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Abstract

The paper describes a procedure of modelling
the dynamics of elastic systems in the presence of
geometric nonlinearities caused by large dis-
placements of the structure. The formulation of
the problem of modelling the dynamics of elastic
structure systems is presented in a general form,
starting from the variation principle defined on a
variable domain with a variable contour, which 1is
a results of geometric nonlinearity.

In the further procedure of approximative mo-
delling of the system, use has been made of the
fact, already well-known in practice, that dynamic
systems having an elastic structure behave like
slightly nonlinear systems, where the small para-
meter method is used in a modified form. There is
also a complete algorithm of synthesis of the re-
duced dynamic model of an elastic structure system
for the case of large displacements.

I. Introduction

The procedure of synthesis of the dynamic mo-
del of an elastic structure system accompanied by
geometric nonlinearities, as described in the pa-
per, has been conducted in three stages. The first
consists in forming a variation principle for the
elastic structure under large displacements, that
is, with a variable domain and a variable contour
defined by the displacements of the structure. This
approach to the consideration of the structural
dynamics of elastic systems gives a nonlinear
matrix formulation of the dynamic model of the
system, which is, without introducing certain as-
sumptions, practically useless for further analysis.

The basic assumption, already well-known and
accepted in engineering practice, is that the geo-
metric nonlinearity of a system does not change to
a high degree the character of its oscillation,
i.e. theoscillations of the system remain of appro-
ximately harmonic form. Here is introduced the
assumption of slow-varying amplitudes and phases
with time. To obtain a system of nonlinear ordinary
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differential equations which determine the ampli-
tudes and phases of system modes the authors make
use of a modified variant of the small parameter
method.

Since the procedure of applying the small para-
meter method is extremely difficult in case of
large-sized systems, that is, those having a Targe
number of generalized coordinates, a procedure of
approximative reduction of the system must be de-
veloped first, as described in reference [1]. This
procedure makes it possible to synthesize the dy-
namic model of the system with larger steps of nu-
merical integration.

11. Synthesis of the Nonlinear Dynamic
Model of an Elastic Structure

In the procedure of synthesis of the dynamic
model of an elastic structure for the case of oc-
currence of large displacements, i.e.geometric
nonlinearities, a start is made either from
Hamilton’s principle or the principle of the mini-
mum of total potential energy. In the first variant,
the functional whose variation is sought consists
of three terms, i.e. the work of external volume
and surface forces, potential energy of elastic
deformations and kinetic energy due to the total
displacements of the structure. If the principle of
the minimum of total potential energy is applied,
the Tast term does not exist explicitly in the
functional, but it is necessary to include the iner-
tial load as well in the total volume forces acting
on the structure.

For the case of occurrence of geometric nonline-
arities only, the stress-strain relation is still
subject to Hooke’s law, and therefore the potential
energy due to elastic deformations may be written
in the known form

U = %,v/(ox-ex *oyey + ..t TZX-YZX)dV (N

where o_,..., T__  are stress components, and
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Exsnees Yoy strain components. The work of total

external volume and surface forces, including



inertial forces due to the displacements, may be also
expressed in the known form

1 > 1 >
w=-2-f§-udv+7fF-'GdA (2)
v A

where E is the vector of total volume forces, F
the vector of external surface forces, and U the
radius vector of the elastic displacements of an
elementary mass of the elastic structure in a body
axis coordinate system. Let us suppose that the
elastic properties of the material extend over the
whole volume of the body. If there are large dis-
placements of the elastic structure, the integra-
tion domain and its contour are changed in posi-
tion with time, and it is therefore necessary to
introduce, in the expression for the total poten-
tial energy variation, some additional terms which
correspond to the variations of the above domain
and its contour.

If the following symbols are introduced

U= z{U‘dV

w=Juav+ Suran (3)
v A

the total potential energy variation may bewritten
in the form

8T = §( /(W‘-U’)dV) +68( fw"dA) (4)
V+8V A+SA
or in the following expanded form
s=Jom-vu)av + Jowrda +
v A
+](W‘-U’)<Sn dA + fv(w"-ﬁ)an dA (5)
A A

The additional terms of expression (5) on the sur-
face of contour A of the domain V refers to the
variation of the domain and its contour.

The variation of the normal én is a result of
displacement, i.e. a variation of elastic displa-
cements of the structure. The first two terms of
relation (5) correspond to the conventional linear
theory, which disregards the influence of large
displacements. The third and fourth terms refer to
the domain variation and contour variation due to
an arbitrary variation of the normal én.

If the displacement of the domain and its con-
tour is equivalent to the displacement of the
structure itself, then it is possible to write out
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the variation of the normal onto the elastic
domain contour in the form

> >
= Su-n

dn = Su

n

(6)

Upon introducing the matrix relations which
define the relations between the elastic displace-
ment of an arbitrary elementary mass and node dis-
placements, as well as relations between strains,
that is, stersses and node displacements, given in
the form

{u} = [NJ{q} {e} = [B]{q} <{o}=[C][B]{q}, (7)

where {g} - vector of node displacement, {u} -
vector of elastic displacement of an elementary mass
of the body, {e} and {o} vectors of strains and
their corresponding stresses, relation (6) will
then have the following form

sn = {5q}T[N}T{n}, (8)

where {n} denotes the vector of the normal with
respect to the axes of the appropriate coordinate
system of the body. The fourth term of expression
(5), considering the first term of relations (7),
is given in its final matrix form

waw'ﬁ)andA - {5q1T[0(6)] {a) (9)

where the matrix [Q(¢)] assumes the following form

[Q(¢)] = 21- A/-[NJT{n}{V}T({n}M}T[N})dA (10)

Relation (10) defines the additional matrix of
rigidity which is a result of geometric nonlinea-
rities. The matrix coefficients are proportional
to the external surface forces acting on the stru-
cture observed. In the case of the action of a
time-nonvarying load {4}, or if it is an arbitrary
function of time, the additional matrix of rigidity
is a constant or time-dependent matrix. In the gi-
ven cases this matrix does not make the dynamic
model of the elastic structure nonlinear, which is
very important for the further analysis of the
model itself.

Before we begin to consider the third term of
expression (5), let us determine the magnitude of
volume forces arising from inertial loading. The
assumption is that the observed elastic body moves



freely through space, where the mentioned motion
is described by the motion of the appropriate co-
ordinate system of the observed body and by elas-
tic displacements in relation to the body axis
coordinate system.

Without going into details of obtaining the
following relation, it is possible to express the
volume load, due to the arbitrary motion of the
appropriate coordinate system of the body defined
by the vector of translational speed {V} and the
vector of angular speed {w}, in the form

- 2Ry = T+ NG+ [Fo)] V) +
+ 2[F(w)][N]{G} + [6(w)] {r} + [R]{w} + (1)
+ [G(w)][N]{q}

where the above-mentioned inertia matrices are
given in the form

0oz -y 0 -w w

z y
[Rl = |~z o «x Flw)] = W, -,
y -x 0 oy oy 0
(12)
(wy + wz) Wy Wy wy W,
[Gw)] = | o, w, - (0% + wf) by, @,
Wy W, O, W, —(wi-kw;)

Considering relations (2), (3), (5) and (11),

we can obtain the following form of the third term
of relation (5) as follows

Jo-uyen da =
A

a3’ (([04(R)] = [p(a)] - [(V

[04(a)](a} - [Dg5(a)] (A1),

w)])Ha} - (13)

where the matrices are given by the relations
[0,(R)]= 5 Af{NJT{n}{RO}T
[0,(a)] = 5 I[NJT{nM{q}T[B]T[CJ [8] +

+ ofq} [6 w)H 1) dA (14)

[0, (V,0)] - f T peiy” + TR

+ T [6()] T+ @ [R]T) da

o4t =, Jo []T{n}{q}T[F(w J1[N] A
[Dg(a)] = ”fo[NJ {n}Hq}'[N] dA

The vector RO represents the vector of external
volume forces.

Relation (13) defines the additional nonlinear
terms of the system which are a result of geome-
tric nonlinearities. A1l the matrices given in
expressions (14), which are dependent on the vec-
tor of node displacements of the structure, rep-

resent their linear function.

The first two terms of relation (5), after
being expanded by means of expressions (7) and
(11), receive the final form

vfaU' v = (sq}' [K] {q}

Joue dv = (sqt (10} + (T(V.V,0,0)3 + (15)
v

+ [E(w,0)]{a} + [E(w)]{q} + [E]{a))

Jsu" da = {sq} {Q}

A

where the coefficient matrices are given in the
form

f 8]"

Q. = Vf[ 1R} v

C][B] dv

€] = - pr[Nﬂm dv
[E(w)] = —zvf O[N] T[F(w)][N] v (16)

—fo{NlT([G(w)l + S [Fw)]) [N av
-pr[N]T({\'I} + [F(w)]{V} +

[E(w,d)] =

{T(v Vo @)}

LI ha 1

H

+ [ (w’w)_] {Y‘})

«Q} = AI[N]T{¢} dA

On the basis of relations derived here, the
variational principle corresponding to relation
(5) may be written in its final form, where the
equilibrium conditions have the following matrix
nonlinear form
)44} +

(-[E] + [Dg(a)]){a} + (-[E(w)] + [Dy(a

+ (K] - [E(wsw)] - [Q(e)] - [04(R)] +

,w)] ){q} =

(17)
+ [0,(a)] + [Dy(v

= {0} + Q) + (T(V,T,0,0)) -
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The dynamic model of the elastic structure
system, given by relation (17), is nonlinear and
therefore extremely unsuitable and complicated for
further analysis, on which basis one can conclude
that it is, in the given form, practicallyuselless
for the case of large-sized systems. However, the
text below develops an approximative algorithm to
analyze the nonlinear dynamic model obtained,
which is based on the character of behaviour of
real structures.

As it is well known, real structures behave,
in the case of large deflections of a wing, appro-
ximately equivalently to the behaviour found in
small displacements, i.e. a system of structure
with Targe displacements may be considered as
slightly nonlinear. It is on this assumption that
the further presentation of this investigations is
based.

If the given assumption is to satisfy the form
of system (17) completely, it is also necessary to
satisfy the following condition of coupling the
external dynamics of the body axis coordinate sys-
tem and the structural dynamics itself, which con-
sists in the fact that the motion of an airplane
does not exert an essential influence on the change
in system parameters, but only on the particular
integral which represents the structure deflection
under the action of primary inertial lToad. This
assumption is well known in practice.

The first step in the algorithm of analysis of
the dynamic model of an elastic structure system,
as given in relation (17), consists in determining
the particular integral of the system which cor-
responds to the linearized model of system (17)
for the case of small displacements. Such a line-
arized model, already quite usual in practice, is
obtained when all matrices of the system are de-

fined for the state {q} = 0, as well as {V} = const.

and {w} = 0, that is, when the transient inertial
forces equal zero.

To the dynamic model, synthesized in this man-
ner, it is necessary to apply the procedure of dy-
namic reduction of system [1]. This considerably
simplifies the further procedure, since the redu-
ction procedure substantially lowers the order of

the system.
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In addition to the given assumptions, system
(17) must also satisfy the assumption on a stow
influence of geometric nonlinearities and primary
inertial load upon the change of phase and ampli-
tude characteristics of the system. The slower the
influence, the larger step may be used in the
numerical integration of the system of conditional
differential equations, which will be given in the
further text of this paper. Practical considera-
tions show that the amplitudes and phases may be
regarded as constant during the time which corres-
ponds to the period of the slowest mode. With
structures characterized by greater rigidity the
integration step may be taken as the time corres-
ponding to the product of several slowest periods
of the system.

The given procedure is used to simulate the
parameters of the system, which actually means the
simulation of changes in the phases and amplitudes
of the reduced modes, and not a direct simulation
of the motion of the system itself, which may be
considered as practically unfeasible since the
system parameters must be calculated in real time
several hundred or even thousand times more than
usual, because the largest integration step must
be adopted as several times smaller than the smal-
lest period of the system, which is practically
impossible of accomplishing for multidimensional
systems, that is, for high frequencies. The proce-
dure of a previous reduction of the system may
facilitate the application of the above procedure
to a certain degree, but the outcome is relatively
small when compared with the procedure described
in this paper.

II11. Reduction of the System

Let the linearized form of system (17) be given
in the matrix form

-[E]{q} + [K]{q} = {Q b +{ar . (18)

If the procedure of dynamic reduction of the
system as applied to the dynamic model (18), we
obtain the following transformation of generalized

coordinates of the system
{q2} = -L{q1} (19)

where the matrix [L1] is given in the form



L] {— ;H , (20)

while matrix [L°] represents a solution of the
Riccati matrix algebraic equation

[A21] - [AZZJ[L‘} - [L’J[A12][L‘] =0

where the system matrix and the external forces

(21)

matrix are rearranged in the following manner
- |
I -
0 |-E1K
___+___
I 0

The reduced dynamic model of the system given
by the dynamic model (18) may also be written in
the form

{ay} = -[A, ] [L14d, + [B]({0 ) +10}) . (22)

The dynamic model given by expression (22) is
the reduced dynamic model of an elastic structure
under the action of an external reduced load, where
the total damping of the system is equal to zero.
Consequently, the integral of the system which
represents its motion may be found in the form of
sum of the particular and general integral of the
system which satisfy the given initial conditions.

Let us go back to the system given by expres-
sion (17). The above reduced dynamic model (22) is
the first approximation to the integral of system
(17). In this paper we are not going to spend time
discussing the probiem of convergence of this
procedure, considering that in practice, as well
as in reference [2], it may be achieved provided
that the given convergence conditions are satisfied
in the reduction of the system, which may be done
by a procedure of scaling the system matrices.

IV. Approximation of the System by the Method

of Small Parametar

We must first seek the approximate integral of
system (17), knowing the integral of system (18),
i.e. of the unreduced linearized model of system
{17).
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Let us assume that the particular integral,
which is a result of the action of external volume
and surface forces, remains approximately unchanged
due to the effects of geometric nonlinearities. This
assumption suits the case of external loading of
small intensity, but with such initial conditions
that produce large oscillations of the structure.

If the above conditions are not satisfied, it
is then possible to expand the particular integral
of the system into a Fourier series. When looking
for the integral of system (17), the particular
integral may be determined by the variation of
amplitudes and phases of its modes.

Let us suppose that the solution of the
systems (17) and (18) is given in the form

{q(t)}

A [R()] L)} La(t)r=[A ]{a(t)} . (23)

Thaking that the matrices [R(t)] and [o(t)] are
diagonal matrices of system modes, that is a time
derivative of the system modes, given in the form

[(t)] =[sin(w;t + a;(t)] (24)
fo(t)] =[C°S(wit +a;(t)]

and at the same time retaining the equivalent form
of the solution of system (17) as well as in the

case of system (18), we obtain a conditional matrix
differential equation for the variation of amplitu-
des and phases in the form

[o(t)]TF(t)]{a(t)} + [a(t)] {F(t)d=0  (25)

where, by substituting the secondof relations (23)
in system (17), we obtain the second matrix dif-
ferential equation for the variation of system
amplitudes and phases in the form

M(@)] [A,][w] ((-[u] [0(t)] - [a;][R(]LE(E)1+
+ [o(t)]{f(£)}) +[P(a.w)] [A ][0(t)] [w] LF(t)} +

. (26)
+[K(g,0,0,%6R)] [A T [R(D)]{F(1)} = (@
where
M(q)] = -[E] + [Dg(a)]
[P(as0)] = -[E(w)] + [Dy(a)] (2

[K(qﬂ*),‘:’svﬁ(bsR)] = [K] ’[E(wﬂ:))] - {_Q((b):l -

-[Dy(R)] + [Dy(@)] + [D5(V.w)]



@ = {0y} + Q) + {T(V,V,0,0)} . (27)

System (26) may be written out in its final form
as follows

{F} = [o(t)]{q,}

@)} = -[F(6)] )] 1o )

0, = (M) [A] D)7 (@ -

. , (28)
- [K(gsw,0,V59,R)] [A T [()] {F (1)} -

-[Plasw)] [A ] TO(t)] [w] {F(t)}) +
+ Tl [o(t)]{f(t)}

An integration of system (28) gives the values
of theamplitudes and phases of the system modes,
which are variable with time.

Since the functional matrices of system (28)
are of an oscillatory type, at first sight the
integration of the system appears to be extremely
difficult, considering the small periods of the
system’s high-frequency modes. However, it may be
shown practically that the integration process
converges even with a multiplied step of integra-
tion, considering that the corresponding integrals
outside the diagonals decrease with an increase in
the difference of frequencies of the relevant
modes, and the terms around the diagonals remain
as predominant values. The same conclusion may be
reached by considering the coefficients of matrix
[AO], which corresponds to the eigen-vectors of
system (18). It is easy to find out that the
integration step which corresponds to the period
of the slowest mode of the system is a satisfactory
step of integration for the system (28).

The existence of convergence in the integration
of system (28) may also be mathematically shown
and proved, which cannot be done in this paper,
considering the character of the problem discussed
here and the allowable space for the presentation.

In the case of interaction between the aileron
and the wing for an aileron deflection §(t),
corresponding to the axis of rotation which is
defined by an ort §, the angular velocity vector
{w} must be replace by the vector

{w} > {w} + &(t) {5} .
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The boundary conditions must be also satisfied
at all aileron supports. The angle of rotation
§(t) is defined as the angle of rotation between
the body axis coordinate system of the aileron
and the appropriate coordinate system of the
underformed wing.

V. Conclusion

The described procedure of synthesis of the
nonlinear dynamic model of an elastic structure
system, as well as its approximation as aslightly
nonlinear system, make it possible to give a good
description of the structural dynamics of wings
having a great aspect ratio, for which the linear
theory does not always offer satisfactory soluti-
ons. On the other hand, the complexity of the
given procedure, compared with the procedures
that are generally used in linear theories,
restricts the possibility of its application to
the systems whose behaviour really corresponds to
slightly nonlinear systems. In the opposite case,
the integration of system (28) is not practically
possibie since the solutions obtained do not
converge. In this case it is not possible toapply
the procedure described here.
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