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Abstract

The paper presents a structural model of
rotating blades. The model can deal with
straight blades and curved blades having any
planar curvature. In addition any distribution
of the structural properties along the blade and
any distribution of loads along the blade can be
dealt with. The model itself is nonlinear and
satisfies the conditions of small strains and
moderate elastic rotations. Special effort has
been devoted in order to obtain a consistent
model with a minimum number of simplifying
assumptions. Besides dealing with the nonlinear
homogeneous set of boundary conditions, there is
also a capability of analysing cases of elastic
restraints at the root, which are very common in
practical cases of blades. The solution is
obtained by using Galerkin method., Two
techniques are used in order to calculate the
cross-sectional resultant forces and moments
along the blade: the first method is based on
differentiation of the expressions of the
displacements along the blade, while the second
method is based on integration of loads along the
blade. In order to present the capabilities of
the model numerical examples are presented and
discussed.,

I. Introduction

Rotating blades appear in many aeronautical
applications. These applications include:
propeller blades, helicopter blades, jet engine
blades and others. The analysis of these
rotating blades is a very complicated task where
different aspects are still not fully understood
and deserve further thorough investigation in the
future. The reason for the complexity of the
analysis of rotating blades is the fact that this
behavior is the result of the coupled influence
of: structural, inertial and aerodynamic
contributions. Each of these contributions is
very complicated by itself and the interaction
between the three makes the problem even more
complicated. In analysing the behavior of blades
it is important that each of the contributions
will be described by a model whose accuracy is
identical to the accuracy of the other two
contributions., If this is not the case than an
unbalanced model is cobtained. The results of
such models are questionable.

The purpose of the present paper is to
present a consistent model of the structural
contributions to the blade behavior. This model
is restricted to the case where, from a
structural point of view, the blade can be looked
upon as a slender rod. Cases of low aspect-ratio
blades, which should be modeled as shell-1ike
structures, are not considered here.

During the years, significant effort has been
devoted in order to derive appropriate models
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of the structural behavior of rotating blades.

It is beyond the scope of this paper to present a
Titerature survey of this effort and only sources
which are important to the presentation of this
paper will be mentjoned. The well known work of
Houbolt and Brooks! was a stepping stone in the
research of blade dynamics. In this outstanding
research a consistent derivation of the structural
model was presented, including solutions for
special cases. The model of Ref. 1 has been used
by many investigators in order to solve the
complete aeroelastic behavior of blades.
Moreover, many of the improved models which
appeared since 1958, were in fact extensions of
the structural model of Houbolt and Brooks.

Although the model of Ref. 1 includes
nonlinear effects, the approach to nonlinear
contributions is not accurate enough. The
weakness of the model concerning the nonlinear
effects is explained in detail in Ref. 2.
Therefore, this model becomes insufficient when
nonlinear effects become important.

During the years - as a result of introducing
new designs, new manufacturing techniques and new
materials - blades have become more flexible.
Therefore the importance of nonlinear effects has
grown to the point where consistent nonlinear
structural models have become essential. As a
result of this necessity, different nonlinear
structural models of blades have been developed.
Such a model is presented for example in Ref. 2
and compared with other models which exist in the
Titerature., A survey of different models and the
importance of nonlinear structural effects in the
case of helicopter blades appear in Ref. 3. In
order to obtain a consistent nonlinear model,
most of the derjvations include some kind of an
ordering schemeZ,3, According to this
technique, each variablie and unknown of the
problem obtains an order of magnitude. This
order of magnitude defines the limits of the
model since when an ordering scheme demand ceases
to exist, then the accuracy of the results is in
guestion. Most of the nonlinear modeis,
including the one which will be described in the
present paper, are restricted to the case of
small strains and moderate elastic rotations.
Most of the engineering problems fall within the
1imits of these restrictions. The main advantage
of using the ordering scheme is the fact that the
decision what terms should be ignored becomes
very clear. A1l the terms of certain order of
magnitude and lower orders are retained in the
equations while terms of higher orders are
neglected.

The ordering scheme became a very powerful
tool in obtaining consistent models. The very
good agreement between the theoretical



predictions and experimental results, as
presented for example in Ref. 4, is a proof of
the capability of this technigue. But on the
other hand, the ordering-scheme technique has
also certain weaknesses. It seems that one of
the major problems is associated with the
mathematical differentiation with respect to the
spatial coordinate along the bliade axis. In
order to apply the technique, assumptions
concerning the influence of differentiation on
the ordering scheme should be adopted. Such
assumptions are described in detail in Refs. 2,4
where it has been assumed that differentiation
with respect to the nondimensional spanwise
coordinate does not cause any change of the order
or magnitude. Although such assumptions are very
good in certain cases, they may cause increasing
errors in others. In the model which will be
described in the present paper the use of such
assumptions, concerning the spatial
differentiation, is avoided.

While a few years ago most of the blades had
a straight {or almost straight) elastic axis,
this is not the situation nowadays. The new
generation of propellers, the prop-fans®, have
thin blades with curved elastic axis. Modern
helicopter blades have swept tips and there are
other rotating blades which have curved axis.

Most of the available structural models in
the past were confined to the case of a straight
elastic axis. Reference 6 presents a relatively
early effort to deal with blades having an
elastic axis which is not straight. But the
structural model of® is over simplified and
does not include different effects that may be
important in the case of curved blades. It is
interesting to note that during the last years
different structural models for special kinds of
curved rotating blades have been derived. These
are the curved blades of Darrieus Wind Turbines.
References 7 and 8 present such models and in
the results of the theoretical model exhibit very
good agreement with experimental results of small
models.

The purpose of the present paper is to
present a nonilinear structural model of rotating
blades. This model can also deal with blades
having curved elastic axis. The model is very
general and it can deal with any distribution of
structural properties and loads along the blade.
In addition, special effort is devoted to
describe different combinations of boundary
conditions which may exist in different practical
applications. The analytical model is solved by
using Galerkin method. In order to present the
capabilities of the present model a few numerical
examples will be presented and discussed.

The paper presents the results of a long
lasting research during the last few years. The
results of the different stages of this research
are summarized in different reports and papers
and it is not possible to present all these
details in the present paper. Therefore, only a
general view of the model and its capabilities
will be presented here. The interested reader
may find more details in papers and reports that
will be mentioned in the text.
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I1. Description of the Structural Model

Geometrical Description

As already mentioned above, the derivation
deals with blades which, from a structural point
of view, can be looked upon as slender rods. In
the case of slender rods a significant
simplification of the problem is obtained by
applying the Bernoulli-Euler hypothesis. As a
result of this hypothesis the three-dimensional
problem becomes a one-dimensional one. It is
possible now to describe the deformation of each
material point of the rod as a function of the
deformations of the elastic axis. Therefore the
blade is represented by its elastic axis.

The elastic axis of the blade is shown in Fig.
1. xp, yp and zpg represent a cartesian

THE ELASTIC AXIS
N AFTER THE DERFORMATION

THE ELASTIC AXIS
BEFORE THE DEFORMATION

X2

Fig. 1. The Elastic Axis of the Blade Before and
after Deformation.

system of coordinates which is used to desgribe
the elastic axis before the deformation. Xp,

Yp and 2y are unit vectors in the directions

of the coordinate lines xg, yg and zg,
respectively. The derivation is restricted to
the case of planar curved rods, since this is the
situation in most of the practical cases and
since the planar case presents a significant
simplication in the equations. If necessary, the
model can easily be extended to include also
cases of three dimensional curvature. x is a
curved coordinate Tine along the elastic axis.
The geometry of the undeformed elastic axis is
defined by the functions xg(x) and yg(x).

The point x=0 is the blade root which is
positioned at the origin of the system of
coordinates (xg=yp=zg=0). The length of

blade is L and so the other tip is positioned at
xg(L) and yg(L).



At each poin} algng the elastic axis a triad
of unit vectors &, & and &, is defined.
ey 15 tangent to the &lastic axis, €y is
perpendicular to @, and lies in the Xg-yp
plane, &, is normal to this plane.

_ The blade_is acted upon by distributed force
p and moment q, per unit length of the blade.

As a result of these Joads the blade deforms.
The deformation of each point of the elastic
axis is described by the displacement components
u,v,w in the directions &, &y, &,,
respectively. In addition there is also a
rotation 6 about the elastic axis. As a result
of this deformation the triad 8, &, &,

is transformed 1ntoAa new orthogonaY triad of
unit vectors: €y1, ©y1, 8,1, respectively

(see Fig. 1). The Toading vectors p and § are
described by their components as follows:

o) A

- A

P =Py’ Pyeyi TP (1a)

- A A A

q=0a8q " 9y8y1 T 9285 (1b)
The Equations of Equilibrium

In the derivation of the equations of
equilibrium a few assumptions are adopted. These

assumptions are outlined below:

a) As already mentioned above, the well known
Bernoulli-Euler hypothesis is assumed to
apply. According to this hypothesis plane
cross-sections of the blade which are
normal to the elastic axis before the
deformation remain plane after deformation
(except for very small deviations due to
warping) and normal to the deformed
elastic axis. In addition strains within
the cross-sections are neglected.

The derivation is restricted to the case
of small strains and moderate elastic
rotations. According to this assumption
strains and products of the elastic
rotations are negligible compared to
unity.

¢) It is assumed that the warping
displacements are small such that these
displacements are negligible compared to
typical cross-sectional dimensions.

y and z are crogs-sectional coordinates in
the directions €,) and €1 repectively.

It is assumed that for any cross-sectional
point ¥xy 1s negligible compared to

unity. Xy 1s the curvature of the
undeformed elastic axis. y is a cross
sectional coordinate in the ey

direction. 1In cases when this assumption
does not hold then Bernoulli-Euler
hypothesis becomes questionable too.

These four assumptions are used throughout
the derivation. At first, expressions for the
strains are obtained and then, using the well
known relations between stresses and strains in
the case of slender rods, expressions for the
stress components are obtained. Integration of

the stress components over the blade cross-
section yields the resultant cross-sectional _
force F and resultant cross-sectional moment M.
These resultants are described by their
components as follows:

A A A
F=pe,+ Ve * Ve, (2a)
- A A A
M=Me,* Myeyl *Me (2b)

P is the axial force, Vy and V; are the
shearing force components, My the torsional
moment, while My and M; are the bending

moment componenis. More details about all the
above mentioned stages may be found in Refs. 9
and 10.

Now the equilibrium equations (forces and
moments) for a small element of the deformed
blade are derived. These equations contain the
components of the cross-sectional resultant
forces and moments, the curvatures and twist
after the deformation, and the components of the
applied loads. By eliminating the shearing
force components, four equations of equilibrium
are obtained. The four unknowns are u, v, w and
6, but as is common in different rod analyses, u
is replaced as unknown by P. The detailed
equations are given in Ref. 9,

Boundary Conditions
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There are six boundary conditions at each
boundary point of the blade. The homogeneous
set of nonlinear boundary conditions is given by
the following equation:

P+ KyMz - KzMy =0 oru=0 (3a)
Vy—TMy: _Mz,x“ KZMX—ZTMy—qZ=0 orv=0 (3b)
VZ—TMZ=My,x+ KyMX—ZTMZ—qy=0 orw=0 (3c)

M, =0 or b =0 (3d)

MZ =0 or V,x=0 (3e)

My =90 or w’x=0 (3f)

Ky, Kz and T are the curvatures and twist at

t%e boundary point. The conditions on the right
side of Egs. (3a-f) are the geometric conditons
while those on the Teft side are conditions
concerning forces and moments.

In most of the aeronautical appiications of
blades there is one edge where the resuitant
force and moment are zero and this edge is
denoted the blade (free) tip (x=L). The blade
is attached to the hub at the other edge which
is denoted the blade root (x=0). But there are
also special cases of different boundary
conditions like for example the blades of the



Darrieus wind turbines’»8,

Equations (3a-f) present most of the
combinations of boundary conditions of rods which
can be found in the Titerature. But in many
practical cases of blades, the boundary
conditions at the root are more complicated. In
these cases the blade is not clamped to the hub,
but instead there is an elastic rotational
restraint there. This condition can be modeled
as a certain moment at the blade root (and not
zero as in Egs. (3d-f)). The magnitude of this
moment is determined by the loads' distribution
along the blade. In many cases the loads along
the blade are very sensitive to the rotations at
the blade root. Such cases are solved by a
careful coupling between the solution of the
equilibrium equations and the conditions at the
blade root.

Further discussion of the problem of boundary
conditions appears in the next sections.

Calculating the Resultant Forces and Moments

The resultant forces and moments along the
blade are calculated by two methods. In the
first method, the expressions for the resultant
forces and moments which are obtained during the
derivation of the equations of equilibrium, are
used. The expressions contain derivatives of the
unknowns. It is well known that differentiation
of the approximate expressions of the unknowns
may increase the errors associated with the
resultant forces and moments.

The second method is based on integration of
the loads along the blade. The integration
starts from the free tip and ends at any cross-
section of the blade where the resultant force
and moment are calculated. The integration
includes all the nolinear effects. Since this
method does not include differentiation it is
expected to yield more accurate results compared
to the first method.

II1. Method of Solution

The system of equilibrium equations is solved
by using Galerkin method, According to this
method the unknowns (nondimensionalized for
convenience) are described by the following
series:

° N
Ny
v= v/l = jzl VjFVj (4a)
. N
we=wl= 7§ w P, (4b)
k=1
N
b = p.Fb (4c)
Ly B
: 2.4 N
P =PLYEY = TP FP (4d)
m=1 m

FVj, FWk, Fb1 and FPp are pre-determined
shape functions that satisfy the boundary

conditions that must be satisfied by v, w, 6 and

P, respectively. E is a representative modulus
of elasticity while b is a typical cross-
sectional dimension. The unknowns become the
coefficients vj, wg, #1 and py. The

numbers of theSe unknowns are Ny, Ny, N4 and

Np, respectively. In cases where an elastic
restraint exists at the blade root, special
approach is needed. After a few trials it was
found that an efficient method to cope with this
problem is when a limited number of terms in the
series takes care of the inhomogeneous boundary
conditions while the other terms satisfy an
homogeneous set of boundary conditions. An
example of using this approach is presented in
the next section.

IV. Results and Discussion

The purpose of this section is to present the
capability of the model which has been described
in the previous sections. Two examples will be
presented. The first example deals with a blade
which is clamped at its root and free at its
other boundary point. This blade does not rotate
and is loaded by a uniform distributed static
load. The second example presents the case of a
rotating blade where distributed inertial and
aerodynamic loads are acting along it. Since the
main purpose of the paper is to present the
structural model, only a very simplie aerodynamic
model will be used.

Example No. 1

The elastic axis of the blade is shown in
Fig. 2. This is a swept back blade and therefore

xB/L

03 04 05 Oﬁ 07 08
T

0.3

0.4

05
-0.2 -

yB/L 0.8

324

0.7
0 i ] 0.8

o
04 X 0.9

06+ 3

Fig. 2. The Elastic Axis of the Blade and its
Curvature (Examples 1,2).

negative values of yg are used. The blade is
swept by an angle of 36° at its tip (there is a
zero sweep angle at the root). Figure 2 also
presents the nondimensionalized curvature along
the blade. The structural properties are uniform
along the blade and are equal to:



4 4
EIyy/Eb =0.0417, EIZZ/Eb =0.0104,

4
GJ/Eb'=0.011, EIyZ=0

(5)

Elyy is the edgewise components of the bending
st1 frness (in the xg-yg plane), €1, is the
beamwise component %out of p]ane) and GJ the
torsional stiffness. It is assumed that the
tension center of the blade coincides with its
shear center.

The blade is acted upon by a uniform
distributed force of "“gravity type" (this means
that the force inertial-direction and magnitude
are not changed as a result of the blade
deformation). The distributed force acts in a
plane which is parallel to the yg-zg plane,

The ang1e between the Toad and the xp-yg plane
is 45°, The magn1tude of the Toad {per unit
1ength of the blade) is pg while the non-

dimensional value is denoted pg and is defined as

°
3,..4
follows: =p L"/Eb".
ow Pg Py /

The blade is clamped at the root and free at
the tip. Based on these boundary conditions the
shape functions of Egs. (4a-d) have been chosen.
FVi and FWi are identical and are the natural

ées of vibration of a clamped/free uniform
straight beamil, FH1 are the torsional
modes of vibration of a fixed/free uniform
straight beam. FPp are given by:

PPy = 1-af

(6)

FP

m sin(n{m-1.5)(1-x/L)]

"

m>2

A1l the shape functions are normalized such that
their maximum value is unity. Ny and Ny (see

Eqs. 4a-d) have been chosen equal to three while
Ng and Np are equal to five, The convergence

of the coefficients of the series which describe
the unknowns is presented in the next Table. All
the coefficients have been normalized with respect
to the first coefficient in each series. The load

is equal to pg=0.0274 and all the results of this
example will refer to this Toad.

i V.i/Vl W;‘/Wl (b.l/bl Di/Dl

1 1 1 1 1

2 0.0132 0.0166 -0.0574 -1.036

3 0.000168 0.00113 -0.142 -0.0386
4 -0.0899 -0.00616
5 ~0.0564 -0.00370

Table 1. The Coefficients of Example 1 (initial
- -choice of shape functions).

It can be seen that the convergence of the series

which describe v and w is very good. v and w
themselves are shown in Figs. 3, 4, respectively.
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Fig. 3. The Spanwise Distribution of the Non-
Dimensional Edgewise Displacement
Component (Examplie 1).
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Fig. 4. The Spanwise Distribution of the Non-
Dimensional Beamwise Displacement
Component (Example 1).

As expected from Table 1 these transverse
displacement components are dominated by the first
mode. In Figs. 3,4 the nonlinear results are also
compared with the results of a Tinear model where
all the nonlinear effects are neglected. While

the influence of nonlinear effects on v is small,

i
there are changes of up to 1674 in w due to the
influence of nonlinear effects.

The convergence of the series which describes
the elastic angle of rotation about the elastic

axis, 6, is not as good as in the series of v and

w. Although the first term in the series is
greater by an order of magnitude compared to all
the others, the convergence among the other terms
js poor. The difficulty is understood if one
examines ¢ as described by Fig. 5 (the broken
line). At the blade root region this angle is
positive and is the result of the torsional moment
component, My. At the outer portion of the

blade, this angle is negative and is mainly the
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Fig. 5. The Spanwise Distribution of the Angle of
Rotation about the Elastic Axis
(Exampie 1).

result of the transverse displacement of the
curved blade. It is very difficult for the shape
functions which have been chosen to describe the
relatively drastic change of behavior at the root,
and this is the reason for the convergence
probiems. This probiem will become more
significant when the distribution of the torsional
moment, My, will be discussed.

The distributions of the nondimensional
bending moment components along the blade are
shown in Figs. 6 and 7. (The nondimensional
components

DIFFERENTIATION
INTEGRATION
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1 J

0 0.5 1.0 o

»

Fig. 6. The Spanwise Distribution of the Non-
Dimensional Beamwise Bending Moment
Component {Example 1).

° ° °

Mot M,

dimensional components by EbalL). They exhibit
the typical bending moment distribution of a
cantilevered beam. In the figures the results of
the two methods of calculating the resultant
moment, differentiation vs. integration, are
compared. As can be seen, the agreement between
the two methods is very good.

are obtained after dividing the

In Fig. 8 the spanwise distribution of the

Mx (x100)

Mz(x100)

-05

DIFFERENTIATION
INTEGRATION

Fig. 7. The Spanwise Distribution of the Non-
Dimensional Edgewise Bending Moment
Component (Example 1).
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Fig. 8. The Spanwise Distribution of the Non-
Dimensional Torsional Moment (According
to the results of Table 1 - Example 1).

torsional moment My is presented. The problems
which have been discussed previously concerning
the angle 6, appear here in a more significant
manner, It turns out that it is very difficult to
describe the sharp change at the blade root by
using the shape functions which have been chosen
to describe 6. In order to overcome these
problems another series for 6 has been tried. In
this series only the first three shape functions
of the previous series are retained. The fourth
and fifth shape functions are replaced by the
functions which are shown in Fig. 9. These shape
functions are described by the following equation:

Fé1 = /-\(Ba4*Ca3 + Da2 + a)e—ka
(7)
8ar2n—am—l
B=D+2;C=-(3+*20) ; D =
Zami I—?ami
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Fig. 9. The Fourth and Fifth Shape Functions of
the Improved Series for 6 (Example 1).

For the fourth shape function: op=0.2; A=24.358,
k=5. For the fifth shape function: ap=0.3;
A=20.582, k=5. These last two functions satisfy
the necessary boundary conditions and in addition
they are also zero at the free tip. Their
influence is concentrated at the blade root and
their purpose is to describe the sharp changes at
the blade root, while having very small influence
at the outer region of the blade. By choosing
appropriate values of ap, A and k, shape
functions which are appropriate for different
distributions of curvature may be obtained.
the improved series, the column for $3/6] in
Table 1 is replaced by the following vector: 1,
0.102, -0.00203, -0.0745, -0.288. It can be seen
that the convergence of the three first
coefficients is very good. The last two
coefficients help to improve the results at the
root region. The spanwise distribution of ¢ for
the improved series is shown in Fig. 5. The
results of the nonlinear case are compared with
the resulits of a Tinear model. It can be seen
that § presents the largest differences between
the linear and nonlinear model. It also can be
seen that the differences, between the results of
the improved series (for ) and the previous

Using

series, are concentrated near the blade root. A
significant improvement in predicting My is
obtained by using the improved series for ¢§. As

can be seen from Fig. 10 the agreement between the
results of the differentiation and integration
methods is excellent and they practically
coincide. The results of the differentiation
method while using the Tinear model are also
presented, There are deviations of up to 70%
between the Tinear and nonlinear results,

In Table 1 the results of the axial component
of the cross-sectional resultant force are also
presented. But since this component is very small
and unimportant in the present example, further
discussion is not presented.

Example No, 2

This example deals with a hovering rotor. The
rotor has four identical, equally spaced, curved
blades and it rotates with a constant angular
velocity 0=150 rad/sec. The geometry of the
elastic axis of the blades is identical to the
geometry of the blade of the previous example (see
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Fig. 10. The Spanwise Distribution of the Non-
Dimensional Torsional Moment (According
to the Improved series — Example 1).

Fig. 2) and its length 1.5 m. All the blades are
connected to the shaft with a zero offset. The
boundary conditions at the blade root are such
that the blade is clamped with respect to the
edgewise displacement v, and the angle ¢ is also
zero at the root. There is a flapping hinge at
the root (the direction of this hinge coincides
with yg). The blade rotation about this hinge

is restrained by a linear torsional spring the
stiffness of which is 28470 N.m/rad. This spring
exerts zero moment when the blade lies at

Xg-yg plane.

The blade has a uniform distribution of the
structural, inertial and aerodynamic properties.
The structural properties are equal to:

2 2

6 . - 4 .
E1,=0.8859x10° N m" ; EI, =0.8859x10" N m";

. 4
EIyZ=0 ; GJ=0.9x10° N m

2 (8)

The tension center of each cross-section coincides
with the cross-sectional shear center, mass center
and aerodynamic center.

The mass per unit length of the blade equals
2.25 kg/m. The cross-sectional components of the
mass moment of inertia are:

3

- . -5 . _
MIyy=0.4219 10 “kg m; MIZZ=O.4219 10" kg m; MIyz‘O

(9)

The aerodynamic chord equals 0.15 m while the
pitch angle of each cross—section (relative to the
xg-yg plane) equals 8°. As indicated before a
simple aerodynamic model of the loads along the
blades has been chosen. A uniform inflow velocity
is assumed which is equal to 9 m/sec. The lift
and drag at each cross-section are calculated by
applying two dimensional properties of the airfoil



(tip effects are neglected).
is given by

The drag coefficient

2

CD = 0.01 + 0.015 CL (10)

The air mass density in ail the calculations is
equal to 1.23 kg/m3. Since the blade rotates
about the flapping hinge, there is a rigid body
rotation degree of freedom in addition to the
elastic deformations. This rotation is denoted by

g. The shape functions for v are identical to
those of the previous example (NV=3). The series

for w also includes three terms. The first shape
function in this series is the first mode of
vibration of a clamped/free uniform beam. The
coefficient of this term is determined according
to the magnitude of the flapping moment at the
blade root. The second and third shape functions

in the series which describes w are the first and
second modes of vibration of a simply-supported/
free uniform beam. The shape functions Fé1 and
Fop are identical to those of the first example.
F¢3 of the present example is 1den§ica1 to Fb4 of

the previous one, The series for P is identical
for the two examples.

The hovering case presents a "steady state" of
equilibrium. Because of the highly nonlinear
nature of this phenomenon, its very difficult to
obtain this steady-state by direct static solution
(the solution procedure tends to diverge). It has
been found that the easiest way of obtaining this
solution is by starting from some initial
condition and applying an integration with respect
to time until the steady state is obtained?.

When the natural physical damping forces and
moments are added to the model it is quite easy
(although time consuming) to obtain the solution.
In Fig. 11 the behavior of the coefficients

steady
state
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Fig. 11. The Behavior of the Coefficients along
the First Revolution and the Steady State
Values (Example 2).
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along the first revolution of the rotor is
presented. A1l the initial conditions (states and
velocities) are taken equal to zero. In Fig. 11
also the final steady state values of the
coefficients of the series are presented.

In Fig. 12 the nondimensional displacement

I
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<
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0 0.5 10a

Fig. 12. The Spanwise Distribution of the Non-
Dimensional Edgewise Displacement
Component (Example 2).

°

component v along the blade is presented. This
displacement is mainly the result of the high
centrifugal forces which tend to straighten the

blade. w is presented in Fig. 13. In addition to

1.5

1.0 ¢

1
0.5
Fig. 13. The Spanwise Distribution of the Non-

Dimensional Beamwise Displacement
Component (Example 2).

the displacement w there is also a rigid body
rotation of 0.58° about the flapping hinge. As a
result of the presence of the elastic restraint at
the root, this rotation together with the elastic
angles of rotation about the flapping hinge (as
presented by the second and third terms in the

series for w), determine the flapping moment at



the blade root.
the coefficient wy in the series for w.

This flapping moment determines

The elastic rotation 6 is shown in Fig. 14.
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Fig. 14. The Spanwise Distribution of the Angle
of Rotation About the Elastic Axis
(Example 2).
The trends in the behavior of ¢ are similar to
what has been discussed in the first example. The

large negative torsional moment at the root region
cause a steep increase in the negative elastic
angles of rotation. At the outer region the
magnitude of this negative rotation is decreased
as a result of the increased transverse displace-
ment which tend to contribute positive values of
p. The distribution of the nondimensional axial
component of the resultant force along the blade
is presented in Fig. 15. The results of the
series are compared to the results of integration
of the Toads along the blade. The agreement
between the two methods 1is good.
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Fig. 15. The Spanwise Distribution of the Non-
Dimensional Axial Component of the
Resultant Force (Example 2).

The distribution of the resultant moment
components is shown in Figs. 16-18. As in the
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Fig. 16. The Spanwise Distribution of the Non-
Dimensional Torsional Moment (Example 2).
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Fig. 17. The Spanwise Distribution of the Non-
Dimensional Beamwise Bending Moment
Component (Example 2).
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Fig. 18. The Spanwise Distribution of the Non-
Dimensional Edgewise Bending Moment
Component (Example 2).

first example, there is a relatively shape increase
in MX near the blade root, due to the large

curvature in this region. The agreement between
the differentiation and integration methods is



good.
of M.
y

Good agreement is also obtained in the case
M2 exhibits an interesting behavior.

mainly the result of the centrifugal contributions,

this moment tends to disappear at the blade root
(the moment due to inertial contributions becomes
zero while only aerodynamic contributions are
left). While the integration results are probably
accurate, the differentiation results exhibit
increasing deviations in certain cross-sections
although the nature of the behavior is identical
in both methods. Increasing the number of terms

in the series for v will probably improve the
agreement.,

V. Conclusions

A general nonlinear model of the structural
behavior of rotating blades has been presented.
The model includes curved blades having any
distribution of planar curvature. Any distri-
bution of structural properties along the blade
can be dealt with. In addition, to the classical
nonlinear combinations of boundary conditions, it
is also possible to analyse cases of root hinges
and elastic restraints at the blade root.

Galerkin method is used in order to solve the
equilibrium equations. Special treatment is
needed in order to deal with the different kinds
of boundary conditions. By using Galerkin method
an efficient numerical scheme is obtained.

The resultant moment distribution along the
blade is calculated by two methods: the first
method is based on the structural expressions and
includes differentiation of the elastic
displacements along the blade, the second method
includes integration of the loads along the
blade. Both methods include nonlinear effects.

Two numerical examples have been presented.
It has been shown that the behavior of curved
blades is much more complicated than straight
blades. Comparison between the two methods of
calculating the resultant moment distribution
shows good agreement in most of the cases. This
good agreement is obtained only if appropriate
shape function in the Galerkin series are used.

It seems that curved blades may have many
beneficial effects from: aerocelastic, aerodynamic
and acoustic points of view. But special care
must be devoted in order to take all the aspects
of curvature into account,.
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