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I. INTRODUCTION

The final phase in the flight dynamics study is the investigation
of critical flight regimes; they are of ever increasing interest since deter-
mine the aircraft application anvelope and, to a great extent, their flight
safety.

The critical regimes primarely include motions with a strong
inertia coupling at a rapid aircraft roll (roll coupling), its dynamics at
high angles of attack, when various forms of stability loss due to an
aerodynamic characteristics degradation known as stall can occur, as
well as spin at supernormal angles of attack.

The aircraft spatial motion dynamics with simultaneous control
by ailerons, stabilizer and rudder is extremelly complex to investigate,
and this problem can adequately be solved only using digital computers.
The trends of such analysis are formulated in the book by Byushgens
and Studnev‘®?, in which the theory of aircraft spatial motion at rapid
roll is developed.

Recently a unified approach to investigate critical flight condi-
tions based on general methods for analyzing nonlinear spatial motion
equations has been shaped. The approach uses a numerical realization of
qualitative analysis me thods for nonlinear dynamic systems, recent advances
in differential geometry, the bifurcation analysis, and the catastrophe
theory. It is appropriate to mention here the contributions of Mehra,
Carrol‘® and Guichetea®).

Current efficient computational procedures permit to adequately
calculate steady-state stationary and oscillatory motions, investigate
their stability at small disturbances, predict bifurcation control parameters,
at which changes of the solution structure of motion equations and the
associated stability take place.

Critical regimes at rapid aircraft rolls, in stall and spin can be
related, as a rule, to bifurcation singlarities of the motion equations and
to changes of their solution structure. With deflected ailerons, e. g., the
termination of a stable roll or the oscillation development may result in
a disproportionate aircraft spin-up and entry into an uncontroliable
critical inertial rotation®?, Stalls are associated with a variation of distur-
bed lateral aircraft motions at high angles of attack. Oscillatory motions
correspond to stable periodic solutions of motion equations (limit cycles
or closed orbits); be it a rapid roll, stall, or spin there development is of
universal nature governed by the so called Hopf bifurcation(4,

Possible stable motion regimes both stationary and periodic,
the number and structure of which depend on the control deflections
and flight variables have a decisive affect on the aircraft behaviour.

The bifurcation analysis efficiency, i. e, that of the determination
of limit control deflections, at which the number of equilibrium motions
and their stability varies, is maximum for quasi-stationary motions at a
rather small control deflection rates. At rapid controls equilibrium motions
may fail to realize themselves, but in this case, too, they would consi-
derably affect the disturbed controllable motion and the type of transients.
The quasi-stationary annalysis is supplemented by many results of numeri-
cal dynamics modeling.

An essential part of the general approach to the critical motion
study and the bifurcation analysis is the continuation method for nonli-
near parameter dependent equation systems(2: %) Its interactive reali-
zation on a digital computer permits to turn the computer into a tool
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of a qualitative study for nonlinear dynamic systems. An important

means of investigating the phase space structure of the motin equations

having a high dimension is the Poincare point mapping technique(”+®,

1ts numerical realization together with modified parameter continuation
method used in this paper made it possible to calculate and study bifur-
cation features of the motion equation periodic solutions for a spinning
aircraft, and to show the possibility of generating an invariant torus
from a closed orbit.
II. EQUATIONS OF MOTION

For arigid body aircraft with constant mass and inertia parameters,

full force and moment equations with respect to principal and central

body-fixed axes are given as (fig. 1):

i=w, - U(F, - wysin/?)sina + (Fy+ @, sinB)cosal/cosB (1)

[§ = F cosf3 - (Fxsinﬁ - my)cosa + (Fysin,B + o )sina (2)

V= V(F cosa cosf3 - F'ysina cosf + F,sinf3) 3

where

F, =~-(pVS/2M) ¢, -( ¢/V)sin6

Fy — (pvs/2um) ¢y, = (g/V) cos0 cosy

F, =(pVS§/2M) ¢, + (g/V) cosO siny

o')x= ((Iy - Iz),/fx) @0, + (pV2SL/21x) m, (4)
by = (U, = /1) @,0, + (pVPSL/2) m, (5)
S, = Uy = 1)/1,) wgo, + (pV2Sby/21) m, (6)

The aircraft attitude relative to inertial Earth reference system is
found by kinematic equations with respect to Euler’s angles

0 = @y siny + @ cosy 7)

¥y =, — tand (o cosy - @ _siny) (8)
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The flight altitude variation H with density p dependent on it is
determined by the equation

.
H = V( sinf cosfB cosa - cost cosy cosf3 sina

~-cosf siny sinf3 ) (9)

Nondimensional coefficients of aerodynamic forces c,, ¢y, ¢, and
moments m,, m,, m, as functions of kinematic motion parametrs and
control deflections are presented as tabular functions with a linear inter-
polation or that by spline functions on the bacis of aerodynamic experi-
mental data using the static method, the forced oscillation method,
and the method of equilibrium rotation(®,

Figure 1.

The dynamics investigation based on quasisteady spatial motions
depending on the problem under study necessitates the consideration of
variour phisically justifiable motion models: autonomous equation groups.

E. g., aircraft motion at a rapid roll including inertial, kinematic and
aerodynamic coupling of longitudinal and lateral motions is investigated
assuming that: a) V = const, H = const; b) «, 8 are small, so that sin a ~ «,
sin §~ B; ¢) the effect of the path curvature due to gravity on the dyna-
mics is neglegted i. e. it is assumed that g/¥ = 0. These assumptions enable
to separately examine five autonomous equations (1), (2), (4), (5), (6).
Digital computers and numerical methods (see HI) allows to use arbit —
rary rather smooth functions of aerodynamic coefficients. The same
equation group taking account of weighting terms may be also utilized
for aircraft stall.

The aircraft spin is of spatial nature both about the centre of mass
and in the path motion. The equilibrium spin is characterized by an
essentially vertical spiral descent trajectory with constant characteris-
tics t;rom one turn to another. The effect of gravitational terms on the
dynamics may be considerable and when investigating the spin eqgs. (1)~(8)
are treated simultaneously. Equations (1)—(9) as a whole are not autono-
mous. The density constancy assumption allows to consider the first
eight equations as an autonomous system. The altitude variation would
lead to a quasistatic alteration of spin parameter.

Thus, motion equations are reduced to a general vector form

X=F(x,U) (10)

where F is the vector-function, X is the vector of the dimension n, and U
is the control parameter vector of the dimension m.

The equation number # may be different depending on the problem
to be solved, e. g. for the spin problem: X = (&, B, wy, Wy, @y, ¥, 3, 7)7;
U=(p, 84, BR)','. where ¢, §,, 6g are the deflections of the stabilizer,
ailerons and the rudder.

Stationary solutions, when X =0, are reduded to that of nonli-
near control parameter-dependent equations: F(X, U)=0, an efficient
tool here being the continuation method.

11I. DIFFERENTIAL CONTINUATION METHOD

With a continuously changing parameter the solution X (U} impli-
citly specified by the vector equation

F(X,U)=0 (1

where FER", X €R™ will also continuously vary, and U with no gene-
rality limitation may be considered a scalar: U€R. Let functions F,
i=1,2...n be continuous and have continuous partial derivatives in all
varibles X; and U.

Paper®) suggests to reduce the calculation of X (U of system (11)
toan integration of the differential equation set

- _) i (12)

at initial conditions X (U, ) = X, where F (X, Uy ) =0,
(ﬂ‘" - {?.fi
GX) BX]-

is the Jacobian matrix,

3F 9F; 9P 2y T

e Ju ' 99U U

To solve X (U) in a range (U, U,) it is necessary that the func-
tional determinant J = det (0F/0X) differ from zero. The Jacobian degene-
ration in parameter limited points makes it impossible to continue the
solution using equations (12).

Papers(z's’ contain algorithms which permit to correct the solu-
tion and pass parameter limited points of the curve which are bifurcation
points of system (10).

1 — limit points - det (OF/0X) =0

2 — branch point - det =0

Figure 2.
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The representation of X (U] solution trajectory in space Z = (X", U)
(see fig. 2) by its length [ enables to eliminate this singularity and const-
ruct a symmetric, with respect to variables, differential equation system
of type (12) where the sought trajectory will be an asymptotically stable
phase path.

When proceeding along the solution curve component increments
of AX state vector and AU control parameter will be defined by the
projections of a unit vector S €R"*?! tangential to the curve. This vector
is orthogonal with respect to all gradients of function £y, i=1,...n
which are the components of vector F. Each function F; specifies a hyper-
surface of a unit codimension in Z space, and their intersection forms a
solution trajectory.

If among the vectors OF;/0Z there are no linearly dependent, i. e.
rank (0F/0Z)=n, then together with the tangent vector S they form a
basis in Z space, and the matrix & of the dimenstion (n + 1 ,n+ 1) made
up of them will be undegenerate

dF

. ) (13)

The components of § vector are expressed through cofactors of
the lower row of matrix ®

s An+1,1’ n+l P y
;o - 3 2
i T e where det ® = (i:f Am’]"- )2 (14)

Now, like in (12) the solution trajectory of (11) can be found in a
differential form as follows:

4z _ 5
d
or
d
d_l,_: Sl' 1=1,2,...,n
(15)

dy
E— = Sn+1 = det(dF/dX)/det ©

at initial conditions of X = X, U=U,.

The numerical integration of (15) will result in an error causing
a deviation of the sought solution from an exact one. The solution cor-
rection may be orthogonal to § vector and egs. (15) in combination with
the correction will be described by

daz -AF dz _y,=AF
OOy ) e gm0 {16)

where X is the positive parameter.

Egs. (16) provide for a sought solution with an automatic reduc-
tion of the error (}|F|| # 0) in the integration with a finite step Al, and
in an incorrect choice of the initial point Z,, which does not satisfy
(11). The sought solution of (11) is an asymptotically stable phase trajec-
tory of differential equations (16), since the solution F'=F, e N is
valid. System (16) is degenerate only in solution branch points where
det® =0. To pass branch points one may use the structural instability
of branch points relative to small distortions of vector field (11) at which
they form a number of nonsingular trajectories. Algorithms are also
known to determine various branch orientations in a branch point(®.

Fig. 3 shows a calculation example using the continuation method
of the surface of steady roll rates at different stabilizer and aileron deflec-
tions. The aircraft parameters are chosen so that w, values form a con-
tinuous surface. In the (p, 8,) plane there are regions with a different
number of equilubrium roll motions, which varies from 1 to 5. The projec-
tions of limit surface points onto the control parameter plane form bifurca-

tion boundaries which are termed , butterfly”¢1: 12,

Wy

Figure 3.

The equilibrium surface w, contains envelopes of critical inertial
roll motion which may ocur at neutral aileron deflections 8, = 0. These
motions are characterized by a sharp rise of normal and lateral load
factors and by an opposite response to ¢ and 8y control deflections.
The aileron deflection at positive stabilizer values ¢ in counter rotation
does not result in its termination.

One of the critical motion investigation problems such as inertial
roll or spin, is to assess the possibility of the aircraft recovery from these
regimes and the termination of its roll by a sequence of control deflec-
tions.

In some cases this problem can be solved using quasistatic control
with rather slow contro} deflections.

This procedure may be formalized by minimizing a quadratic
functional of the kinetic energy type
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provided that phase state vector X = (o, f, wy, Wy, @, )" and control
vector U should satisfy motion stationarity conditions (11).

To reduce the functional W the direction of changing the cont-
rol vector U by gradient descent method is defined as follows

-1
W GF.OF oW
=kl —(—)— - — 1 (18)
du xxl i T a

where k is the positive constant.

According to (18) with limitations of (11) the control may be
changed by the continuation method, where k is chosen as a scalar cont-
rol parameter.

For this example controls minimizing functional W are calculated
for two initial values in the inertial roll (fig. 3).

Trajectory I avoids all bifurcation singularities and reducessmoothly
the motion parameters to zero values. The variation of y is not characte-
rstic of ordinary piloting procedure, for the normal load factor in inertial
roll is already very great. The aileron deflections coincide with aircraft roll
direction which, either, is unnatural for the pilot.

Trajectory I (fig. 4) arrives at the bifurcation boundary of iner-
tial roll region, followed by a dynamic jump achieved by integrating
motion equations (10) at fixed control, at which opposite direction
rotation establisches. A further variation of ¢, §, by (18) results in zero
motion parameters.
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Figure 4.

A similar procedure may be used to calculate control deflections
for an aircraft spin recovery.

IV. CALCULATION OF PERIODIC SOLUTIONS

The calculation of periodic solutions of motion equations (10)
and their stability analysis may be performed by Poincare point map-
ping method(?+ &),

To use the point mapping method a secant manifold, i. e. an
S — hyperplane in space X €R" of a unit codimension (dim S=n — 1),
is specified. The hyperplane is at least twice crossed by a closed and
proximate phase trajectories (fig. 5). The point mapping

X < P(X).,where X, XES

is numerically integrated using motion equations (10)

b}

X = [F(X,U)t + X

Oy

where T'is defined from the second crossing of S — hyperplane.

The dynamic system structure is one-to-one governed by the
structure of point mapping generated by it on the secant S~ hyper-
plane'™,

If X is a fixed mapping point on the secant S — hyperplane,
then phase trajectory emanating from it returns to the point X 4 after
a finite time peroid. Thus, closed phase trajectories (closed orbit) of
the dynamic system (10) correspond to fixed points of mapping. As a
rule, a preliminary analysis of the solution structure (10), in particular,
of stationary ones, permits to choose a successful secant § — hyperplane.

Figure 5.

The search of the fixed point X 4 of mapping P on the S — hyper-
plane is reduced to a solution of nonlineare equations specified by map-
ping P

(19)

The continuation method is used equally efficiently to solve
egs. (19).

The phase space dimension of the mapping is n — 1, but when
the Jacobian is calculated, D).(./OX is performed by varying X — point

“in all its # coordinates which enable it to leave § ~ hyperplane. This

results in a 0X/0X matrix degeneration. Note that the Jacobian of the
nonlinear system (19) does not become degenerate here.

The orbital stability of the periodic solution (10) is directly
related to that of respective fixed points'™. The periodic solution will
be stable, if all Jacobian eigenvalues of the point mapping
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B IX(X,U) (20)
T 9x

lie within a unit circle. These eigenvalues coincide with multiplicators
from Floguet — Lyapunov therory!”),

Just as the Jacobian eigenvalues of (10) determine the structure of
phase trajectoris in the vicinity of a stationary point, the Jacobian eigen-
values of point mapping (20) define the benaviour of phase trajectories
in the proximity of the period ic solution of egs. (10).

A real positive eigenvalue makes the stationary point unstable, the
behaviour of the trajectories becoming saddle-type. The transition of a
pair of complex conjugate numbers to the right semiplane results in an
instability of oscillatory type (divergence). In this case the generation of
periodic solutions called Hopf bifurcation is possible‘®.

Similarly, a positive eigenvalue more than 1 in matrix H (20)
causes a stability loss in the periodic solution and its structure becomes
saddle-type. The amival of the pair of complex conjugate eigenvalues
behind the unit circle causes an oscillatory stability loss in the periodic
solution: here, the bifurcation of a higher order, i. e. the generation of
a stable attracting torus manifold is possible (fig. 6)4*®.

-

— g

Figure 6.

V. BIFURCATIONS IN SPIN

Fig. 7 shows a relationship of the aircraft angle-of-attack in equili-
brium spin with different rudder and aileron deflections at ¢ =— 10°.

There are two solution groups for a flat (@~ 65-75°) and a
steep (&~ 40-50°) spin with stationary parameters. Spin conditions
are shown to exist not at all control deflections.

Flat spin

o deg
+

50 \\
— —_— - \ sa=~20
T~
o TSR s N
[ T~ "5 ¥\/ - Stable
W01+~ " -
~ -0 s o e e———— Aperiodically unstable
_5\\’ - s+ e ~ Oscillatorly unatabdle
0
R S N 6 5 Bdes

The local analysis of the stationary solution stability in the branch
¢=—10°, 8, =—20°, §» = var for a steep spin shows that the complex
pair of eigenvalues with Q~1.8s™% crosses the right semiplane at
8 =2°, and at 8y =6.2° they become stable with 2~ 1.451; and
atSg =6.5° occurs an oscillatory mode dedamping with lower Q ~ 0.8 571,

Using the continuation method with varying §g in the vicinity
of this stationary solution branch the periodic solutions of motion equa-
tions (1)—(8) were obtained which are clearly seen in the plane (8, 8y)
of (fig. 8) where sideslip angle amplitudes (maximum and minimum
values) are plotted in respective closed orbits. The plot shows different
cycle stabilities governed by H-matrix eigenvalues (20).

Podes
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T e—— e e
T~ T
—
-
\
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E I 5 B
" S -_—
- —/‘ ,,,,,, ~ Stable
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Figure 8.

Within a great deflection range of 85 = (— 15°, 2°) there are two
closed orbits, one being a saddle-type, and the other oscillatorly unstable,
as well as a stable stationary point.

The stationary point at 8 =2° becomes oscillatorly unstable;
and there appear limit cycles, annihilated when combined with saddle-
type closed orbits at 85 =3.7°.

Oscillatorly unstahle closed orbits annihilated when combined
with saddle-type cycles at 8z = —14.5° and 8z =6.7°. The second
branch of saddle-type cecles is generated at 85 = 6.2°, when stationary
point eigenvalues return to the left semiplane.

Thus, the continuation method made it possible to plot a whole
family of phase trajectories with different stabilities using 8y — para-
meter.

Limit cycles correspond to oscillatory aircraft motions. Saddle-
type trajrctories can not physically be realized but they play an impor-
tant role in forming a stability region of a locally stable stationary point.

Fig. 9 and 10 present a family of limit cycles and saddle-type
closed orbits projected onto the (8, wy) and (8, w,) parameter plane.

There are markers in fixed points of the mapping on a secant
hyperplane to determine a continuous trajectory obtained by the conti-
nuation method.

As mentioned above, oscillatorly unstable closed orbits may
result in an invariant torus:®_ This can be realized with a certain
phase space structure of (10).

Fig. 11 shows time history of transients obtained by integrating
full motion equations (1)—(8) in the proximity of stationary points,
one of which is oscillatorly unstable, and the other a saddle-type point.

Variations of a, f, w, parameters are of unsteady oscillatory
nature. From a local analysis of the stationary point stability a small
oscillation period T~4s corresponds to 2 natural unstable mode. The
integration for a long time period of ~ 160 s showed that the parameter
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‘change behaviour begins to repeat. If one considers short periodes of

this transient ~ 20 s (several natural periods), the transient behaviour
differs significantly, which indicates that the motion strongly depends
on initial conditions.

Fig. 12 shows a phase trajectory projections onto (w,, §) and
(coy, B) parameter planes, which points unambiguously to the fact that the
phase trajectory encompasses the toroidal surface. The closed orbit inside
the torus which is oscillatory unstable has been calculated. It is denoted by
markers in fig. 12,

Such invariant manifolds may be responsible for a number of

complex aperiodic beating modes observed in aircraft spin flight tests 37
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Figure 12.

CONCLUSIONS

A general investigation technique for critical aircraft flight regimes
is presented using an analysis of quasiequilibrium motions and their stabi-
lity. The procedure is based on a qualitative theory of nonlinear dynamic
systems, differential geometry, bifurcation analysis and catastrophe
theory as well as on efficient numerical calculations for equilibrium
stationary and oscillatory motions, their stability and bifurcations in
control.

The numerical procedure of the continuation method is refined
to provide for the convergence and crossing of complex bifurcations.

A control search alforithm for aircraft recovery from critical
envelopes is suggested.

The efficiency of the Poincare point mapping method in combina-
tion with the continuation method is shown by a specific example of
spin conditions to calculate and analyze the periodic solution stability
of aircraft motion equations.

The posibility of complex aperiodic aircraft oscillations in spin
associated with an invariant toroidal manifold of phase trajectores is
presented. This behaviour is often observed for a spinning aircraft.
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