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Abstract

In this paper a direct digital control law
algorithm is proposed which in addition to provid-
ing tight non-interacting tracking behaviour and
excellent disturbance-rejection characteristics,
provides for the compensation of finite-time
delays in implementation. The control-law al-
gorithm is defined and system stability is proved
in the case of multi-input multi-output linear
systems. The theory is synthetic and leads direc-
tly to the determination of the appropriate con-
troller matrices.

The theory is illustrated by the presenta-
tion of simulation results in which the aircraft
is represented by an analogue computer and the
digital control system is implemented on a micro-
processor. In the simulation study the controller
is required to effect fuselage pitch pointing and
vertical translation manoeuvres for the analogue
computer representation of the YF-16 aircraft. It
is shown that tight non-interacting control is
achievable even when the control implemented is
delayed by 0.1 seconds.

1. Introduction

The general results of Bradshaw and Porter
[1],[2] for discrete-time tracking systems in-
dicate that tight non-interacting control is, in
general, achievable by the implementation of fast-
sampling error—actuated controllers. Indeed, the
efficiency and effectiveness of such controllers
has been demonstrated by their application to the
YF-16 aircraft where they are required to effect
fuselage pitch pointing and vertical translation
manoeuvres [3]. Implicit in these controllers,
however, was the assumption that the computa-
tional time delay is small compared with the
sampling period. In some cases, this assumption
may not be valid and it is necessary to compensate
for the time delay. Indeed, if no such compensa-
tion is provided the resulting tracking system will
have either very poor performance or will be un-
stable.

The general results of Bradshaw and Porter
[1],[2] have been extended to allow for a com-
putational time delay of one sampling period if
the control algorithm is appropriately modified,
The resulting control algorithms are simple to
implement and provide tight non-interacting con-
trol. Their efficiency and effectiveness have
been demonstrated by Porter, Bradshaw, Garis, and
Woodhead [4] in the presentation of the results of
a laboratory microprocessor implementation in
which the controllers are required to effect fuse-
lage pitch pointing and vertical translation
manoeuvres in the case of an analogue computer
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representation of the YF-16 aircraft.

In many situations, the time delay is
greater than one sampling period, as shown by
Butler et al [5] and McCruer [6]. In this paper,
the results for the single sampling period time
delay have been extended by modifying the control
methodology to accommodate multiple-period delays.
The resulting control algorithms provide the
necessary tight non-interacting control and their
effectiveness is demonstrated through the presenta-
tion of the results of a laboratory microprocessor
implementation. Once again, the controllers are
required to effect fuselage pitch pointing and ver-
tical translation manoeuvres for an analogue com-
puter simulation of the YF-16 aircraft.

2. Discrete-Time Tracking Systems with Finite Time-
Delay Compengation

2.1 System Configuration

In general, high-performance discrete-time
tracking systems with finite time-delay compensa-
tion consist of linear multivariable plants
governed on the continuous-time set T = (0,+] by
state, output, and measurement equations of the
respective forms

x, (t) AL, A ] [x ) 0
1 e &1 121 1%1 . wty W
Xy (1) Agy v Ayl 2, (1) B
'xl(t)“
y(t) = [C; , C,] ,@
_xz(t),
and
—Xl(t)‘
w(t) = [F, F_] ’ (3)
1 2
s_xz(t).d

together with fast-sampling error-actuated digital
controllers governed on the discrete-time set TT =
{o0,T,2T,...} by control-law equations of the form

s(kT) = f(Koe(kT)+Klz(kT)) (4)

and computational time-delay compensation equations
of the form

m
s(kT) - I yir{(k-i)T} (5)
i-1

r(kT)

where

e(kT) v(kT) - w(kT) , (6)
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and

j=k-1
zZ(kT) = z(0) +T I e(3T) . <))
j=0

In equations(l) to (7), xj(t) & RAL x.(t) & RY,
u(t) & RY, y(t) &RE, wit) =RY, Ay, & RO-Dx(n-0
Alze:R(n—,Q)X,Q,, Agy = Rfl,x(n—l)’ Ay E:R'Q'X'Q’,

c e RAX(n-2) , Gy & RSLx,Q’ F, = R¥&x(n-2) Foe R x4 ,
rank CgBg < rank FgBs = &, r(kT) & RY, s(kT)&RY
vkT) €RY, exT) =RY, 2Ty = R, K, & RIXE,

Ky € R, £ = 1/T is the sampling frequency, and
yi(i=1,2,..., m) & R are the delay compensation
parameters. Since the computational time delay is
m sampling periods the digital controller is
required to generate the control input vector

ut) = r{e-m)T}, t = [kT, &K+1)T), kT TT , (8)

80 as to cause the output vector y(t) to track any
constant command input vector v(t) on TT in the
sense that

1im{ v(RkT)-y (,T)} = 0 )
k>

as a consequence of the fact that the error vector
e(t) = v(t) - w(t) assumes the steady-state value

lim e(kT) = 1im{v(kT)-w(kT)} = O (10)
koo ko

for arbitrary initial conditions. 1In case

¥ ¥ =
[ 10 2] [c1+MA11 , Cz+MA12] , (11)
it is evident from equations (2), (3), and (11)
that the vector

Xl(t)
w(t) - y(t) = [MAll s MA12] (12)
xz(t)

of extra measurements is such that v(kT) and y(kT)
satisfy the tracking condition (9) for any

M & REx(n-L) if e(kT) satisfies the steady-state
condition (10), since equation (1) clearly implies
that

xl(t)
11m[A11 R A12] =0 (13)
o0 Xz(t)

in any steady state. However, the condition that
rank FgBgy = { requires that Cg and Ajg are such
that M can be chosen so that

rank Fy, = rank(C2+MA ) = & . (14)
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If the control input vectors are stored in the
manner of Koepcke [7] by introducing the extra
state variables

qi{(k+1)T}==qi+l(kT) (i=1,2,...,m~1)
and

qm{(k+1)T}==Tr(kT) , (15)
then it is evident from equations (1) to (7) and

(15) that such discrete~time tracking systems are
governed on TT by state and output equations of
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the respective forms
M2l (k+1)T}
xl{(k+1)T}
xz{(k+1)T}

ql{(k+1)T} =

qz{(k+1)T}

Em{(k+l)T{

"il,—TFl ,-TF,, 0 , O
0, &+ 9y » B, 0
0, ®21 99 fwz » 0
o, o, 0o, 0 , 12
o, o, 0, 0, O

xl(kT) o
xz(kT) 0
X ql(kT) + 0 |v(kT)
q, (kT) o
?m(kT{. _KO_
and
y(kT) = [O,CI,CZ,O,O,---,O]
where
@11 ’ ®12 J 11’ 12
= exp
<I)21 ' ¢2 [ A21
and

(16)

an

(18)



y Ay o A 0

T
= fo exp t dat (19)

¥ Ay  » A B

1

2.2 System Analysis

The transfer function matrix relating the
plant output vector to the command input vector of
the closed-loop discrete-time tracking system
governed by equations (16) and (17) is clearly

G\ = [o,cl,cz,o,o,...,o]

3‘12'12' TF, , TF, , 0, O ,..., O 7
0 AL =01, 0y, -f¥,, O ..., O
0, -0, AL -0, ,-f¥,, O ..., O

x/ 0o , 0 , 0 AL, ST, O
o, 0 ;0,0 , M, .., O

‘—Kl , KoFl , Kon ,leﬁ,ym_llz,...,A12+y11%

—TIJL‘
0
0
x; O (20)
0
_Ko‘

and the fast-sampling tracking characteristics of
this system can accordingly be elucidated by the
singular perturbation analysis of transfer function
matrices. Indeed, since it follows from equations
(18) and (19) that

(6. -1 ) A LA
-0
1im g ¥ m=2’ C12 | [f11%i2 21
Tro L 9y 20971y Ayrrhs
and
'\1}1 )
lim £ = , (22)
£00 Y B

these results indicate that as f > © the transfer
function matrix G(A) assumes the asymptotic form

¢y =Ty + T (23)
where the 'slow' transfer function matrix

e -1
T(V)=(C -C,F, FOQI -1 -TA,
-1

+TA12F2

2
-1 -1 (24)
F)TA F,
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and the 'fast' transfer function matrix
v o=lpim m-1 m-2
I’()\)—CZFZ [X O"”Ig")‘ (>\~1)y11£+>\ (>\—1)Y212+

-1
ALY, T+ (A1), T +EBK 17 F, B

(25)

It follows from equation (24) that the 'slow' modes

Zs of the tracking system correspond as £ > < to

the poles Zl U Zg of T'(\) where

_ . _ -1 -
Z, = (A& Ci[AL -1 +TK_ Kll 0} (26)
and
—_ . - - -1 =
1, = (A& C:[AL -1 -TA  +TA F,°F, [=0},
27)

and from equation (25) that the 'fast' modes Z; of
the tracking, system correspond as f > ® to the

poles I3 of I'(A) where
z =& C: =11

+>\m'1(k-1)ylx +>\‘“'2(>\-1)y21

L L L

ot ALY Tor(A-1)Y T p+F BK |=0) . (28)

It is evident from these results that the compu-
tational time delay has no affect on the 'slow'
modes as f - « but that the 'fast' modes are
crucially affected as f - <, Indeed, in case no
time-delay compensation is used so thatY; = 0, it
is evident from equation (28) that at least some
of the 'fast' modes will be unstable.

2.3 System Synthesis

It is evident from equations (11), (13), (16),
and (17) that tracking will occur in the sense of
equation (9) provided only that

2. Uz,=0 (29)

where D~ is the open unit disc. In view of
equations (26), (27), and (28), the 'slow' and
‘fast® modes will satisfy the tracking require-
ment (29) for sufficiently small sampling periods
if the time-delay compensation parameters 7Y;
(i=1,2,...,m) and the controller matrices Ky, Kj,
and M are chosen such that ;&= 0, I, =0, and
Iz U~, 1Indeed, if full time-delay compensation
is employed, Yi > O (i=1l,...,m) and stability of
the 'fast' modes is assured by requiring that

FZBZKo = diag(cl,oz, v ,02) (30)
where 1-0j &R 1D~ (4=1,2,...,%). Moreover, if
in addition M is chosen such that both I'(A) and
T(\) are diagonal transfer function matrices, then
it is evident that increasingly non-interacting
tracking will occur as £ > o,

3. Direct Digital Flight-Mode Control Systems with
Finite Time-Delay Compensation

3.1 vVertical Translation Manoeuvre

In the vertical translation manoceuvre, the
linearised longitudinal dynamics of the YF-16
aircraft flying at a Mach number of 0.8 at sea



level are governed on T by state and output
equations of the respective forms [3]

xl(t) o, 1 , (o} xl(t)
x,(t)| = 10, -2.068 , 10.029| x,(t)
xs(t) 10, 0.985 , -2.155 xs(t)
m o ’ o
ul(t)
+ |~35.44 , -5.124 (31)
uz(t)
| -0.238 , -0.308]
and
xl(tf
¥, () 1,0,0
= xz(t) (32)
yz(t) 0, 0,1
Xs(tL

where x;(t) is the change in pitch angle, xg(t) is
the rate of change of pitch angle, x3(t) is the
change in angle of attack, uj(t) is the elevator
deflection, and Ug(t) is the flaperon deflection.
Hence, in the case {0y,05} = {0.4,0.4} v; =
1/6(i=1,..,5), KZ1K; = diag{p;,pp} = diag{2.5,2.5},
and

(33)

it follows from equations (3), (5), (8), and (30)
that the corresponding transducers and fast-
sampling error-actuated digital controllers with
finite time-delay compensation are governed on T
and TT by the respective measurement and control-
law equations

xl(t;
W (1) 1,0.25, 0
= %, (£) (34)
wz(t) o, O , 1
Xa (L)
and
T (KT) -0.051 , 0.211] _el(kT)
= f
r, (KT) 0.039 , -1.462] e, (kT)
-0.127 , 0.528] ’zl(kT)
e
0.098 , -3.655] |z, (kT)
;8 ul{(k-i)T}
-5 2 (35)
i=1 uz{(k-i)T}_
It is then evident from equations (26), (27), and
(28) that 73 = {1-2.5T7,1-2.5T}, Zg = {1-4T}, and

Z5 = {0.155%0.7351,-0.58120.3771,0.883+0.3171}.
It is also evident from equations (23), (24), and
(25) that the asymptotic transfer function matrix
assumes the diagonal form
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47T
A=1+4T °* 0
(W) = (36)
o , 30

3o>\6~25)\5+7"

and therefore that the direct digital flight-mode
control system for the vertical translation
manoeuvre of the aircraft, with a time delay of
five sampling periods in the implementation of the
control action, will exhibit increasingly non-
interacting tracking behaviour as f <+ « when the
piecewise-constant control input vector [uj(t),

ug (01T = [y 1), 7 (kD 1T, t & [kT, &+1)T),

kTe& Tp, is generated by the fast-sampling digital
controller governed on TT by equation (35).

3.2 Fuselage Pitch Pointing Manoeuvre

In the fuselage pitch pointing manoeuvre,
the linearised longitudinal dynamics of the YF-16
aircraft flying at a Mach number of 0.8 at sea
level are governed on T by state and output
equations of the respective forms [3]

x (1) o, 1 , o x, (£)
;;z(t) = |0, -2.068 , 10.029||x,(t)
x,0)] [0, o0.985 , -2.185]|x (t)
) , O
ul(t)
+ |-35.44 , -5.124 37y
uz(t)
| -0.238 , -0.308
and
_ EXO)
¥, (®) 1,0, 0
= x, (t) (38)
vty 1,0, -1
x3(t)

where xj(t) is the change in pitch angle, x2(t) is
the rate of change of pitch angle, x3(t) is the
change in angle of attack, ul(t) is the elevator
deflection, and uz(t) is the flaperon deflection.

Hence, in the case {01,02} =_{0.4,0.4}, Yi =
1/6(i=1,...,5), Kglk; = diag {p;,0p} = diag{2.5,
2.5}, and
0.25
M= , (39)
o]

it follows from equations (3), (5), (8), and (30)
that the corresponding transducers and fast-
sampling error-actuated digital controllers with
finite time-delay compensation are governed on T
and Tp by the respective measurement and control-
law equations

xl(t)
Wy (t) 1,025, 0
= xz(t) (40)
w, (t) 1, o0 , -1
2
xs(t)



and
r, (kT) -0.051 , 0.211][e. (kT)
= f 1
r, (kT) 0.039 , -1.462 e, (kT)
-0.127 , 0.528] [z (xT)
N

0.098 , -3.655] |z, (kT)

1 B ul{(k-i)T}

P z (41)

i=1 u2{<k-i)T}
It is then evident from equations (26), (27), and
(28) that I3 = {1-2.57,1-2.5T}, I, = {1-41}, and
Z5 = {0.115%0.7351,~0.581%0.3774,0.883%0. 3174} .
It is also evident from equations (23), (24), and
(25) that the asymptotic transfer function matrix
assumes the diagonal form

4T

A-1+4T '

Iy = (42)
30

, %0
3078251547

and therefore that the direct digital flight-mode
control system for the fuselage pitch pointing
manouevre of the aircraft, with a time delay of
five sampling periods in the implementation of the
control action, will exhibit increasingly non-
interacting tracking behaviour as f > ® when the
piecewise-constant control input vector [ul(t),
ug(6)1T = [r1(kT),raxT 1T te [kT, (k+1)T),

kT EET&, is generated by the fast-sampling digital
controller governed on T& by equation (41).

4. Laboratory Microprocessor Implementation

Studies

4.1 Apparatus

The laboratory apparatus for the study of
the microprocessor implementation of such con-
trollers consists of an EAT 180 analogue computer
for the simulation of the linearised model of the
plant (given in equations (31) and (32) or (37)
and (38)), a microprocessor system based on the
M68000 MPU for the computation of the controller
equations, a data-acquisition system for data
handling and processing between the controller
and the plant and a variable hardware interrupt
unit for accurate cycle timing.

The microprocessor system is based upon the
Apollo 68000 Stand-Alone Computer module which
provides the user with the means of efficiently
interfacing the MPU to peripheral devices through
an 8255 PPI and an 8250 VARI or directly via the
bus, depending on the data format required. All
user memory, 4K RAM, is contained within this
module. The high-speed nature of the MPU,
operating at 10 MHz, along with the sophisticated
M68000 instruction set, enables efficient on-chip
execution of the arithmetic manipulationms.

The data-acquisition system consists of a
high-level A/D module and an analogue output
module arranged in a memory-mapped configuration.
Both these modules have been custom designed for
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optimum speed, efficiency and compatibility with
the processing module and contain the necessary
latches, amplifiers, filters, and sample-and-hold
and decoding devices.

4.2 Vertical Tranglation Manoeuvre

The simulated behaviour of the YF-16 air-
craft in the vertical translation mode when con-
trolled in accordance with equation {35) is shown
in Figure 1 when the command input vector is
'ramped up' in 2 sec to the steady value [vi(t),
vz(t)]T = [0,2]T deg. 1In these tests, a sampling
period of 0.02 sec is used and it is evident that
high-accuracy non-interacting tracking behaviour
is achieved despite the time delay of five sampl-
ing periods in the control action. Furthermore,
it is apparent from Figure 1 that the vertical
translation manoeuvre is effected without the use
of excessive transient control surface deflections.

4.3 Fuselage Pitch Pointing Manoeuvre

The simulated behaviour of the YF-16 aircraft
in the fuselage pitch pointing mode when controlled
in accordance with equation (41) is shown in Figure
2 when the command input vector is 'ramped up' in
2 sec to the steady value [vl(t),vz(t)]T {2,0]T
deg. In these tests, a sampling period of 0.02 sec
is used and it is evident that high accuracy non-~
interacting tracking behaviour is achieved despite
the time delay of five sampling periods in the
control action. Furthermore, it is apparent from
Figure 2 that the fuselage pitch pointing manoeuvre
is effected without the use of excessive transient
control surface deflections.

5. Conclusion

A direct digital control law algorithm has
been proposed which, in addition to providing
tight non-interacting tracking behaviour and
excellent disturbance rejection characteristics,
provides for the compensation of finite-time
delays in implementation. Stability of the
closed-loop system has been proved in the case of
multi-input multi-output linear systems.

The theory has been illustrated by the
presentation of simulation results in which the
aircraft was represented by an analogue computer
and the digital control system was implemented on
a microprocessor. It was thereby shown that tight
non-interacting control is achievable even when
the finite time delay in implementation amounts to
several sampling periods.
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