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Abstract

A horizontal interception problem,

formulated

as a pursuit-evasion game, is studied in order to

evaluate
strategies
technique.

the accuracy of

obtained by singular

suboptimal feedback
perturbation
The exact solution of the problem is

generated by an algorithm based on differential

dynamic programming.
the study are of realistic
propulsion characteristics.

the suboptimal
accuracy.

1.Introduction

The aerial combat is known

The aircraft models used in
aerodynamical and
Results indicate that
for initial ranges larger then 8-10 turning radii
strategies provide a reasonable

to be a very

complex nonlinear process and in the course of

its analysis many difficulties are encountered.
One class of interesting air combat problems is
which can be for-
mulated as a zero-sum pursuit-evasion game. This
success-

the air-to-air interception,

class of differential games was more

fully analysed in the past by using a multiple-

time~scale singular perturbation technique (SPT)
The most important

as described in Refs 1-3.

feature of the SPT approach is that the control
strategies are obtained in an explicit feedback
(closed-loop) form. These calculations can easily

be performed on-line by an airborne
onboard of aircraft and missiles.
is, however, only a suboptimal

approximation of the exact solution and
The has to be obtained

exact solution

computer
This solution
(zeroth-order)
its
accuracy has not been fully evaluated until now.
by

numerical methods like those described in Refs 4
and 5. These algoritms provide open~loop controls

by iterative off-line computations.

Computer

programs based on the method of Ref 4 seem to be

the best practical ones today.

The purpose of

this paper is to evaluate the accuracy of the SPT

approximations of Refs 1
the correct optimal
method of Ref 4,

solution
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and 2 by comparison to
obtained by the
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EVALUATION OF SINGULARLY PERTURBED PURSUIT-EVASION GAMES

s ¥

and Shinar,

2.The Differential Game Problem

The horizontal air-to-air interception problem
of interest is formulated as a perfect informa-
tion, fixed final time (tg), zero-sum pursuit-
evasion game with the cost function
V(xg) = rg (1)
where X, is the initial state vector at time tq
and rg is the distance of separation between the
pursuer and the evader at "tg". Such a formula-

tion is selected because it suits the DDP algo-
rithm of Ref 4 best.

Yp-Ye

Xp, Xg
Figure 1. Interception geometry

The geometry of the interception is shown in

Fig 1 and the equations of motion, are

.

rz =vp cos{ ¢p- 4 J+ve cos( @ - §)

(2)
6 =(-vp sin( ¢ p= §)+Ve sin( @ e~ 6))/r ,0(0)=6, (3)

s r(0)=ry

vp= p(Vpsgp) = Gplvp) up? Vp(0)zvpe ()
: ‘.’e= belVesfe) - Gelve) ue? 1Ve(0)=veo  (5)
‘;’pz up, ,<Pp(0)= #po (6)
;oe= Ue y0e(0)z 0o (T)

where {p,{e are the respective thrust controls
bounded by



0§y (8)

i= p,e
and the turning rates up and ug are constrained by

[ui]< Si(vi) i = p,e (9)
Detailed derivation of Egs (4)-(9) is given in
the Appendix.

We introduce the adjoint variables (the
gradient components of the optimal cost) Vp, V,,
va, vVe’ pr ,V“,e and form the Hamiltonian
H =vrr.+v09+vvp vp+Vveve+V¢p¢p

+ Vpe we +ip (Jup| = up) + pe (jugl- %) (10)
where kp and pe are multipliers(”).The ad joint
variables have to satisfy the following
differential equations with the respective
transversality conditions
Vp =-Hp s Vp (tg) = 1 (1)
Vg = - Hy y Vg (tp) = 0 (12)
va = - va s va(tf) =0 (13)
vVe = - HVe ,Vve (tg) = O (14)
\}‘pp = - H(pp ,Vﬁpp (tf) =0 (15)
Voe = - Hee Ve (tp) =0 (16)

The optimal saddle-point control strategies

are obtained from the min-max (max-min) of the

separable Hamiltonian Eq (10) subject to the
constraints (8) and (9)
{prUpsfesUe=arg min max H = arg max min H (17)

{prUp fesle $esUe {prUp

Egs (2)-(17) express a nonlinear two point
boundary value problem which has to be solved
numerically by some iterative method as of Refs 4
and 5. The solution is obtained in an open-loop
form. For a "real time" airborne implementation a
suboptimal but closed-loop (feedback) solution

may be of advantage. Such an approximation can be
obtained by using a multiple-time-scale forced

singular perturbation approach described in
detail in Refs 1-3.
3. Singular Perturbation Technigque
In Refs 1 and 2 it was shown that the

nonlinear TPBVP of Egs (2)-(17) can be solved in
a closed form if a time scale separation can be
assumed to exist between the state variables of
the problem. Since such time scale separation is
never perfect the analytical solution of Refs 1
and 2 expressed in a feedback form, is only a
zeroth-order approximation of the exact solution.

If the interception starts at relatively long
ranges compared to the best turning radius of the
aircraft,"Ryin",the rotation of the line of sight
"g" is very slow compared to the aircraft
turning rates. Therefore in medium-range inter-
ceptions relative geometry varies indeed were
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slowly. Based on this observation in Refs 1 and 2
"p" and "g " are considered as the slowest
variables. The time-scale separation between

relative geometry and aircraft turning dynamics
can be expressed by the ratio

Eg = (Rmin/ro) (18)
which is called the geometrical singular
perturbation parameter. In Ref 1 it is assumed

that velocity dynamics are slower than turning
dynamics. This SPT model, called Model 4, 1is
based on the observation that the longitudinal
acceleration of an airplane are much smaller than
the lateral accelerations wused for turning
maneuvers. Based on this assumption the optimal
strategies of both aircraft (pursuer and evader)
can be expressed by the following simple control
laws.

=1 (19)

o - )V 2 v -0
u® = ug(v ;;;;:; 51n< >

where ug(v) is the sustained turning rate
achieved whith T = D.

(20)

This control strategy has an  apparent
deficiency by always requiring full thrust. It
is known, however, that in some cases zero thrust
can be optimal., In such a case the turning
maneuver is maximal and consequently the
longitudinal deceleration can be important. This
effect can be expressed by a different time scale
separation SPT model assuming that speed dynamics
is faster than turning. Such a model, called in
Ref 2 "Model B" in contrast with the previous
"Model A" of Ref 1, allows optimal zero thrust
and predicts in closed-loop when the throttle has
to be switched to full thrust. This model is
useful for initial conditions of high speed and
large turning requirement., When full throttle is
switched on the assumptions of Ref 1 became valid
and for further maneuvering the strategy of
"Model A" has to be used.

Since the real time scale separation betwen
speed dynamics and turning is certainly not a
perfect one, the accuracy of the approximations
obtained either by "Model A" or by "Model B" have
to be carefully evaluated by a comparison to the
exact game solution obtained numerically.

4. The Numerical Optimization Method

The background to the DDP method is described
in Ref 4 , but a short description of the
procedure will be given here. The program used
for this particular problem is the same as in Ref
5.

The iterative computational procedure is
1n1t1ated by assuming nominal control histories

Tpt), Up(t), Telt), Uy(t), subject to the con-
sgralnts Egqs (8), (9) generating corresponding
nominal trajectories by integrating Eqs (2)-(7)
forward in time from t, and up to tg. Store the
nominal controls and trajectories as well as the
calculated cost value Eq (1).



The adjoint variables are evaluated along the
nominal trajectory. This means that the end point
boundary are now known and the adjoint
Eqs (11)-(16) can be integrated backward in
time,while calculating the optimal controls from
Eq (17). These new control histories must be
stored. In parallel with the integration of the
adjoint equations a predicted cost change will be
calculated. Assume that the Hamiltonian, Eq (10),
is separable in the components of each control
variable,

2

i=1

Hi(x,uy,Vyst) (21

where uy ={p, Up =Up, U3 ={g, Uy = Ue furthermore
x and Vy represent the state and adjoint vectors
respectively. The differential equation for the
predicted cost change will then be

a1 (£)=H (%, 0y, Vy5t) ‘Hi(i’u;’vxit),

aj(te)=0, 1 = 1, 2, 3, U (22)
The predicted cost change is obtained at t, as
4
alto)= 3" a;(ty) (23)
i=1

Apply the new control histories and integrate
Egs (2)-(7), subject to the constraints, forward
in time generating a trajectory which should be
better than the nominal one. Also calculate the
new cost value and form the cost change, AV, by
subtracting the nominal cost value from the new
one obtained.

By comparing a(ty) with AV we will obtain
comprehension of the convergence status of the
iteration just fulfilled. If the status is not
satisfactory, which is very common, a convergence
control technique must be applied.

Convergence control

The reason for bad convergence is too large
changes in the optimization of the controls.
These changes can be restricted by introducing
penalty terms in the Hamiltonian, Eq (10), which
then are used in Eq(17). The modified Hamiltonian
will then be

)4 el -
3L (xul,Uyst) + € (ug- uh)2) (2n)

H=
i=1
where the + is for the minimizer and - for the
maximizer and C; is a convergence control
parameter (CCP).This technique means that the

contribution from a particular ug is strongly
related to the cost change by a;(t,). Accordingly
the effects of an individual control variable can
be observed and the corresponding Cy can be used
to prevent bad influence or to speed up the
convergence for this particular control variable.
It is very important to have this device,
especially when the number of control variables
is large. Otherwise it would be very difficult to
obtain practical acceptable convergence of such
an iterative procedure. How to use the CCP
technique see Ref 4. The CCP-technique covers
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singular control problems, which is the case for
the throttle setting, see Eq (A-8) which gives HY
linear in {. Additionally, a proper choice of Cj
will always make it possible to attain Hyy
positive definite with respect to the pursuer and
negative definite with respect to the evader.

5. Numerical Examples

The interception scenario, depicted in Fig 2,
is the following. A fighter-bomber (the evader)
on an air-to-ground mission, flying at low
altitude and at a high subsonic speed, is
detected by a high performance interceptor (the

pursuer). The pursuit-evasion game starts when
the fighter-bomber becomes aware of the
situation., Then it drops its bomb 1load an
initiates an evasive maneuver.

The characteristic parameters of the two

participating aircraft are summarized in Table 1.

Aircraft Pursuer Evader
Weight (kg) 9000 20000
Wing area (m2) 30 50
Thrust to weight ratio 0.91 0.68
Maximum speed at h=0 (m/s) 419.8 339.2
Maximum load factor (g's) 6 6
Maximum 1ift coefficient 1.32 .9

Table 1. Aircraft parameters

Since the maximum speed of the interceptor is
higher, capture (defined by reaching the range
required for effective missile firing) always
takes place. In this case the objective of the
evader should be either to maximize the time of
capture or, as in the present formulation, to
maximize the separation distance for a given
(fixed) final time.

The aerodynamics and thrust models of both
aircraft are derived from experimental data and
expressed by curve fitting as polynomials and
other analytical functions. The performance
characteristics of the airecraft are best
illustrated by their respective horizontal
"domain of maneuverability" shown in Fig 3. The
dashed 1lines in this figure indicate the
sustained turning performance with full thrust.

A set of six examples with different initial
ranges and respective fixed final times were
solved numerically by using the DDP algorithm(”)
as well as the two SPT models of Refs 1 and 2.
The set of values ro € | 8,10,12,1&,16,18} km was
enough to cover the range of interest for the
geometric singular perturbation parameter (Eq 18)
related to the best turning radius of the pursuer
at tz=0 (Rpip=1878 m). The fixed final times,
necessary for a convenient application of DDP,
were selected in order to keep the final range
re=r(tg) in the order of 1.5 -~ 3.5 kms,
compatible with the firing range of air-to-air
missiles. The, results can easily be recal-~
culated using the fact that both aircraft have
reached their stationary (maximum) velocity. This
makes it possible to estimate the final time
given 2.0 km as the separation distance for the



reference case (both aircraft using DDP). This
final time 1s then used in the other strategy
combinations for the particular ro considered.

In all examples several similar features were
found. All interceptions terminate by a maximum
speed "tail-chase", regardless of the method of
solution, The pursuer's optimal maneuver
(obtained by DDP) is of full trust for the whole
interception, therefore SPT "Model B" is not
applicable. This 1s the consequence of the
favourable initial conditions (see Fig 2). On the
contrary the evader starts its optimal maneuver
with 2zero thrust and swithes to full throttle
only a few seconds "tgy" later.

The optimal values of "tg," derived by the DDP
solution are plotted in Fig 4 as a function of
"ro". The SPT approximation for "tg,", obtained
from "Model B", is also shown on the same figure.

The accuracy of the SPT approximate feedback
strategies for the evader as well as for the
pursuer is measured by the relative gain or loss
in the final tige in order to reach the "optimal"
final range "rg", obtained from the exact DDP
saddle~point game solution. The error parameter
"s" can be thus defined as

*
6=4t 100 = __rlte) = re
tr

100 % (25)
(vpmax-vemax) tr

The outcomes of six different games (played
with different control strategies) are presented
for each set of 'initial range (ry) and final time
(tf) in Tables 2a - 2f. The respective error
parameters are also plotted as a function of "ry"
for the various SPT strategies in Figs 5-7.

6. Discussion of Results

Let us concentrate first on the accuracy of
the SPT strategy (Model A) for the pursuer. Due
to the favourable initial conditions the turning
requirements is very moderate. For short initial
ranges the rotation of the line of sight is
important and certainly not negligible compared
to the pursuers -actual turning rate. Therefore
the SPT approximation creates a relatively large
error in the performance index. For longer
initial ranges, i.e. smaller values of the
singular perturbation parameter ¢, defined in Eq
(18), the approximation becomes better and better
and the value of the accuracy parameter is
smaller than 1 % for ry > 14 km, (see Fig 5).
This result confirms a previous accuracy
assessment (Ref 6) carried out by a different
method for the same SPT "Model A".

The evaluation of the SPT strategies of the
evader is more complex. The unfavourable initial
conditions require an important "hard" turning
maneuver starting with zero thrust. This result
obtained from the exact DDP solution justifies
use of the SPT approximation "Model B"™ (Ref 2)
As is shown in Fig 4 the SPT analysis
overpredicts the value of "tg," (the time using
zero thrust). The turning strategy is, however,
very similar to the optimal one. The error in the
prediction of "tg," has different effect for

different initial ranges. It is clearly
demonstrated by using for a "Model A" (tgy = 0)
strategy comparison. For the shortest initial
range ro = 8 km the optimal value is t¥,=2.0 sec.
while "Model B"  9predicts tgy = 6.6 sec.
Consequently the error caused by "Model A" is
smaller than the error of "Model B". For all
other initial conditions "Model B" performs
better and for ro = 18 km (€g= 0.103) the error
parameter "§" is reduced to 1.5 %.

Using SPT strategies for both aircraft the
errors partially cancel each other (see Fig 7)
and consequently for relativly short initial
ranges (£g < 0.2 "Model B") the zeroth-order SPT
game solution presents a reasonably accurate
approximation.

7.Conclusions

The present paper extends the evaluation of
suboptimal SPT game strategies for cases where
the 1initial optimal maneuver requires zero
thrust. The SPT model allowing such a strategy
(Model B) overpredicts the time flown with zero
thrust. However, for initial ranges of the order
of 8-10 turning radii, the error 1in the
performance index due to a suboptimal SPT
feedback strategies is small enough to justify
its use for an airborne implementation.

The SPT approximation has an additional merit.
Serving as the first guess in the DDP algorithm
it reduces the number of iterations required for
a converged game solution.
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Appendix: Derivation of Egs (4)-(7)

The longitudinal acceleration of an aireraft
in horizontal flight, is given, neglecting the
thrust deflection due to the angle of attack by

v = [T(yh, ) - D(v,h,n)]/m (A=1)

where "T" 1s the maximum available thrust in the
given flight conditions "v" is the velocity and
"h" is the altitude, "¢" is the throttle setting
parameter controlled by the pilot, "D" is the
aerodynamic  drag depending on the flight
conditions "h,v* and the load factor "n" and "m"
is aircraft mass.

The drag force is generally expressed by the
nondimensional drag coefficient Cp

D(v,h,n) = g S Cp (A-2)

where "S" is the aircraft reference wing area and
"q" is the dynamic pressure depending on speed
and air density p(h)

q = ;_. p(h) v2 (a-3)

The drag coefficient consists of two parts,
the gzero-lift drag coefficient, which is only
Mach number dependent, Cpo(M) and the induced
drag coefficient Cpi which also depends on the
1lift coefficient Cp, given by

L = g‘——g—‘ﬁ (a-14)

In the most simple aerodynamic models the
induced drag coeifficient is assumed to be

proportional to Cp2 yielding for horizontal
flight at a constant altitude
Cp = CDO(V) + K(v) CLE = Cp (v,n) (A~5)

In horizontal flight the turning rate of the
aircraft, used as a control variable in the
present paper, is expressed by

2u= gV{n2 1) /v (A~6)

This control variable is limited either by the
maximum structural load factor "Npax" or by the
maximum value of the 1ift coefficient
given the maximum turnrate "{(v)".

@

lchmax n

Substituting Eqs(A-2)-(A-6) into (a-1) yields
the form used in Eqs. (4)-(5), namely

Vo2 o(E, v) - 6(v) w2 (&=7)
with
¢ (& V=[{T(v)-q 5 Cp_(v)-K(v)m2 g2/(q S)]/m (A-8)
and

G(v) = 2 K(v) m/(Sp) (A-9)

The maximum horizontal speed of the aircraft is
limited either by the maximum allowable dynamic
pressure "qpax" or by the equilibrium of thrust
and drag. In the model used for the present paper
the thrust model is structured in a way that the

"Qmax" limit is automatically respected.
CASE a
= = = 0.235
Ro = 8.0 km, t 25.8 sec, €
8 DDP SPT-A
E
r¢ = 2000 rg = 2285
f
DbP 5 = +0 § = +13.7
ff = 1885 ’f = 2192
SPT-A 5§ =-55 5§ =492
= 1842 rg= 2058
SPT-B 5 =—76 5 =+2.8
CASE b
R, = 10.0 km, t; = 48.1 sec, € = 0.188
" 5 DDP SPT-A
r¢ = 2000 2153
bDP 5 =10 5 = +4.0
rg = 1776 ry = 1995
SPT-A 5 =-58 5 = -0.12
r¢ = 1804 rg = 1948
SPT-8 § = ~5.0 5 =-14
CASE ¢
R, = 12.0 km, t; = 71.2 sec, € = 0.156
. 8 DDP SPT-A
l’f = 2000 l’f = 2099
bDP 5= 10 5 =—1.7
re = 1762 1893
SPT-A § = —4.1 =-1.9
I’f = 1822 I’f = 1903
SPT-B § = —3.1 § =17
CASE d
R, = 140 km, t; = 94.9 sec, € = 0.134
e 8 DDP SPT-A
rg = 2000 ry = 2060
bDP 5 =20 5 =+0.8
ff = 1731 rf = 1819
SPT-A 5 =—35 5 =—-22
ry = 1827 ry = 1870
SPT-8 5 =23 5 =—17 |

115




CASE e
Ry = 16.0 km, t; = 118.8 sec, € =0.116
E & DDP SPT-A
'f = 2000 r¢ = 2046
DDP § =10 8 =+05
re =171 re = 1777
PT- f f
SPT-A § = -3.0 5 =23
= = 1861
SPTB re = 1821 s
5 =-—1.9 § =—15
CASE f
Rg = 180 km, t; = 143 sec, ¢ = 0.103
E 8 DDP SPT-A
op r¢ = 2000 rg = 2031
b § =10 § =+03
PT A rf = 1693 I'f = +03
SPT- 5 = —2.7 § = —2.2
I r = 1827 re = 1843
SPT- 5§ =-15 5 =-13

Table 2a-2f. Game results for 6 different
strategy combinations

¢ =—30° 0y = 0°

I—

[

o
p =330 m/sec
o
o

Figure 2. Initial interception conditions
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Figure 3. Sustained and limiting turnrate vs velocity
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Figure 4, Optimal throttle off vs initial range
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Figure 7. Error parameters in zerothorder SPT game

117



