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Abstract

In
control
principle

case of calculating the optimizing
signals derived from the maximum
of L.S.Pontryagin, based on an
iterative algorithm due to L.W.Neustadt,
required for solving a two-point boundary
value problem, the iterative procedure is
extremely sensitive to computational er-
ror, so that the convenient digital hyb-
rid system composed of a digital diffe-
rential analyzer and a general-purpose
digital computer was experimentally orga-
nized for the on-line study of a rapid
convergence with high precision.

Results of the experimental digital
hybrid implementation with somewhat re-
fined algorithms show that the rapid con-
vergence 1is practically possible for the
2nd~ and 3rd-order system, and the 2nd-
order system subject to energy con-
straints. Convergence processes are dis-
played graphically.

Introduction

The study reported on here is part of
a fundamental and introductory investiga-
tion carried out experimentally on the
real-time generation of the optimum con-
trol. The principal and final objective of
such researches is to establish the feasi-
bility of an optimum feedback control
system, where the state of the system is
continually estimated from measurements
taken on the observable variables and at
the same time an optimum controller ( a
control computer with as simple archtec-
ture as possible) is continually generatig
the optimum control to be applied by using
this estimated state. The optimum control
required there must accordingly be com-
puted at a faster rate than real-time
within the control computer.

The optimum

control investigated
this study

is derived from the
principle of L.S. Pontryagin,(> which
gives the  optimum control process in
terms of a solution of the adjoint equa-
tion of the control system. The solution
is not a function of the given state of
the control system, but of the time and
the unknown initial condition q of the
adjoint equation. As a result it follows
that we must repeatedly and rapidly solve
the two-point boundary value problem in
order to find those q for the continuou-

sly estimated state of the control sys-~
tem.

in
max imum

The solution of the two-point boundary
Copyright © 1984 by ICAS and AIAA. All rights reserved.
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value problem is based on an iterative
algorithm due to L.W.Neustadt,‘® where to
find the proper q , a real valued function
F will be defined such that F attains its
maximum, when the independent variables
are equal to the required q for genera-
ting the optimum control, The steepest
ascent iterative procedure may also be
given for computing this maximizing value.

The optimizing control signal is thus
genenated corresponding to the given state
of the control system. Neustadt indicates
that the method of computation is particu-
larly suitable for hybrid analogue digital
computers. However, the iterative proce-
dure accompanied is extremely sensitive to
computational error, and it's hybrid ana-
logue implementation is not always practi-
cal.(®

The convenient digital
composed of a digital differential analy-
zer ( i.e. an incremental computer ) and a
general-purpose digital computer was, the-
refore, experimentally organized by using
resoureces on hand for a rapid convergence
with high precision. The former is chiefly
for the high-speed computation of integ-
rals 1involved, and the latter for the
total management of operation,

hybrid system

This paper describes the required refi-
nement of Neustadt's iterative algorithm
for convergence acceleration, the consti-
tution of the experimental digital hybrid
system developed conveniently for the pur-
pose, and the results of digital hybrid
implementation with the refined algorithm
for the 2nd- and 3rd-order system, and the
2nd-order system subject to energy con-
straints. The rapid convergence was prac-
tically possible for given problems. Con-
vergence processes are displayed graphica-
1lly.

Neustadt's Iterative Algorithm

We consider a physical system whose
state at any time is described by an n-
dimensional column vector x{(t), which may
be considered to be the coordinates in
phase space. Neustadt's method is applica-
ble to systems which can be described by a
linear system of ordinary differential
equations of the form:

X(t)=A(t)*x(t)+a(t)+B(t) *u(t) (1)

Here A(t) is an n*n matrix,
n*r matrix, and a(t)

and B(t) is an
is an n-dimensional



vector.
time t.

These are all continuous in the

u(t) is an r-dimensional column
vector. The components of u(t) correspond
to r controllers, whose values can be
adjusted to contol the state vector x(t).
The control functions wu(t) are con-
strained to take on their values in a
control region U which is a closed set in
an r-dimensional space.

Suppose that a scalar valued function
G(u), whose domain contains U, 1is given.
Reference will be made to the functional

T,

jG(u(t))dt=J(u(t)) (2)
/]

(T represents the duration of the control
process) as the control effort associated
with u(t).

Given an initial state and a target
state in phase space, the optimization
problems considered is to find the optimum
control which transfers the specified
initial state to the desired target
state under the following conditions:

(1)
(2)

Minimizing the time T to transfer.
M%nimizing the time T to transfer,

subject to the constraint J(u(t))<M,

where M is a given constant.

(3) Minimizing the control

J(u(t)), given a time T>0.

effort

An n-dimensional vector function Z(t,q)
and E(t,q), and a real valued function
f(t,q) may be defined as follows:

t
2(t,q)=X(t) *r(t)~ LX(s)"'*a(s)ds

t

—Lms)"*s(s)*u(t,q)ds (3)

E(t,q)=x(0)-2Z(t,q) (4)

.

f(t,q)=q*[x(0)-2(t,q)] (5)

Here X(t)™! is an n*n matrix, which
computed as the solution of the equation

is

%6y ==x(t)" *a(t); x(o)”'

=1 (6)
r(t) is an n-dimensional vector, which is
the target state of the system. u(t,q) is
the optimum control given as the solution

of the adjoint equation for the
value vector q.

initial

If the value of f(t,q) is zero for t=F,
then F becomes a function of q. Neustadt
has proved that
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grad F(q)=E(F(q),q) (7)

x(@) 1is an initial value vector of the
control system for t=@, whose values are
known. On the other hand the values of q

are unknown.

Neustadt's iterative algorithm for fin-
ding the values of q is summarized below,
for the time optimum case.

Let ' the initial estimate
vector such that q°*x(@¢)>@. Then u(t,q),
Z(t,q), E(t,q) and f(t,q) are computed as
functions of the time t for the estemated
q, and the computation is halted, when the

g® be any

value of f(t,q) is zero as the time pro-
ceeds. The corresponding time is F(q).
Then, if ql is the estimate from the
i~th iteration, the next estimate glt! is
chosen to be
gt =q+k*grad F(q') (8)
where K is a sufficiently small positive
constant called ‘gain', Since grad
F(qQ)=B(F(q),q), it follows that
qit! =qU+K*E(F (q*) ,q%) (9)
The iterative computations are conti-
nued, for instance, until E(F(q),q) which

is the error of the boundary  value of
Z(F(q),q) is sufficient small in absolute
value. The vector Z(F(q),q) will then be

mapped into the initial point x(@).

Gain Control

Refinements of Neustadt's algorithm are
required for convergence acceleration, It

is assumed in Neustadt's method that K is
a sufficiently small constant for the
theoretical proof of convergence. On the
other hand, the value of K is, 1in this
experimental study, controlled at each
iteration for a rapid convergence, which
is called ‘'gain control', If K 1is too
small a constant, much more time will be
spended for a convergence. If K is too
large a constant, a wide amplitude of

vibration and then an overflow in computa~
tion will occur. They both may bring the
difficulties of convergence.

Gain controls experimentally developed
under the geometrical interpretation of
Neustadt's algorithm in this study are the
following 16 schemes, which are named
G.Cuen (n=0~9) for further references. As a
general rule in the following gain con-
trols, the temporary initial value vector
g7 instead of qtt! of Eq.(9) is at first
computed from Eq.(18), and then whether g7
is set to qitl at once or not is based on
each gain control., The argument F(q) in



the function E(F(q),q) will henceforth be
dropped for ease of notation.

G.C.0: K is not varied. This is a
computational scheme of Neus-
tadt.

G.C.1: If F(qT)<F(g‘) then K is
multiplied by @.5 and q7 is
computed again from q! else K is
not varied and g7 is set to q.

G.C.2: In the condition of F(g) for
G.C.1, £ is used instead of <.

If F(qT)<F(q') or E(qT)*E(q‘)
<¢ then K is multiplied by @.5
and qT is computed again from q
else K is not varied and qT is
set to qitl ,

G.C.4: If E(qT)*E(qi)<@
multipled by #.5.
set to g

then K is
g7 is always

The absolute value of g always
eguals to one. K is not varied.

If F(QT)<F(qh) or E(qT)*E(g")<0
then K is multiplied by 9.5 else
K is multiplied by 2. qT is
always set to qi+! .,

G.C.7: If

E(qT)*E(qY)<# then K is

multiplied by 2.5, If E(qT)*
E(q')>0.5*E(qi{) *E(gt) then K is
multiplied by 2. qT is always

set to gi*f,

€c.C.8: If E(qT)*E(ql)<®
multiplied by @.5 and qT is
computed from gt again else qT
is set to qit! ,

then K 1is

C.C.9: If E(QT)*E(q')<@# then K is
multiplied by @.5 and gqT7T is
computed from qi again else K is
mulfiplied by 2 and qT is set to
g+l .

Here q7 is computed from q' as follows:

q"=g"+K*E(q") (19)

Experimental Digital Hybrid System

There are two types of hybrid computa-
tion. One is an analogue hybrid and the
other a digital hybrid treated here.

An analogue hybrid system which consti-
tutes of an analogue computer for a rapid
operation and a digital computer for mana-
ging the whole operation has in fact been
recommended for implementing Neustadt'
iteratire algorithm, where the functions
u(t,q), 2Z(t,q), E(t,q), and F(t,q) are
computed with the analogue computer and
the renewal of q and the whole operation

control are
computer.

processed with the digital

However the implementation of Neus-

tadt's algorithm depends extensively upon
computational errors especially for
finding the converged values of q, which

may not be overcome with the precision of
the analogue operation.

A digital
constitutes of a
analyzer (D.D.A.)
computer, and a

hybrid system as used here
digital differential
instead of an analogue
general-purpose digital
computer (G.P.C.). D.D.A. 1is a special-
purpose digital computer (S.P.C.) which
is, 1in a sense, a digitized analogue com-

puter, 1i.e., an incremental computer, and
its precision can be set arbitrarily on
demand.,

In digital hybrid systems, an interface
such as A-D converters and D-A converters
between an analogue computer and a digital
computer in analogue hybrid systems is not
necessary. Some instructions of G.P,C.
make data transfered directly between
D.D.A., and G.P.C., and start and stop the
operation of D.D.A.. Under appropriate
conditions, D.D.A. sends interrupt signals
to G.P.C., by which G.P.C. can readily
control the operation of D.D.A..

Main function of D.D.A., is the same
integration as that of an analogue
computer. But it is not always necessary

to use the time as an independent variable
of the integration. D.D.A rather computes

dz=ydx instead of z=§ydx, which makes

various operations realizable. For instan-
ce multiplication is readily computed by
d(yx)=ydx +xdy. In addition D.D.A. usually
has some unigue functions called ‘'deci-
sion', ‘'servo' and such for processing
non-linear special operation.

The difference between D.D.A. as a
S.P.C. and G.P.C., 1is that the former has
only two types of operation for conti-
nuously changed variables, which makes the
operation of D.D.A. much more rapid than
that of G.P.C. 1in the same precision, 1if
similar electronic circuits are used in
both machines., From this point of view, a
digital hybrid system may preferentially
be recommended instead of a non-hybrid
G.P.C..

The experimental digital hybrid system
developed for this on-line study consists
of two small-scale old-fashioned computers
with serial-type fixed-point arithmetic
operations for D.D.A. and G.P.C.. D.D.A.
has 28 integrators, whose precission is 20

bits at maximum for setting values and
39~40 Dbits for operations. D.D.A. gene-
rates one basic increment at each 560

micro seconds on operation.

fundamental
are the

The two
integrators

operations of
integration : dz=ydx
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and the decision : dz=(sign y)dx shown in
Ex.l~2 of Figure 2. The integrator has two
main registers. One is called 'R-regis-
ter', and the other 'Y-counter', which

contains y and accumulates dy's (over dx).

In the integration, the content of the
Y-register is added to the R-register for
each dx. If an overflow of the R-register
occurs in this addition, then the overflow
is an dz. This is a rectangular integra-
tion, and the used size of the R-register
corresponds to the unit of a rectangular
area for the dz.

In the decision,
operate. According
the Y-register,
for each dx.

the R-register may not

to the sign (bit) of
dz is egual to dx or -dx
The operation of the decision
is simple, but so powerful that, for in-
stance, a discontinuons function required
of the computation of the optimum control
can readily be generated.

The dy's accumulated in Y-register may
be the dz's sent from the several
integrators, and the dx is the dz sent
from the other one integrator. The
integrators connect each other by a patch-

board wiring similar to that of an
analogue computer. The patch-board wiring,
called 'mapping' in D.D.A., 1is part of a

programming of D.D.A,.

G.P.C. is standard-type and has a
memory with only 256 word. One word con-
sists of 10 bits. The momory cycle time is
2@ micro seconds. Furthermore, G.P.C. has
two accumulater register for arithmetic
operations and data exchange with D.D.A..
The accumulater consists of 20 bits. Data
of the both computer are exchanged by
executing some instructions of G.P.C., of
which the operation is controlled mannual-

Block Diagram for Digital Hybrid Computation

ly by a console-typewriter.

Digital Hybrid Implementation

The iterative algorithms generating the
optimum control is rearranged for the
digital hybrid computation, and the
corresponding procedure regarding G.P.C.
and D.D.A constituting the experimental
digital hybrid system is described.

Consider the system governed by Egq.(l).

The procedure consists chiefly of the
following six steps:
Step l: u{t,q) from the adjoint
equation with the initial
vector q. (11)
Step 2: Z(t,q)zxu)‘! *r(t)
§ -1
—]X(s) *a(s)ds
%
t !
—]X(s)" *B(s) *u(s)ds (12)
]
Step 3: E(t,q)=x(0)-2Z(t,q) (13)
Step 4: f(t,q)=q*E(t,q) (14)
Step 5: Gain control (15)
Step 6: qT=q'+K*E(qt) (16)
The functions in step 1 4 are of the

time t for given each q,
computed by D.D.A.,

so that these are
speedily with high

precision, Step 5 6 are processed at the
end of each iteration for starting the
next iteration by G.P.C. which controls
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the total management of the whole

opera-
tion.

The whole operation of the digital
hybrid system is explained by using the

block diagram in Figure 1., To begin with,
after starting G.P.C., K° and q° are given
anyhow, and the time generator of D.D.A.
is started by G.P.C.. Then D.D.A. produces

u(t{Q)r 2(t,q), E(t,q) and f(t,q), as the
logical time made by the time generator
proceeds. When f(t,q)=0, D.D.A. stops the

time generator and at the same time inter-
rupts the operation of G.P.C.. Interrupted
G.P.C. processes the gain control and the
renewal of q, and waits for the next inte-
rrupt. This process proceeds, for

instance, until |[E(q)| is sufficiently
small.

Programs of D.D.A. depend so much upon
problems to be solved that their concep-
tual extraction is demonstrated in Figure
2. Figure 3 shows an example of the defi~
nite program for the 3rd-order system
described in a later section.

All operations of D.D.A. are of incre-
ment form. Including the necessary initial
values, Eg.(12)~(14) are rearranged for
incremental operations as follows:

dz=X(t)™ *[Z(t)-A(t)*r(t)-a(t)

-B(t)*u(t,q)ldt ; Z(8)=r(0) (17)
dE=-dZ ; E(¢,q)=x(g)~r(0) (18)
df=-q*dZ ; £(0,q)=q*[x(0)-r(9)] (19)

In Figure 2, Eqg.(l7) is processed by

n

|
di=y.ds
_;)—,—m.m

i nm 20?:

BOUNDARV VALUE

TIME GENERATOR

ADJOINT EQUATION

OPTIMUM CONTROL

13
dZ

CONTROLLED PROCESS

@ SIGN INVERSION

INTERRUPT TO G.P.C.
9—{X(0}-ZI0),

Coceptual Mapping of D.D.A.

FIGURE 2.
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13, Eqg.(18) by 14, and Eq.(19) by I5 and
16. The number of the integrator required
in the n-dimensional case is 4*n only for
those operations. In addition the integra-
tors are still necessary for the computa-
tion of the functions contained in the
right-hand term of Eq.(17).

The generation of the optimum control
in many cases depends upon non-linear
elements, such as on-off switches, satura-

tions and resolvers. D.D.A. <can realize
these non-linear operations with the high
precision, with which an analogue computer
can not.

The pre-estimate K? and q° the trial
values of K and q for the first iteration,

are 1/2 and x(@) respectirely, 1if not
shown especially, in this study.
Similarly, the initial values F(g?) and
E(g°), required for the computation, are

both zero.

2nd-order System

2nd-order, Undamped Oscillatory System.To
begin with, the convergence behavior in
the digital hybrid implementation was
experimentally examined regarding the 2nd-
order, undamped oscillatory system
(¥+x=u), This is a problem solved theore-
tically by Bushaw.

The atatement of the
here is as follow:

problem treated

"Examine the convergence behavior of
Z(t,q9), E(g) and F(q) of the system
where the initial point x(0)=(1,0) or

———jxk;m

@ SIGN INVERSION
—9d2:
Q)
dZ:=1-utdt

A2
6 20

=—u'dt

i} a2
(3 0!
D_NTERRUPT T0 GP.C.

D.D.A. Mapping for 3rd-order

ot > g —q,dt

=3 -’dl

E»

utdt

—JD

FIGURE 3.
system
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Y+x=u, lul<g

x(0)={1,0)

Ko= -%’
Gain control G.C.O

4

FIGURE 4., Convergence of Z-trajectories
for 2nd-order, Undamped Oscillatory System

(8,1) 1is transfered to the target
point r(t)=0 subject to lu(t) |<1  in
minimum time,"

It was not necessary to control the
gain K in these problems. Part of the
results are displayed in Figure 4~6.

The convergence of the terminal
Z(F(q),q) of Z-trajectory to the initial
peint x(8) of the system is shown in
Figure 4~5, where the initial point 2Z(¢,q)
is the origin because of r(F(q))=0. The
convergence is monotonical and the number
of iteration increases for the small value
of K. A vibration occurs for the large
value of K. Figure 6 shows the behavior of
maximizing the optimum tim2 F(q) and the
variation on the absolute value of the
error |E(q)| of the boundary value for
each iteration.

point

2nd-order, undamped unoscillatory system,
The convergence behavior regarding the
2nd-order undamped unoscillatory system
(%¥=u) is shown as simple examples where it
is difficult to converge if the gain K is
constant (G.C.0). In these cases the
smaller gain K also brings the more itera-
tion and monotonical convergence. The
larger gain K for a rapid convergence
makes the large amplitute of vibration and
results in the convergent difficulties of
the boundary error |E(q)]|.

Here the gain controls are
for the stable acceleration of
ce. The

introduced
convergen-
statement of the problem treated
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X+x=u, lulg1 72
x(0)=(0,1)
Ko——-%

Gain Control G.C.O

///I(O)
-

FIGURE 5, <Convergence of
for 2nd-order,

Z-trajectories
Undamped Oscillatory System

here 1is the same as the previous one ex-
cept lack of the term of oscillation. Part
of the results are displayed in Figure
7~15., .

The convergence of the terminal
Z(F(q),q) of Z-trajectory to the initial
point x(0#) of the system is shown in
Figqure 7~14 where the initial point Z(4,q)
is the origin because of r(F(q))=0.

point

Figure 7 shows the
convergence for x(¢)=(1,0)
constant (G.C.0).

difficulties of
and K=1/2 as a
Figure 8 however, shows

{Convergent Value)

20F  10py _ooemmmmmm e T Fmox =1.995

Fmox=1.823

{Convergent value)

X+x=u, lutl

u L) Kn=%'
1.5} Q.51 GCO
_E B =00
e e x{0}=10,1)
L 0 L L L
10 0 5 10 15
Iteration Number 6 {
FIGURE 6. Convergence Process of 2nd-

order, Undamped Oscillatory System



feasible convergence for K=1/4 (G.C.9).
Z2 Figure 9 shows the difficulties of conver-
gence for x(8)=(2,1) and K=3/16 (G.C.0).
It 1is also difficult to converge for va-
X=u, lul<] rious value of K (G.C.8) in x(d)=(@,1).
x(0}=1(1,0]
Kn:‘]?

Gain Control

The gain control G.C.1 for K%=1/2
G.C.O brings the feasible result for x(6)=(1,0)
e in Figure 18, but not for x(¢)=(¢,1l) in
Figure 11. The gain control G.C.1 for
K®=3/4 brings the feasible result for
x(8)=(2,1).

‘\\ 9 x {0} The gain control G.C.3 was developed

5
2
O Z
8 2
12 -
10 X=u, lul <1
8 x(0)= (0,1
=3
Ko=35
24 Gain Control G.C.O
)
29th-75th iterations are not shown. "
.26
1

FIGURE 7. Convergence of Z-trajectories

for 2nd-order Undamped Unoscillatory Sys- "
tem FIGURE 9. Convergence of Z-trajectories
i for 2nd-order Undamped Unoscillatory Sys-
tem
Z2
X=u, lul <1 Ze
x(0)=(1,0) X=u, lul<1
Ko~ x(0)= (1.0}
= 1
Gain Control G.C.O R Ko= =

Gain Control G.C.1

\
NN N
N\

5 \\ \ /x<o>z
0 \

4

FIGURE 8. Convergence of Z-trajectories FIGURE 10. Convergence of Z-trajectories
for 2nd-order Undamped Unoscillatory Sys- for 2nd~order Undamped Unoscillatory Sys-
tem tem
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Gain Control G.C. 1
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FIGURE 11. Convergence of Z-trajecto
for 2nd-order Undamped Unoscillatory
tem

-7

ries
Sys-

for the sake of avoiding the dependency of

the convergence on x(¢) and K°. G.C.3
K®=1/2 brings the feasible results
x(8)=(1,0) and (9,1), which are shown
Figure 12~13. G.C.4 brings the same

sults as G.C.3.
Z2
X=u, lul<t
x(0)=(1,0)

Ko = -
0=
Gain Control G.C. 3

for
for

in
re-

1

FIGURE 12. Convergence
for 2nd-order Undamped Unoscillatory
tem

of Z-trajectories

Sys-

Z:

X=u, lul<1
x{0)=1(0,1)
Ko‘—:‘%‘

Gain Control GC.3

x(0)

N
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O ] Za
FIGURE 13, Convergence of Z-trajectories
for 2nd-order Undamped Unoscillatory Sys-

tem

G.C.5 is a gain control based directly
on the geometrical interpretation of
Neustadt's algorithm and brings feasible
results for the 2nd-order system. However
the application of G.,C.6 is restricted to
the 2nd-order system because of the small
capacity of the digital hybrid system.

Fmox=2
20F {Convergent Value)
X=u, tulg
x{0)=(1,0)
O] \ F 51 3
~ 1.0 \ GC.O, Ke=-% 70 Iterations
w
A T me—— —%— 6 Iterations
o N | L ve d
0] 10 20 30 40
Iteration Number, {
FIGURE 14. Convergence Process of 2nd-

order Undamped Unoscillatory System
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x(0)=1(0,1)

Frax=2413
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% 140 1terations

¥
+

IE|
s s GC.O Ko
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e —— GC3 Ko

20|

20 tterations

[ -

8 Iterations

=
_1.of
w
T
Monotonous
Decrease
0 L i
0 10 20 30 100
Iterstion Number , i
FIGURE 15. Convergence Process of 2nd-

order Undamped Unoscillatory System



Figure 14~15 show the behavior of maxi-
mizing the optimum time F(q) and the va-
riation on the absolute value of the error
lE(q)] of the boundary value for each
iteration. Convergence of F(q) is faster
than that of |E(q)|.

3rd-order System

A characteristic of the 3rd-order
system (%¥=u) treated here is to have only
an analytical solution in the higher-order
than 2nd-~order system and to show the
general difficulties of convergence for
the multi-order system. These difficulties
disappear in the 2nd-order system.

The syatement of the problem 1is as
follow:
"Examine the convergence behavior of
Z(t,q), E(q) and F(q) of the system
where the initial point x(9)=(1,0,9)

is transfered
r(t)=(6¢,0,0)
minimum time."

to the target point
subject to Ju(t)[<1l in

The algorithm for the digital hybrid
computation is formulated as follows:

4z, =-(t?/2)*u*dt ; Z,(0)=0 (29)
dz, =t*u*dt i 2,(0)=0 (21)
dz; =-u*dt 7 Z3(0)=0 (22)
u(t,q)=8gn(-q +q, *t-(q, /2)*t7)  (23)

Z %=y, lui<t

x{0)=(1,0,0)
Ko= 1

Gain Control (G.C. 3

14

1(0)=1
af —x10) {X(0)=] ,

Some iterations are not shown.

FIGURE 16. Convergence of
for 3rd-order System

Z-trajectories
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where q{(q,,q,,9;) is the initial value of
the adjoint vector to be determined. The
D.D.A, mapping for these operations Iis
given in Figure 3. The value of u varies
discontinuonsly because of |uj=l, so that
udt instead of u may be treated as a datum
for internal processing for the sake of
avoiding the generation of discontinuous
quantity. Part of the results are dis-
played in Figure 16~19.

The convergence of the terminal point
Z(F(q),q) of Z-trajectory to the initial
point x(@) of the system is shown in Fi-
gure 16~18, where the initial point Z(¢,q)
is the origin because of «r(F(q))=¢. As
compared with the 2nd-order system, the
converge is more difficult. Figure 16~17
shows the difficulties of .convergence for
the gain control G.C.3 and K =1. It may be
observed that each Z(F(q),q) for the ite-
ration number 5~9 and 17~ moves mono-
tonically on the same direction along a
certain line little by little.

It may be thought that this is caused
by too small value of the gain K. The gain
control G.C.3 contains no prodecure for
increasing the value of K. Therefore, the
value of K may be increased manually at
the starting point for such monotone mo-
ving of Z(F(q),q). Feasible results are
not alwys shown for the gain control G.C.6

which is developed for including the pro-
cedure to increase the value of K. Figure
18 shows the result for the gain control
G.C.7 which 1is developed for the same
objective as G.C.6.
Figure 19 shows the behavior of
Z2
X=u, tul<t

x(0)=1(1,0,0)

Ko =1

Gain Control G.C.3

Zs

1

FIGURE 17. Convergence of
for 3rd-order System

Z-trajectories
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X=u, lul <1
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FIGURE 18, Convergence of

Z-trajectories
for 3rd-order System

(Convergent Value)

Fax=3174
300 Ve
X=u, lul<t
x(01=(1,0,0)
b, Ke= ¥
20f
L
_ e LT
= == GC.3
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: ‘\
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Iteration Number , {
FIGURE 19. Convergence Process of 3rd-
order System
maximizing the optimum time F(gq) and the
variation on the absolute value of the
error |E(q)l of the boundary value for

each iteration.

2nd-order System subject to Energy Con-
straints

The convergence behavior regarding the
2nd-order, undamped unoscillatory system
subject to energy constraints is examined
as an example of analytically unsolvable
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lul €1
0)=1{1,0)
[uzdt <1

=t

Gain Control G.C.9

%

Z:

u,

Z

1

FIGURE 20, Convergence of Z-trajectories
for 2nd-order System subject to Energy
Constraints
problems.

The statement  of the problem is as
follows:

" Examine the convergence behavior of

Z(t,q), E(t,q), F(g) of the system
(x=u) where the initial point x(§)=
(1,9) is transfered to the target
point X (F)=@ (the origin in the sta-

te-space) subject to lu(t)lﬁl and

F
j u*dt<l in minimum time."
[/}

2
F=2 and ‘/uzdt=2 for the correspondingy
%]

problem without the energy constraints.
This problem 1is formulated as the 3rd-
order system, where the 3rd-state
variable x3(t) is difined as follows:
t
X4(t)= fu’dt (24)
(%]
Here x3(0)=0, and x3(F)=1 from the
physical meaning of the problem. Therefore
the terminal point of the system is not
the origin in the state-space.
The algorithm for the digital hybrid
computation is formulated as follows:
dz, =t*u*dt ; Z,(0)=0 (25)
Az, =-u*dt ; 2, (0)=0 (26)
dzg=-u*dt ; Z (0)=0 (27)



{Convergent Value)

Frax=2.2N
Tz -
20k Into a Limit Cycle
$=u, lul<t, [Wdt <1
_ x(0)=(1,0)
= 10k Ko=F
w G.C.9
|B|
(Convergent Value)
I‘!min=0,001
0 i L
0 10 20 30
Iteration Number , {
FIGURE 21. Convergence Process of 2nd-

order System subject to Energy Constraints

ult,q)=(1/2)*((q,/93) *t~-(g,/q;3)) ; juj<si

(28)

where q{q,,q,,93) is the initial value of
the adjoint vector to be determined.

Figure 28 shows the convergence of the
terminal point Z(F(q),q) of Z-trajectory
to the initial point x(¢) of the systen
for the gain control G.C.3 and K%=1/2.

Figure 21 shows the behavior of maximizing
the optimum time F(q) and variation on the
absolute value of the error |E(q)| of the
bounday value for each iteration.

The values derived from convergence are
the following:

F omax =2.291

(q,r9,,95)=( .95254, 1,07983, .455810)

Concluding Remarks

Generally
results
study,
rapid

speaking with regard to the

observed in this experimental
the convergence of F(q) 1is very
and that of 2(F(q).,q) late. The
latest 1is that of the initial value q of
the adjoint vector, because the informa-
tion of the whole control process is con-
centrated in the g. The considerable pre-
cision of operation is required of the
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convergence for q.

As for the gain control, the control by
the wvalue of F(q) is less effective than
that of |E(q)|, because the convergence of
F(gq) 1is very fast. It seems that the
following is feasible for the generallized
gain control:

n lf

E(gT)*E(g*)<® then K is

multiplied by €.5 and qT is re-
computed .  from, qt else if
E(QT)*E(gQY)>L*E(g*) *E(q¢) then K is
multiplied by 2 and qTis set to gqtt!

else qT is set to q*! , where L is a
positive constant of each problem and
qT=qt+K*grad F(qf). "

The simple algorithms of the gain
control are practically feasible for mec-
hanization, so that the gain control only
by F{(q) will be effective for centain
problems.

A series of computational studies has
been carried out to determine the general
character of the digital hybrid implemen~
tation, of which the other computational
aspects are discussed elsewhere.
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