3.)  Zero normal velocity through the wake.

The first of these conditions has the mathematical rep-
resentation (see, for example, Dowell,?4):

aaf-%V VF=00n F =0,

where F' = 0 represents the surface of the lifting body,
and V = V@& is the total velocity vector in an inertial
coordinate system. By the rule for vector time derivatives,
in a non-inertial frame, the total velocity, as seen in the
coordinate system rotating with angular speed, w, is:

“

- wré.

—

W=V_-gx7=V
Substitution into the above boundary condition, along
with the conversion of the time derivative, gives the bound-

ary condition in the rotating reference frame:

oF
ot

oF
-

a6

+W. VF—%€+W VF on F=0,

0 =
which is the expected result. In other words, the body
boundary condition may be treated in the same manner
in the rotating coordinate system as it is in the inertial
system, as long as the local freestream velocity, W, is
considered.

The wake boundary condition can be made mathe-
matically tractable by assuming -

1.)  Unsteady perturbations are small so that the un-
steady wak has, to leading order, the same shape

as the steady wake; and
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2.) . The slipstream velocity, w, is much smaller than

the freestream velocity, U.

With these assumptions, the position of the wake can
be approximated by:
9—%z=(n—l)%, r <R,
for B = the number of propeller blades, n = the blade
index, and R = the blade radius. For r = r, and
n = 1, for example, the equation describes a single helix
with radius r, and origin at 8 = 0. The wake surface is
a helicoid made up of an infinite number of these helices
with radii from r =0 to r = R originatingat z =0
and at each angular station corresponding to a propeller
blade location.

The first order analysis assumes that all motion of the
helicoidal wake occurs in the axial direction. Since there
can be no flow through the wake, the wake condition is
expressed as

W COS €=U, COS € — Uy SIN €

on

w
0——z=

U
where u, = induced velocity in the z—direction, uy = in-
duced velocity in the f—direction, and € = helix angle
= tan™! U/wr. In terms of the velocity potential, then, the

boundary condition is

(n——l) ,r<R

') Uf?tp

wrw—-wraz r ao

Steady Flow Equation

The remainder of this paper will focus on the aero-
dynamics of the steady propeller; that is, a rigid propeller
experiencing a uniform inflow. These conditions allow the
time dependent terms in equation (2.2) to be excluded
since, now, the flow field appears steady in the rotating,
translating coordinate system.

The dimensional spatial variables, r and 2z, have
convenient dimensionless forms - p = wr/U and z= %
Dropping the bar over the dimensionless 2z variable, the
steady, potential equation becomes:

32<p 1d¢

ﬂZ
2
a0 " pop az . 23)
2 230°P  ,ag2 _
A 5= M )ae2 565z ~
with f% = 1 — M2 Equation (2.3} appears to depend

on one parameter (M) only. However, the advance ratio
parameter is hidden in the dimensionless variables, p and
2.
In “helical” coordinates described by ¢ =60 — 2z and
o = 6§ + 2, equation (2.3) looks like
1 1 1
Pop + ;ﬁpﬂ +(1+ ;5)99«“"(1 + P —4M*) 0,0

1
—2(1+ i 2M*)p,s = 0.



Goldstein® shows that, in the far wake, the flow field de-
pends only on the variables p and ¢. (¢ runs counter
to a helix at a given radius.) This results from purely
geometrical considerations, and therefore holds for both
compressible and incompressible flows. Thus in the far
wake,

1 1
Pop T ;qo,, +(1+ ;})‘Pcc =0,

which is exactly the equation solved by Goldstein. This
result is of interest on two accounts:

1)  The perturbed flow in the far wake has an in-
compressible character which implies that quantities
which depend only on the far wake are invariant from
incompressible to compressible flow.

2)  The far wake solution for a propeller in incom-
pressible flow also satisfies the compressible equation.

Davidson pointed out the latter and used that fact in
his study of the propeller in compressible flow in a wind
tunnel. This study also utilizes the far wake solution as
will be shown in Section 3.

Formulating the problem in a rotating coordinate sys-
tems leads to some mathematical consequences of interest.
Because the freestream velocity in this case depends on
radial position, that freestream velocity reaches the speed
of sound at some “sonic radius.” This radius forms the
boundary of a circular cylinder parallel to the z—axis,
termed the “sonic cylinder.” The expression for the sonic
radius is easily obtained -

2 2
a*-U
r2: e

8 w2 ¥
or, in dimensionless terms,
1
2
Po= 30— 1

For a purely subsonic propeller, the tip radius, p,, is
less than p, always. However, a solution of the equation
describing the flow field created by that propeller must
include consideration of the outer region as well as the
subsonic one.

In the simpler case of rectilinear, compressible, poten-
tial flow, the character of the flow depends on the sign of
the quantity, 1— M?. For (1—M?) >0, the flow is sub-
sonic and of elliptic character, whereas, for (1 - M?) <0,
or supersonic flow, the character is hyperbolic. It is ex-
pected, then, that the flow character in rotating coordi-
nates will depen on the sign of (1 — M? — M}?), which
is positive for p < p, (elliptic) and negative for p > p,
(hyperbolic). A flow of mixed character results from for-
mulating the problem in rotating coordinates.

A hyperbolic flow region implies the existence of char-
acteristics ~ in the present case characteristic surfaces —
within that region. von Mises® outlines a general theory
of characteristics with particular application to compress-
ible fluid flow. Utilization of his methods verifies that char-
acteristics occur for p? > 335 — 1. This formally validates
the expected result mentioned above.

Further discussions of characteristics for three and
higher dimensional problems are found in references 26

through 29. Though this approach for the compressible
propeller problem in rotating coordinates seems promis-
ing, it will not be pursued further at this time.

3. Solution of the Equation

The problem of compressible, potential flow about a
propeller reduces to that of solving a partial differential
equation subject to certain boundary conditions:

1 1
B2zt Pppt+ ;sop+ ;;(szM’)m—ZM%oaz =0; (3.1)

subject to

1 ¢ finite at p =0,

2 Sommerfield radiation as p becomes infinite,
3.  No flow through the propeller blades, and

4 No flow through the propeller wake.

As discussed previously, the solution to the equation
for the incompressible velocity potential, @;(p,0~2), also
solves the compressible equation. Though it cannot cap-
ture the compressible effects at the propeller blades, this
solution accurately describes the far wake flow. Thus, a
superposition of a compressible solution, which accounts
for effects near the blades but dies out in the far wake, on
the incompressible solution also constitutes a solution to
the linear differential equation. As will be shown later, the
superposed solution is desirable in this case as the analyti
form of the compressible solution does not lend itself well
to satisfying the wake boundary condition.

Though most forms of the incompressible velocity po-
tential, ¢;, are derived at an infinite distance behind the
propeller plane, any form given as ¢;(p,6 — z) must solve
equ. (3.1). However, in order for the superposed solution
¢ = . + i to form a solution to the entire problem,
the sum, ¢; + ., must satisfy the boundary conditions.
The first two conditions, finite ¢ at p =0 and proper
dying out of the disturbance as p — 0o, do not cause
any difficulty as they can be satisfied independently by ¢;
and ¢,.

In order to account for the more problematic condi-
tions ( 3) and 4) above), the flow field can be artificially di-
vided into two regions — one forward of the propeller plane
in which only the compressible velocity potential holds,
and the other behind the propeller plane in which both ¢;
and ¢, apply. The form of p;, which automatically pro-
vides for the existence of a trailing wake, necessitates the
division of the flow field. This division, however, requires
the introduction of two more “boundary” conditions which
assure continuity at the propeller plane. Designating ¢}
as the forward potential and ¢~ = (p; + ¢;) as that
behind the propeller, and situating the propeller at 2z =0
as before, a continuous flow field is ensured by

‘pj ‘z:O = @5 ,[z::O 'HP: 12:0)

and

o} ;

Bz =0T g 0t
Since both % and ¢~ are valid at z = 0, both
must satisfy the condition of no flow through the propeller
blades.

dpr
£ =0 - 3.2.a
Jo= ( ,b)
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The Incompressible Potential

Reissner® proposed a potential solution to the incom-
pressible propeller problem which has a slightly simpler
derivation than that given by Goldstein. Reissner’s poten-
tial has the form:

© =0, + pn
with
Po = gRoy

and
on =% Rasin nB¢. (B = number of blades.)

Reissner uses the potential ¢, to give the discontinu-
ity distribution required along the helicoidal wake surfaces.
He does this by requiring that

Vz‘f’o =-q,
where g represents a source distribution on the helicoidal
sheet describing the wake. In the case of a two-bladed
propeller, for example, th source distribution at some p <
fPa; as a function of ¢, looks qualitatively like a 2-cycle
“sawtooth” function. (See Fig. 3.1.)

>0

NHT

Figure 3.1 -- Assumed Source Distribution

Between sheets — for example -
g is linear in ¢ so that

= —k¢p(p).

In helical coordinates, the above Poisson equation be-
comes:

—-3<¢<}

1 1 U?
Pop. + ;Sopo + (1 + 7)‘/’“0 = ;3‘1(/’»5')-

p

So, letting ¢ = ugp(p) and ¢, = ¢R,(p), the solution
for the velocity potential, ¢, becomes

¢ ["5E [ ortow.
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Reissner computed ¢, so as to maintain V.4 =
0 in the flow field by requiring that VZ?p, = +44. By
assuming the series solution, ¢, = —372; R.sin(nB¢),
the expression for R, becomes:

2
R, = (—1)";1-3— {a:,I,,B(an) + a2 K,.p(nBp)

+La(nBp) [ Lin(nBEER(¢)d¢

~Kas(nBp) [ Kas(nBEER()dE );

where the two integral terms represent particular solutions
to the separated Bessel-Poisson equation in R,.

This potential applies regardless of the boundary con-

ditions which, of course determine values for the constants,

al and al. Free air boundary conditions result in

R = (_1)%{1(,,3(,»3,,) [ LanBe)ER(E)de

+ha(nB,) [ Kns(nBﬁ)ﬁp(f)df},

It is generally convenient to describe the velocity po-
tential in terms of the circulation distribution, T'(p),
rather than the source strength. By definition, the cir-
culation is equal to the discontinuity in potential across a
sheet of vorticity. Thus,

2r
B |
=5 [ [ wtoravae.

I'(p) = Ap(p) R,

This gives a relationship between T = and the source
strength, p. Notice that the quantity ¢, does not con-
tribute to the circulation strength since it does not have a
discontinuity at the vortex sheet describing the wake.

Using the above expression, R, can be written,
dar

i)

+on(n0) [ Kua(nBO(E e .

R, = (-1)" B{ ,,B(an)/ I.p(nB¢)d (5

Integrating by parts,
Ro(9) = (-1 2 { Kun(nB) [ Too€ e
+luo(nBp) [ 'K..B(nBosEde
- nB(an)KnB€d€ |€-—Pu }

This latter form, though generally more easily dealt with
numerically, may, in fact have a singularity at £ or p
equal to p,. This occurs due to the form of the circulation
distribution, I'(p), which often is assumed to have infinite
slope (though zero value) at the blade tip. Several schemes
can deal with this problem; in a lifting line approach the



best seems to be assuming a reasonable functional form for
I'(p) which has large negative, but finite, slope at p = p,.
Reissner proposed that I’ = gpP(p? — p9), which makes T’
gero at the hub and tip as required, but, unless p+¢ =1,
the slope remains finite everywhere on the blade.

The Compressible Potential

A general solution to the steady, compressible, po-
tential equation for the flow about a propeller may be ob-
tained through separation of variables. The resulting series
solution has the form:

¢ =3 AnRa(p)Za(2)e™; (3.3)
n==0
with
Ra(p) = Cun(py/M?r2 B? + 22,
and

nB 1 { n?B2M?
Z,(z) = ea:p{z;;; + ] A2 — T}z

C,p represents a linear combination of solutions to
Bessel’s equation, A, is the separation constant, or eigen-
value, and p, = /M is the dimensionless radius at which
the local freestream velocity becomes sonic. Applying the
boundary condition requiring finiteness of ¢ at p =0

gives
R.(p) = Jup(p/ M*n2B? + A2).

A separated solution in a slightly different form from that
given above was first proposed by Busemann?,

(3.4)

Because of the behavior of the J-Bessel function as
its argument approaches infinity, substitution of (3.4) into
(3.3) above will cause automatic satisfaction of the radi-
ation boundary condition. This leaves no mechanism for
determining values for the eigenvalues, M,; in fact, the
notion of the eigenvalue has no real meaning for problems
of infinite domain. Therefore, the solution must be ob-
tained using a method other than a simple separation of
variables.

Due to periodicity in the angular coordinate, the ex-
pected solution to the partial differential equation has the
form:

o0
o= enlp,2)e"?

n=0

Substituting this into the PDE gives
1 2p2 1 2
Prpp + ;‘pnp—”' B pT(l + M), =
- B2pn,. + 2inBM?p,,.

Performing a Hankel transform on this equation gives

ﬁz‘pzz - ZanMZ‘,_Oz - ("/2 — nszM2)<p =0,

a second order, ordinary differential equation for the
Hankel-transformed potential, @®. The Hankel parame-
ter, 7, appears only parametrically. The solution to this
equation is easily obtained:

nB 1 n2B?
&nlz;7) = A,.e.’cp{ [z?{ + ] ~? ]z}

H o2

Inverting this transformed solution results in

en(pr2) = f ~ An(VnB ()%

ezp{[iz:g + %, o %i]z}d'y.

The complete solution to the compressible potential equa-
tion is, then

olp,z,0) =Y P’ fo An(V)1np (1)

n=o

nB 1 n?B?
—-+ — 7 — z}dy.
exp{[z 2 = B v 7 ] }dy

It remains to determine the unknown “constants,” A,(7).

Applying Boundary Conditions

In order to satisfy the continuity conditons described
by equations (3.2.a,b) the incompressible potential must be
reformulated so that it is compatible with the compressible
potential. Recall the current form of the incompressible
solution:

oi =~ DT()0 - )

- i R.(p)sin nB(8 — 2).

n=1

Using Hankel’s integral (Watson,* eq. (14.3.3)), T'(p) can
be rewritten as

I'(p) = /Doo '7/000 I'(s)sJup(vs)dsd.a(1p)dy.

Then, expanding (8 — z) in a Fourier sine series, the first
term in ¢; becomes:

B & 2(-1)"
Y nB

[ s ()a,

Pio sin nB(8 — 2)x

n=1

where

r, E/m I(s)sJnp(vs)ds.

The remaining continuous terms in the incompress-
ible potential can also be rewritten using Hankel’s Integral.
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This, along with reconstruing the sine as an exponential,
gives

©i =Pio + i1
— 1B & 2(_1)n nB(0-z) * '
== ar g O [ AW es(a0)dy
+1 Y &2 [T R () J,n(10)d,
n=l o
where

R, = / ” Ru(s)sJs(78)ds.

The simplest matching procedure is modelled after
that which Davidson employed for solution in a wind tun-
nel. Let the “constant” term in the compressible solu-
tion have the form A,(7) + An(7) + Ba(7) where now,
n =1,2,3, ... Generally, the first incompressible series will
be matched with the A, compressible series, and the sec-
ond incompressible series with the B,, compressible series.
This leaves the zero term in the compressible series which
can be incorporated into the former matching by making

Gi, + 0., = ©7,
v, =7,
9 8 tz=0
9 0 -y_9 _+ tatz=0.
az (So'a + vco) az(pco

9, =9
3274 = g%

(See symbol list for terminology clarification.) Applica-
tion of the matching conditions at z =0 determines the
coefficients found in table 3.1.

Convergence of the Integrals.

Table 3.1 completes the solution for the compressible
velocity potential except for the value of the unknown cir-
culation distribution, T'{p). However, it is possible to de-
termine the convergence of the integrals without complete
knowledge of the circulation function.

In general, the complete compressible potential looks
like
Soci —‘2‘-/; A°(7)’7J°('7p)€i(7/l’z)d,7

+ 5 e [Z(4,0) + Bo()1n(r0)

inB 1 l n2B?
ez:p{[ 22 ;tE 4% — 2 ]z}d'y.

From Gradshteyn and Ryzhik,* 6.561.14, the integral,

(3.5)

/0 x*Ju(ax)dx,

converges for p < % Thus, as long as the function mul-
tiplying J,p(7,) in each of the above integrals behaves
such that it is less than ,/x, the integral converges.

Determining the behavior of the multiplying function
requires knowledge of how I',(v}) and R](4) Dbehave.
Recall that

I () = / " Lo(s)sJop(7s)ds.

However, I',,(s) =0 for s > p,, so the upper integration
limit becomes p,. Then, invoking the mean value theorem,

Th(7) = pal'n(s1)s1JuB(751) (3.6.1)
for some s; such that 0 < s; < p,. In a similar, but
somewhat more involved manner,

,7nB

R.(7)=C (nB)"B(72 + n?B?)

+ CgSzJ"B(Sg'Y) (3.6.2)

where C; and C, are constants, and 0< s; < p,.

It is evident by observation that the integrals converge
for all 2z # 0 as the receding exponential dies out more
quickly than any power of 7y contributed by the A,, A,,
or B, grows. The first integral (zero term in the series)
converges even for z = 0 since the < in the denominator
of A, cancels that in the integrand, and J,p{s7) behaves

asymptotically like \/2/1rs—'; for large <. (See Abramowitz
and Stegun®?, 9.3.1.)

Four integrals remain — those corresponding to both
real and imaginary parts of both A,(y) and B.(y) as
z goes to zero. The imaginary parts stand to cause the
greatest problem as they do not contain the order-lowering

nary integrands as v gets large, the integrals of interest
become:

fo " un (1) an(vp)e dy = i,
and
/ow BT s(p)e P dy = L.
From Gradshteyn and Ryzhik, 6.633.2 and 6.621.4,

1 P+ st
I = — e
! Zzezp( 4z

Psy
)InB( 22 ):
and

12 — (_l)nB—lp—-nB

dnB-—l (m — z)nB
dznB-1 V2% F p? :

Now, taking the limits as 2z — 0, I; goes to zero and
I, takes on a finite value depending on the order of the
Bessel function For example, for n =1 and B = 2,
lim, .o I, = 2/p®. The integrals involving the real parts
of A,(7) and B,(7) can be shown to converge using a
similar approach.

4. Results and Discussion

The previous development derives and solves for an
expression for the total perturbation velocity potential in
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Forward (2 < 0) Behind (z > 0)
4o £ i) B £ Ti() A
B 2(-1)"T, : B B 2(=1)"T%(7) |, B |
An | g B0 - 28] BARLON;_ _nB ]
P§ ’72**2— P% ’72_"—2“
Ps (] -
B ~BM[_; _ __ nB _BO)[; _ _ nB
" 2 [ B 72—’%?3] 2 [ p 72~"—2§3]

Table 3.1 - Coeflicients for Compressible Velocity Potential Series

terms of the unknown circulation distribution, I'(p). In
general, applying the boundary condition requiring no fluid
velocity normal to the propeller blade determines this final
unknown. This condition may be expressed as

u, cos e —ug sin e=Wa for z,0 — blade, (4.1)
for the simple case of uncambered, thin airfoil sections.
u, and wup are the perturbation velocities, achieved by
differentiating the velocity potential. u.,uy, ¢, W, and «
are all functions of radial position.

In the lifting line approximation, there is no blade
at which to apply condition (4.1). Instead, the condition
given by Reissner® must be used. Referring to figure 4.1,
this condition is given as

V¢

w

a=oy— at z—>0,0~—>~7—r—. (4.2)
B
a, is the geometric angle of attack, and v; is the induced

velocity perpendicular to W.

Figure 4.1 —- Velocities at the Blade
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Two well known relations assist in reducing (4.2} to
usable form: £ = pWT and €= 4WZ ¢, a, where £=
lift per unit radius, pu density, ¢, section lift
curve slope, and- ¢ = blade chord. Combining these two
expressions gives o = 2I'/Wece,,. Substituting this into
(4.2) gives

ar U
picl W =a, z—0,0—

Ui

o (4.3)

e
E:
where ¢ = c¢/R, an inverse “blade aspect ratio.” Note
that v; = u, cos € — uy sin ¢, as before.

Condition (4.3) introduces two parameters, ¢ and
cr,.. T Is easily estimated for a typical propeller blade;
however, c¢,, is not known in advance for compressible
flow. It is assumed here that an estimate of ¢,, based on
strip theory will introduce only minimal error.

By defining ¢* = $3¢p and I'" = 5T, (4.3) can be
written in dimensionless form:

op 105" oI
Pz p 08  ptcy, (4.4)
-
=(1+pYa,, z—0,6 — 5



Carrying out the derivatives results in the following ex-
pressions for the perturbation velocities:

. g BI“ ©
z 8z 0~% + Z( l)
i |V =B
+ Iy | === vns(1p)dv
n=l anﬂ / [\/:7—!21: -7 }
~1)" e 3
+ Z ) / "Ry 27 Jus (10)d7;
n=1 '7n' -
(4.5.a)
s B & R
9= "3p [i=2 T " an _,,2:1( b By
n Too 7
-y (- v Jon(p)d
"EI ( ) 21rp2 \/ﬁ B ('7/7) v
= n B 1
2T Sy Jus (19)d7-
(4.5.6)

In the above, v, = nB/ps and R} = R, ().

Since the velocities are evaluated at the lifting line
(that is, at a vortex line representing the propeller blade),
some terms in equations (4.5.a,b) must include the self
induction by the lifting line. Those terms, characterized by
the I, terms under the integral sign, must be discarded in
order to obtain the proper induced velocities at the lifting
line. Davidson?? provides further explanation of this point.
The discarding of terms could be avoided if the control
points were chosen using a Weissinger-type approach, but
substantial complexity is added to the expressions for the
induced velocities using that procedure.

Equations (4.4) and (4.5.a,b) represent, in effect, an
integral equation in the unknown, I'*(p). A useful method
for solving this type of equation involves determining a
series “shape function” for T* with unknown coefficients.
The left-hand-side of (4.4) is determined using each of K
shape functions at K control points on the blade. This
procedure results in a K x K system of equations for the
K unknown coefficients of the shape function.

The shape functions used here are modeled after those
suggested by Reissner. Using T = Y¥_, gxp®+9(p, — p),
results in the linear equation

—

)7 = &
where [R] isa K X K matrix formed by substituting
K shape functions into the left hand side of (4.4) for K
control points. § is the unknown vector of coefficients, g,
and & is the vector formed by specifying the geometric
twist at K control points.

Figure 4.2 illustrates some typical results for this
method. The figure shows I'* distributions for 4, 6, and
10 equally spaced control points. The solution appears to
be converging as K increases. It is logical that a pro-
peller may require more control points than a wing for
convergence due to the variation in the freestream along
the radius. Convergence may be enhanced by concentrat-
ing control points near the blade tip.
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Figure 4.2 -

COMPRESSIBLE CIRCULATION DISTRIBUTION
M = 0.65
p=1

t4 05 BB L7 08 08 W

0 02 B

p/p.

Inspection of (4.5.a,b) reveals that the induced veloc-
ities have the form u = u;+ Au, where u; is the induced
velocity for incompressible flow (see Reissner®), and Auwu,
represents a change in induced velocity due to compress-
ibility. However, this “compressibility correction” holds
only for propellers with common circulation distributions
- a quantity much more difficult to specify than twist dis-
tribution — and, thus, is not particularly useful as a cor-
rection to incompressible results. Figure 4.3 compares the
compressible and incompressible circulation distributions
for propellers with the same geometric angle of attack dis-
tribution. As expected, the compressible case has a greater
magnitude of circulation, paralleling the same trend due to
Mach number which occurs for straight wings.

Figure 4.3 -

CIRCULATION DISTRIBUTIONS
COMPRESSIBLE AND INCOMPRESSIBLE

X =

10




Though it is difficult to predict analytically the con-
vergence of the important compressible parts of (4.5.a,
b), the numerical computations indicate good convergence
within five terms. Table 4.1 shows the relative values of
the first eight terms in the series for both uy, and u,,
for a fypical circulation distribution at p = .5p,.

() (%),
1 1.0000 1.0000
2 .8092 7573
3 .8493 x 107! 7733 x 107!
4 9258 x 1073 .8493 x 10~
5 1213 x 1073 .1096 x 103
6 1762 x 1074 1573 x 104
7 .2323 x 1078 .2069 x 1075
8 .3388 x 10~¢ .3042 x 10~-¢

Table 4.1 - Convergence of z— and §-velocity series.

Conclusion

The results obtained above inspire confidence in the
derivation and the solution methods since a) they show
convergence in both the series solutions for the velocities
and the shape function solutions, and b) they show trends
anticipated from wing theory. Of course, a favorable com-
parison with experiment would reinforce confidence in the
method.

Further results are easily obtained and are shortly
forthcoming. These include:

a)  thrust and torque distributions,
b) efficiency calculations, and

c) effects of changing Mach number and advance ra-
tio. :
The Weissinger boundary condition should also be
studied for accuracy improvement. In addition, a viscous
drag correction term must be included to correctly pre-
dict the thrust and torque distributions, particularly for a
compressible propeller analysis.
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