IMPERFECTION SENSITIVITY OF LAMINATED CYLINDRICAL SHELLS IN TORSION AND AXIAL COMPRESSION

G. J. Simitses® and D. Shaw*™
Georgia Institute of Technology

ICAS-84-3.5.1

Atlanta, Georgia 30332

I. Sheinman®
Technion-Israel Institute of Technology
Israel

Haif ,

Abstract

The imperfection sensitivity of thin
cylindrical shells, made out of fiber reinforced
composite material and subjected to either uni-
form axial compression or torsion, and the
effects upon it of certain parameters are investi-
gated. The sensitivity is established through
plots of critical loads (limit point loads)
versus imperfection amplitude. The larger the
drop in critical load value with increasing
amplitude, the greater the sensitivity. Results
are presented for four- and six-ply laminates
with simply supported boundaries and various
stacking sequences. These sequences lead to
symmetric, antisymmetric and asymmetric
configurations with respect to the laminate
midsurface. The material for all configurations
is Boron/Epoxy. The parametric studies include
primarily the effect of lamina stacking and
length to radius ratio on the critical loads.
Among the important findings one may list that
(a) laminated cylindrical shells are more
imperfection sensitive under axial compression
than under torsion, (b) the imperfection
sensitivity decreases as the length to radius
ratio increases and (c¢) lamina stacking has a
pronounced effect on the imperfection-sensitivity
of the laminated shell.

I. Introduction

The circular cylindrical shell has been used
extensively as a structural configuration
especially in the aircraft and spacecraft
industry. The constant demand for lightweight
efficient structures has led the structural
engineer to the use of various constructions
(metallic with and without stiffeners, sandwich,
laminated ete.), to more refined theoretical
analyses, and to the field of structural
optimization. Regardless of the construction,
this configuration is not free of initial
geometric imperfections. Moreover, in their
service and function, cylindrical shells are
often and usually subjected to destabilizing
loads. Therefore, the aircraft structures
engineer is interested in the stability analysis
of these systems, in the presence of small
initial geometric imperfections, especially for
uniform axial compression and torsion.

Stability of thin circular cylindrical
shells has received deserving attention from
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structural engineers, during the past seventy or
so years. The multitude of theoretical and
experimental studies, during this period, has
tremendously enhanced our understanding of the
buckling phenomenon and it has established that
metallic thin cylindrical shells are extrenmely
sensitive to initial geometric imperfections,
especially when loaded axially. This is also
true, to a lesser extend, for stiffened metallic
cylindrical shells under axial compression. A
fairly complete historical accounting of studies
on the stability of axially loaded cylindrical
shells with metallic construction (with and with-
out stiffeners) is given in Ref. 1, and the cited
references, therein. From this group, the atten-
tion of the interested reader is particularlg
directed towards the review articles of Horr (2
and Hutchinson and Koiter(3). For this same con-
struction (metallic), the studies of stability
and imperfection sensitivity of cylindrical
shells is smaller in number, when dealing with
the load cases of torsion and pressure.

For the case of torsion a few references are
cited, herein. These references deal primarily
with the question of imperfection sensitivity,
but if one adds to them their cited references,
he has a fairly complete bibliography on the
subject. Loo and Nash(5). are among the first
to report on the effect of small initial
imperfections on the torsional critical load for

simply supported(®) and clamped(5) isotropic
cylindrical shells. Budiansky(6) treated the
same problem by employing Koiter's(7) initial

postbuckling theory. Sheinman and Simitses(8 by
employing a nonlinear analysis predicted critical
loads (limit point loads) for stiffened
configurations under torsion and/or combined
loading that includes torsion. In addition, one
must cite the reported investigations of
Hayashi(g), Becker(10) | and Baruch, Singer and
Weller(11).

Finally, there exist several references deal-
ing with the case of external pressure, and a few
for the case of combined loading. Although the
paper deals with the cases of axial compression
and torsion, some of the references related to
pressure loading are cited herein, for the sake
of completeness. Among these one must list the
classic paper on closely stiffened (smeared
technique) cylindrical shells by Baruch and

Singer(1 the experimental results of Yamaki
and Otomo(13 the analyses of Budiansky and
Amazigo and of Simitses et all(15),

With the advent of composite laminated
shells, several investigations started appearing
in the open literature which dealt ?ig§ the sub-
ject of stebility, 1In 1975, Tennyson made
a review of previous studies on the buckling of



laminated cylinders. According to Tennyson's
review, perhaps one of the earliest stability
analyses of homogeneous orthotropic cylindrical
shells was published by March et a1, (1 in 1945,
After that time, several theoretical analyses
limited to orthotropic shells were performed by
Schenell and Bruhl{18), Thielemann et al.

and Hess(21) In these studies, simply supported
end conditions were partially satisfied. The
general linear theoretical solutions to
anisotropic cylinders were presented by Cheng and
Ho(21,22)  Jones and Morgan , Jones and
Hennemann(24) and Hirano(25). several papers
were involved in the comparison of the efficiency
and accuracy between Flugge's linear shell
theory, which was employed by Cheng and
Ho(21’22), and other shell theories (such as the
work done by Tasi(20), Martin and Drew(27) whose
theory was based on Donnell's equations, and the
work of Chaof(2 whose analysis was based on
Timoshenko's buckling equations). Stiffened
composite %ylindrical shells have been analyzed
by Jones(29), Terebushko(30) and Cheng and
card(31), Theoretical analyses of the effect of
initial geometric imperfections based on
anisotropic shell theory, have been published for
the loading cases of pure torsion(32) axial
compression(33) and combined loads(3%4,35),
Moreover, several computer codes(36"”9) (based on
finite elements and/or differences) that deal
with the analysis of stiffened shell
configurations have been modified in order to
account for laminated shell construction. These
codes do serve their purpose, and that is that
they are very good analytical tools. The purpose
of the present paper is to assess the
imperfection sensitivity of imperfect, laminated
thin cylinders, subjected to uniform axial
compression and torsion (individually applied).
Moreover, parametric studies are performed in
order to establish the effect of lamina stacking,
and of the length to radius ratio on the c¢ritical
conditions. As is well konwn the
imperfection sensitivity of systems (in this case
thin cylindrical shells) has been established (a)
through strict postbuckling analyses, (b) by
employing Koiter's{7) theory, and (e¢) through
nonlinear analyses of imperfect
configurations{1+8,15) of known imperfection
shape and amplitude. The methodology used in the
present study is based on the last approach and
is fully described in Ref. U48. All details
concerning mathematical formulation, solution
procedure and computer implementation can be
found in Ref. 48, Only a brief description is
included next, herein, for the sake of continuity
and clarity.

II. Governing Equations

The geometry and reference frame, including
sign convention, are shown on Fig. 1. The
governing equations are derived for an
orthogonally stiffened laminate, subjected to
eccentric in-plane loads and uniform external
pressure. The nonlinear governing equations
(equilibrium) and related boundary conditions are
derived from the principle of the stationary
value of the total potential and they are based
on Donnell-type nonlinear kinematic relations and
linearly elastic material behavior. Moreover,
the smeared technique is used for the
orthogonal stiffeners., Introduction of an Airy
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stress (resultant) function, F, defined below,
leads to the identical satisfaction of the two
in-plane equilibrium equations
Nex= Nxx * F,yyiNyy = FouxiNyy = Nyy = F xy (1)
where Nyy and Nyy are the applied in-plane loads.
With this, the field equations are the third
(transverse) equilibrium equation and the
(in-plane) compatibility equation. Both of these,
as well as the related boundary conditions, are
expressed solely in terms of w and F, and their
space-dependent deratives. These are:

(i) Equilibrium
b11F, yyxx * P21Fxxxx ~ b31F.xxxy *

A1 W, xxxx * d12Wxxyy * 2d13%W.xxxy *

+

2b13Fyxyyy + 2b23F,Xxxy - 2b33F’Xny

2d31w,xxxy + 2d32w,xyyy + 4d33w,xxyy +

D12F,yyyy * P22Faxxyy = P32F.xyyy *

d21W,xxyy * deaW.yyyy * 2d23W.xyyy *

+ F + Wo
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(ii) Compatibility

+

a11F,yyyy + a12F.xxyy = 213F.xyyy * P11%Waxxyy

bioW,yyyy * 2D13W.xyyy * 212F.xxyy * 222F,xxxx ~
ap3F, yxxx = D21Waixxxx * D22%Wixxyy * 2023W.xxxy
a13F,xyyy ~ @23Fxxxy * a33F.xxyy ~ P31Wixxxy ~

- = +
b32 w,ny 2b33 w’xxyy w,XX/R + w’xy (w’xy

o] o]
- 2 2 -
ZW,XY) Wy ox (W,yy + W,yy)/
0

w’yy(w'xx + 2w,xx)/2 (3)

where the ajj, bjj and d;j are the elements of
the matrices that relate reference surface
strains (e?j) and moment resultants M;jj to the
stress resultants, Nij, and the reference surface
changes in curvature and torsion, €ij (for
details see Ref. 48). 1In matrix form these
relations are:

{egj} = Lag 1 O )+ Dby ] deg ) ()
53 = [bg3dT (N33} + [d15] {xy3l (5)
where

lags] = [Ag51775 [byj] = [Ag;0710Bs ] (6)
and

[d;;1 = [Byj] [b33] - [Dij] M



2,
__ /
l 2
-
Ly N1
= N
f £,

Fig. 1. Geometry and Sign Convention

Note that [Ajj], [Bi3] and [Dyj] are the matrices
obtained from the usual lamination theory( and
smeared technique for the stiffeners(1v12 , when
relating stress and moment resultants to
reference surface strains and changes in
curvature and torsion.

Moreover, the boundary conditions (at x =
0,L) for the case of simple supports, and all
possible combinations of in-plane conditions, can
be written as (same designation and notation are

used, as in Horf(2)),

SS-1 W = 05 Mgy = Myys Ny = “Nyys Nyy = Nyy

SS~2 w = 0; Mgy = ;xx; u = const.; ny = Exy

85-3 W = 03 Myx = Myy; Nyy = ~Nyys v = const.( °)
SS-U w = 0; Myy = Myy; u = const.; v = const.
where Myy = -ENyy, and E represents the

eccentricity (distance from refgrence surface) of
the applied stress resultant Nyy and is positive
if in the positive z~-direction.

The above boundary conditions may be written
in terms of the dependent variables F and w. The
final form of only SS-3 boundary conditions is
shown herein for the sake of brevity.

88-3: 0;

P21F,xx * dyqWixx ~ b3qF,xy = Mgy +

D17 Nyx - = 0;

b31 Ny 5 Flyy
a22F,xx ~a23F,xy *+ bpiW.xx + 2bp3W,xy =

a1oNgx — ag3Nyy (9)
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III. Solution Methodology

The solution methodology is presented, with
detail, in Ref. 48, Only a brief description of
it is presented below, for the sake of
completeness.

The separated form, shown herein, for the
dependent variables w and F is used to reduce the
partial differential equations, Egs (2) and (3),
to ordinary differential equations.

K . s
wix, y) = Ao(x) +i§1 [Ai(x) cosi§l+ Bi(X) sinigl]
(10)
2K in in
F(x,y)= C_(x) +i§1 [ceo =gE+ b, (x) sin=ZY]

The initial geometric imperfection wO(x,y)
can also be presented in a similar form.

The above, 1is acomplished by first
substituting the expressions for w,F, and w9 into
the compatibility equation. Through
trigonometric identities involving products, the
compatibility equation reduces to a complete
Fourier series from i = 0 to i = 2k [this
justifies the need for using 2k in the expression
for F, as opposed to k, see Egs. (10)]. Use of
orthogonality reduces the compatibility equation
into (4k + 1) ordinary, nonlinear, differential
equations.

Next, the Galerkin procedure is employed in
connection with the equilibrium equation (in the
circumferential direction only). This leads to
the vanishing of (2k + 1) Galerkin integrals,
which yields (2k + 1) additional nonlinear,
ordinary, differential equations. Note from Egs.
(10) that the number of unknowns is (6k + 2),
which equals the number of equations. Moreover,
the boundary conditions, and the expressions for
the total potential and average end shortening
are also expressed in terms of the unknown
functions of position x, shown in Egs. (10).

Next, a generalization of Newton's
method(50), applicable to differential equations,
is used to reduce the nonlinear field equations
to a sequence of linearized systems. The
linearized (in the small increments) iteration
equations are derived on the basis that a
solution can be achieved by a small correction to
an approximate solution.

Finally, the linearized set of differential
equations is cast into a set of finite difference
equations.. These equations are solved by an
algorithm(51), which is a modification of the one
described in Ref. 52. A computer program has
been written for generating numerical solutions.

IV. Geometries Used in the Study

The studies reported herein, include
assessment of imperfection sensitivity and of the
effect of lamina stacking on the critical
conditions of four- and six-ply laminated
cylinders under axial compression and torsion



(individually applied). Moreover, the effect of
L/R-rafios on critical ‘loads is assessed for all
geometries. In all of these studies, the load
eccentricity is taken to be zero and the
boundaries are classical simply supported (SS-3).

The configurations used in the studies
represent variations of two symmetric (with
respect to the midsurface) geometries for which
experimental results are reported in Ref. 53.
They consist of four-ply laminates, I-i and of
six-ply laminates, II-i, both using different
stacking sequences. For both groups five
stacking sequences (i = 1,2,...5) are employed.

First, the common properties of the
orthotropic laminae (Boron/Epoxy; AVCO 5505)(53)
are:

2.0690 x 108 kN/m2 (30 x 100 psi)

Eqq
(11)
0.1862 x 108 kN/m2 (2.7 x 100 psi)

il

E2p
Gipo= 0.0448 x 108 kN/m2 (0.65 x 106 psi) vqp=0.21
Furthermore,
R = 19.05 em (7.5 in.) (12a)
and the length, L, is varied so that
L/R = 1,3 and 5 (12b)

The ply thicknesses (hy - hy-q) and the total
laminate thickness for each group are:

I-i; hg~hyp-q = 0.013462 cm (0.0053 in.) (13a)

h = U(hg-hy-q) = 0.05385 em. (0.0212 in.)

and II-i; hy-hy-1 = 0.008975 cm (0.003533 in.)
h = 6(ng=hy-1) = 0.05385 cm (0.0212 in.)  (13b)

Note that for both groups (I-i and II-i),
the radius to thickness ratio is 353.77.

For each group, the five stacking
combinations are denoted by I-i or II-i, i =
1,2,..5 and they correspond to
I-i: 450/-450/-450/450; 1-2: 450/-450/450/-450;
I-3=-[I-2];I-4: 909/60°9/300/0°;

I1-5:00/3009/60°/90° (14a)

II-1: oo/uso/—uso/—d50/45°/0°
II-2: -450/450/-450/450/-450/1450
11-3: -[II-2] (14b)
II-4: 900/720/540/360/189/0°
II-5: 0°9/189/369/540/720/90°

Where the first number denotes the
orientation of the fibers (strong orthotropic

direction) of the outermost ply with respect to
the x-axis, and the last of the innermost.
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Geometries I-1 and II-1 are symmetric with
respect to the midsurface and identical to those
employed in Ref. 53. Geometries 1-2,3 and 1I-2,3
denote antisymmetric, regular (hy-hy-1= constant)
angle-ply laminates, Finally, geometries, I-i,5
and II-4,5 are completely asymmetric with respect
to the midsurface.

For each load case, different imperfection
shapes are employed, which are:

(a) for uniform axial compression

(a) for geometries I-i (i = 1,2..5)

o - intX ny

w (x,y) = Eh sin T oS ~¢
for geometries II-i (i= 1,2,..5) (15)
wo(x,y) = gh (-cos 2%5 + Q0.1 sin E% cos 2% ) (16)

Note that the first one, Eq. (15), denotes a
symmetric shape, while the second one,” Eq. (16),
an (almost) axisymmetric shape.

(g) for torsion

(a) for L/R = 1

I-i: wo(x,y) = 0.6235 gn[—(sinﬂ§ - (172)
% sini%z) cos 2% + (sin 3%5 - % sinﬂgé) sinﬂ% ]
II-i: wo(x,y)= gn[-0.5831 (sinﬂ% - %sinigz)cosﬂ%
+ 0.5479 (sin 2%5 - % sin 3%5) sin 2] (17b)
(b) for L/R = 2 and both groups
wo(x,y) = t¢h [-0.5368 (sin E%— %31 5%5) cos 9%
+ 0.6710 (sin2%§ - % siné%E) sinll ] (18)
(¢) for L/R = 5 and both groups
wo(x,y) = En[-0.417 (sin E% - % sin 355) cos E%
+0.694 (sinf® - Lsin 2E) in B+ (19)
0.833 (l3sin 32% - % sin éﬂ%) cos 2%]

For this load case (torsion), the
imperfection shape is taken to be similar to the
linear theory buckling mode(54) ., These shapes,
Eqs. (17)-(19), represent some average of the
modes of the various configurations (the modes
are very similar for all configurations).



V. Results and Discussion

The results for all configurations are
presented both graphically and in tabular form.
Each group, though, is discussed separately.

Table 1 presents critical loads (limit point
loads-uniform axial compression) for geometries
I-i and three values of L/R (1,2 and 5). The
imperfection shape for this group is symmetric,
Eq. (15), and the amplitude parameter is varied
from a small number up to two (wOmax/h = g).
These results are shown on Figs, 2-4, It is seen
from these figures that for L/R = 1 and small
values for & (& < 0.75), the weakest
configuration corresponds to I-2,3 (regular
antisymmetric angle-ply laminate), while the
strongest configuration is the asymmetric I-5
(except for a very small range of extremely small
£ - values). But, as L/R increases, I-2,3 yield
the weakest configurations for virtually all
g-values. Moreover, for L/R > 2 the order of
going from the weakest to the strongest
configuration is I-2,3, I-1,I-4 and I-5. Note
that asymmetric stacking may be compared to
eccentric positioning of the orthogonal
stiffeners in metallic shells.

TABLE 1. CRITICAL LOADS; UNIFORM AXIAL
COMPRESSION (I-i GEOMETRIES)
Nix in lbs/in (wave No. at Limit Pt)
Geo—
metry] £ L/R = 1 L/R =2 L/R =5
0.05 - 145.6 (6) -
0.10 | 130.7 (9) - 153.7 (4)
I-1 }0.50| 118.9 (9) 136.0 (6) | 147.7 (W)
1.00 | 104.5 (9) 123.0 (6) | 135.9 (i)
2.00 67.1 (9) 98.3 (6) | 121.0 (W)
0.05 - 138.8 (6) -
0.10 ] 126.7 (9) - 145.3 (&)
1-2,30.50 ] 115.1 (9) 130.0 (6) | 140.2 (&)
1.00 98.6 (9) 118.7 (6) | 129.0 ()
2.00 61.3 (9) 92.2 (6) | 111.4 (4)
0.01 - 283.1 (8) -
0.05 - 232.0 (8) | 254.4 (5)
0.10 | 189.9 (12) - -
I-4 | 0.50} 130.7 (11) 178.0 (8) | 211.5 (5)
1.00 86.8 (11) 137.2 (8) | 187.7 (5)
2.00 46,1 (10) 90.0 (8) | 153.4 (5)
0.05 - 233.3 (8) ] 292.9 (5)
0.10} 183.2 (11) - -
I-5 10.50 | 146.3 (11)} 191.0 (8) | 268.3 (5)
| 1.00 97.5 (12)] 150.0 (8) | 239.0 (5)
2.00 48.0 (11)] 109.5 (8) | 194.0 (5)

Symmetric Imperfection, Eq. (15).
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Fig. 2. Critical Conditions for I-i Geometries;
Uniform Axial Compression; L/R = 1
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Fig. 3 Critical Conditions for I-i Geometries;
Uniform Axial Compression; L/R = 2

Table 2 presents critical loads (uniform
compresson) for geometries II-i. The results are
similar to those for group 1 (geometries I-i) but
with one exception; geometry II-1 is among the
strong configurations, while I-1 is among the
weak configurations, especially for higher L/R
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Fig. 4 Critical Conditions for I-i Geometries;
Uniform Axial Compression; L/R = 5§

ratios (see Figs. 5-7 and 2-4). The reason for
this is that the II-1 geometry has 0° plies on
the outside and inside of the laminate, which
increases its stiffness in the axial direction.

The results, for this group, are also
presented graphically on Figs. 5-7. Fig. 5
contains results for L/R =1. No results are
reported (limit points could not be found) for &
> 1.0. This implies, that for this L/R value and
g > 1 the load-deflection curve does not exhibit
limit point instability, but only stable response.
For L/R 2 2, the picture changed and limit points
are found. Note from the three figures, Figs.
5-7, that as L/R increases the imperfection
sensitivity of all configurations decreases (the
curves do not fall as sharply as they do for L/R
=1).

It is worth noticing that for L/R £ 2, there
are many crossings of the curves and it is not
easy to identify the strongest or the weakest
configuration (which is g-dependent). On the
other hand, at L/R = 5, the strongest
configuration is II-5 and the order of going from
the strongest to the weakest is, II-5, II-1,
II-4%, 11-2,3. As expected, the + U450
antisymmetric laminate is not the best layup for
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resisting axial compression. In this case also,
it is observed that the imperfection sensitivity
decreases with increasing (L/R)-values.
Furthermore, in all cases, the weak
configurations do not seem to be as sensitive as
the stronger ones. The drop in value for the
critical loads is very pronounced for geometries
I1-1, II-4, and II-5 (see Fig. 7) as £ increases,
while the drop is much more moderate for
geometries II-2 & 3.

Table 2. CRITICAL LOADS; UNIFORM AXIAL
COMPRESSION (II-i GEOMETRIES)

N:;in 1bs/in.(wave No. at Limit Pt)
Geometryl £ L/R = 1 L/R =2 L/R =5
0.100 231.7 (12| 244.86 (8) 255.6 (5)
II-1 0.50] 120.9 (11)] 171.3 (8) 219.4 (5)
1.00 63.4 (10)| 112.5 (8) 182.7 (5)
2.00) - 58.4 (7)) 128.2 (5)
0.100 133.5 (9) 140.5 (6)] 150.8 (4)
I1I - 2,3 0.500 120.7 (9) | 134.6 (6) 147.8 (4)
1.00 87.2 (9) | 114.1 (6) 136.2 (4)
2.00 44,7 (8) 72.6. (6)] 111.4 (W)
0.1  177.7 (10)] 211.3 (8)] 227.0 (%)
II -4 }0.500 101.7 (10) 157.0 (8)] 199.3 (5)
1.00 57.9 (10) 108.7 (7)) 171.0 (5)
2.00) - 56.8 (7)) 128.8 (5)
0.10, 173.5 (1) 199.5 (7)) 275.0 (5)
1I-5 0.50 124.0 (10) 191.3 (7) 261.7 (5)
1.00 66.7 (10)] 139.0 (7) 227.9 (5)
2.00 70.4  (7)] 168.4 (5)

Axisymmetric Imperfection, Eq.

(16)
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Fig. 5. Critical Conditions for II-i Geometries;
Uniform Axial Compression; L/R = 1
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Fig. 7 Critical Conditions for II-i Geometries;
Uniform Axial Compression; L/R = 5

Table 3 presents critical loads for
geometries I-i subjected to torsion. The results
are also presented graphically on Figs. 8-10.
The reader is reminded that the imperfection
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shape for this load case is similar to the linear
theory eigenmode (see Ref. 54) and is
L/R-dependent. Regardless of the shape, the
imperfection parameter, £, is equal to wysy/h.
For all L/R values, the I-1 geometry seems to be
the weakest one. On the other hand, geometry I-5
yields the strongest configuration. For L/R = 1
the I-2,3 configurations seem strong, but as L/R
increases they become weaker by comparison to the
asymmetric configurations. If torsion were to be
reversed the strength of the I-2,3,
configurations would remain unchanged (the role
of I-2 and I-3 would be interchanged), while the
asymmetric configurations could change for the
worse. The reason for this expectation is that
for positive torsion, tension is expected along a
direction making a positive angle with x-axis
(for isotropic construction it would have been =
459). The fibers are placed from 0° to 90 or
from 90° to 0° in the various layers of I-5 and
I-4. Thus, the tensile unidirectional strength
of the fibers is utilized. If the torsion is
reversed, these same fibers would tend to be in
compression and this would imply that I-4 and I-5
are weaker for negative torsion than for positive
torsion., Of course no mention is made of the
effect of the (negative torsion) imperfection
shape. This could be a totally separate study.
Along these lines, note that the I-1 geometry
(see Ref. 54) is stronger when loaded in the
negative direction than in the positive
direction, provided that the imperfection shape
is similar to the positive torsion buckling mode.

Table 3. CRITICAL LOADS; TORSION
(I - i GEOMETRIES)

-2
Nxy in lbs/in(wave No. at Limit Pt.)

Geo-
metry £ L/R =1 L/R =2 L/R =5

0.1 55.34 (15) | 35.32 (11) [ 21.00 (T)
I-1 0.5 45.36 (15) [ 31.57 (11) | 19.43 (T)

1.0 43,62 (15) | 28.32 (1) [ 18.01 (7)

0.1 78.90 (13) | 46.4  (9) | 24.91 (6)
I-2 0.3 73.16 (13) - -

0.5 66.36 (13) | 41.81 (9) | 23.15 (6)

1.0 - 37.89 (9) ] 21.57 (6)

0.1 79.34 (13) | 46.36  (9) | 24.84 (5)
I-3 0.3 73.481 (13) - -

0.5 66.50 (13) | 41.84 (9) | 23.08 (6)

1.0 - 37.96 (9) | 21.52 (6)

0.1 56.69 (16) | 44,18 (12) 29.81 (8)
I-5 0.5 45.91 (15) | 38.75 (12)] 27.16 (8)

1.0 39.51 (14) | 34,22 (12) 24.74 (8)

0.1 84,83 (16) [ 66.49 (12)] 42.91 (8)
-5 0.5 64.20 (16) ] 56.91 (12)] 38.50 (8)

1.0 46,79 (15) | 48.72 (12)] 34.27 (8)




100 —

(lbs/in)

x¥
[4)]
(@]

2

—N

Fig. 8 Critical Conditions for I-i Geometries;
Torsion; L/R = 1

100

>I<v (ibs/in)
3

—®

Fig. 9 Critical Conditions for I-i Geometries;
Torsion; L/R = 2,

541

50 T =TT T T T T

40—\ .

3 \\
N 1—23

N
i
/

|

o] 05 1.0

Fig. 10 Critical Conditions for I-i Geometries;
Torsion; L/R = 5.

Table U4 presents critical torques for
geometries II-i, The results are also presented
graphically on Figs. 11-13. The conclusions are
very similar to those for geometries I-i. There
is one important observation, though, derived
from the comparison of the two groups. Since
both groups have the same total thickness (0.0212
in.) and radius (7.5 in.) use of more layers
(from four to six) increases the load carrying
capacity for the antisymmetric configurations
(I1-2,3 versus I-2,3), but it decreases it for
the asymmetric configuration II-5 (it can even be
said for II-4). The comparison between II-1 and
I-1 is not valid, since II-1 contains two
00-plies (outer and inner), while I-1 has no such
plies.

When the curves (see Fig. 8 and 11)
terminate at £ = 0.5, it means that no limit
point could be found for higher E-values.

Moreover, it is seen from the generated data
that (a) both groups are not as sensitive to
initial geometric imperfection, when loaded .in
torsion, as they are for the case of axial
compression, and (b) the imperfection sensitivity
decreases (for this load case also) as the
(L/R)-value increases.

Finally, experimental results are reported
in Ref. 53, for geometry I-1, L/R = 2, and simply
supported boundaries. The comparison between
theoretical and experimental values can only be
qualitative, for both load cases. Ref. 53 does
not provide information concerning the
imperfection shape and amplitude. The
experimental results are:



I-1 ¢

L/R = 2): =

Nyx = 105 1bs/in; Nyy = 26.5/in
cr cr

The theoretical predictions can be found,

graphically, in Figs. 3 and 9.
TABLE 4, CRITICAL LOADS: TORSION
(II-i GEOMETRIES)
—~4
Nyy in 1bs/in (wave No. at Limit Pt)
Geo- )
metry £ L/R =1 L/R = 2 L/R =5
II1-1 0.1 53.54 (18) | 38.49 (13) | 25.50 (9)
0.5 43,49 (17) | 31.74 (13) [ 23.10 (9)
1.0 40,15 (17) | 27.17 (13) | 20.92 (9)
0.1 82.46 (14) | 48.25 (9) | 26.17 (6)
0.3 73.194(13) - -
I1-2 0.4 69.76 (12) - -
0.5 - 42.43 (9) | 24.50 (6)
1.0 - 37.31 (9) 23.00 (6)
0.1 82.12 (13) | 48.25 (9) | 26.22 (6)
0.3 73.07 (13) - -
II-3 0.4 69.69 (13) - -
0.5 - 2,45 (9) | 24.55 (6)
1.0 - 37.40 (9) 23.06 (6)
0.1 57.13 (16) | 84,11 (12) | 29.69 (8)
I1-4 0.5 44.23 (15) ] 37.73 (12) ] 27.36 (8)
1.0 37.46 (15) | 32.54 (11) | 25.29 (8)
0.1 81.19 (16) | 63.61 (13) | 41.96 (8)
11-5 0.5 56.42 (16) | 52.33 (12) | 38.10 (8)
1.0 42,23 (14) | 41.38 (13) | 34.51 (8)
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Fig. 11 Critical Conditions for II-i Geometries;

Torsion; L/R = 1.
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Torsion; L/R = 2.
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Fig. 13 Critical Conditions for II=i Geometries;
Torsion; L/R = 5.

VI. Conclusions

A number of important conclusions can be
drawn from the obtained results. Recognizing,
though, that the employed configurations cannot
possibly cover all values and variations for the
geometric parameters (L/R, R/h ratios,



imperfection shapes, ete), the structural
parameters {(material properties, numerous
lay-ups, number of plies etc) and boundary
conditions, then these conclusions should be
considered only as observations and not
necessarily as universal, in applicability.

Among the the most important observtion one
may list the following:

(1) Under axial compression, some laminated
geometries can be ‘as sensitive to initial
geometric imperfections as isotropic geometries
are (very sensitive). On the other hand, some
are not as sensitive.

(2) Under torsion, laminated geometries are
less sensitive to geometric imperfections than
under compression. This is also true for
isotropic geometries.

(3) Regardless of the load case, the
imperfection sensitivity of the eylindrical shell
decreases with increasing (L/R)-values.

(4) Lamina stacking (symmetric, antisym-
metric, asymmetric) does affect the critical
loads. The stronger geometries are more
sensitive to initial geometric imperfections than
the weaker ones. This is true for both load
cases.
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