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Abstract

The separation of boundary-layer flow from a
wing or in a diffuser usually defines the limit
of efficient operation, so it is important that
the onset and development of separated flow can
be predicted. The calculation of the interaction
of the shear layer close to the aerofoil with the
external inviscid flow has offered an attractive
alternative to solving the Reynolds—averaged
Navier Stokes equations for attached flow: the
interaction method is much faster. 1In this paper
it is shown how the interaction approach can be
extended for use with separated flows and the
development of a practical method is described.
The calculation of the shear layer through the
singularity at separation is accomplished by
using an inverse mode. Beyond separation the
empirical definition of a new family of velocity
profiles allows an integral calculation of the
shear layer to proceed up to the reattachment.
The solutions for the shear layer close to the
aerofoil are matched to the external inviscid
flow by a 'semi—inverse' method . A careful
examination of the stability of this method leads
to rapid convergence for separated and attached
flows. As an illustration the stall and post
stall behaviour of a two-dimensional aerofoil is
predicted and compared with experimental results.

I. Introduction

A limiting factor in the performance of an
aerofoil is defined by the stall at which the
flow separates from the upper surfaceof the aero-
foil and the 1lift force usually decreases with an
increase in the angle of incidence. An aerofoil
designer would like to be able to predict with
confidence the angle of incidence at which the
stall occurs and the lift and drag coefficients
at and beyond the stall, ie he would like to be
able to calculate the viscous effects for both
attached and separated flow. A recent survey
has indicated that for attached flows on aero-
foils the effects of viscosity can be estimated
by matching a calculation of the outer inviscid
flow with a calculation of the development of the
boundary layer close to the surface of the aero-
foil. However there appeared to be several
obstacles preventing the extension of this
technique to separated flows.

The first obstacle occurs at the separation
point, for an integration of the boundary-layer
equations with a specified pressure distribution
will encounter the singularity at the point of
separation and the calculation is unable to
proceed any further. Catherall and Mangler
first demonstrated for laminar boundary layers
that the singularity is not present if the boun-
dary layer equations are integrated in 'inverse
mode' for which the displacement surface is
specified and the gressure distribution is calcu-
lated.  East et al® used a development of

Green's lag-entrainment method and produced an
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integral formulation of an inverse method for
tubulent boundary layers.

The second obstacle is the integration of the
boundary~layer equations through the separated
region in which the velocitg profile has reversed
flow. Le Balleur® and Lock™ have developed two-
parameter velocity-profile families which can be
used to describe both attached and separated
flows. The inclusion of these velocity profiles
into the integral boundary-layer method can give
satisfactory predictions of the separated flow
over the surface of the aerofoil close to the
trailing edge.

The third obstacle is concerned with the
matching of the outer inviscid flow and a
separated boundary layer which no longer obeys
the classical boundary-layer approximations.

This difficulty is overcome by replacing the
equations describing the shear layer by some
higher order approximation to the Navier-Stokes
equations than the boundary-layer equations.
There are two popular methods for matching the
outer inviscid flow with the shear layer. 1In the
first, originally described by Bradshaw and
Mahgoub’, the flows are matched along some
arbitrary line, in the essentially inviscid flow,
which encloses the aerofoil and its associated
shear layers. This approach is more suited to
finite~difference solutions of the shear-layer
equations. In the second method the inviscid
flow is extended through the shear layer to the
surface of the aerofoil and to a convenient line
in the wake dividing the flows from the upper and
lower surfaces of the aerofoil by the 'deficit
formulation' as described by East™ and

Le Balleur . This approach is suited to integral
solutions of the shear layer.

The fourth obstacle is concerned with
obtaining convergence in the matching of the
outer inviscid flow with the inner shear layer.
For a 'direct scheme', in which the aerofoil
shape, with modified surface boundary conditions,
is specified for the inviscid scheme.and the
resulting pressure is used for the shear-layer
calculation, practical experience has shown that
severe under—-relaxation is required to obtain
convergence as the flow approaches separation.
The relaxation factor is obtained by numerical
experiments and cannot automatically be trans-
ferred to new calculations. As mentioned above
the shear-layer calculation in direct mode cannot
proceed past the point of separation so that it
is necessary to calculate the shear length in
inverse modg. The inverse shear-layer calcula-
tion can be matched either with an inverse
inviscid calculation (ie the pressure is speci-
fied and the shape calculated) to give a 'fully
inverse' scheme or with a direct inviscid calcu-
lation to give a 'semi~inverse' scheme. Follow-
ing Le Balleur® and Wigton and Holt™ the stab-
ility of these schemes is analysed by a Fourier
analysis. It is found that the direct scheme is



stable and can be made to converge for attached
flows but in general is unstable for separated
flows. The fully inverse method is stable for
separated flows but the relaxation factor is
inversely proportional to the size of the compu-
tational domain which results in slow convergence
for external aerodynamics where a large but
finite computing domain is used. The semi-
inverse scheme is stable for attached and
separated flows and the Fourier analysis gives
optimum values for the relaxation factor. The
relaxation factors takes different values at
points on the aerofoil and depends upon the state
of the boundary layer and the discretisation of
the aerofoil in the inviscid method.

The method of overcoming these difficulties is
illustrated by the calculation of the incompress-—
ible flow about a two-dimensional aerofoil upto
and beyond the stall. The restriction to
incompressible flow gives a linear problem for
the outer inviscid flow and allows a surface
singularity method to be used: this is described
in section III. The inclusion of second order
terms in the integral formulation of the shear—
layer equations and their solution in inverse
mode is described in section IV. The section
also describes the insertion of the two-parameter
velocity-profile family into the shear-layer
method. The 'semi-~inverse' method is described
in section V and the results of the stability
analysis for all three schemes are given. In
section VI the flow about a NACA 4412 aerofoil is
calculated up to and beyond the stall and the
results are compared with experimental measure-
ments taken recently at RAE!D and with the
measurements of Wadcock®".

II. Boundary Conditions for the Outer Inviscid
Flow

The calculation of flows with separation
should include the effects of higher order terms
in the matching of the outer inviscid and shear-
layer flows and in the calculation of the
development of the shear layer. The matching of
the flows including an approximation of second
order terms has been described in detail by Lock
and Firmin® and only a summary of the relevant
points is given here.

It is assumed that the flow field can be split
into two regions; an inner region described by
the Navier-Stokes equations (or some approxima-—
tion of these equations) and an outer region
described by the Euler equations, which for
irrotational, incompressible flow are approxi-
mated by Laplace's equation. If an integral
formulation is used for the shear layer then the
most attractive model for the displacement effect
of the shear layer is to apply transpiration at
the boundary surface. For this model the defini~
tion of the inviscid:flow must be extended from
the outer edge of the shear layer onto the sur-
face of the aerofoil and a convenient line in the
wake dividing the flows from the upper and lower
surfaces of the aerofoil. Following Lock and
Firmin® the new inviscid flow is called the
equivalent inviscid flow (EIF) whilst the name
real viscous flow (RVF) is reserved for the
physical flow. The boundary conditions for the
EIF are obtained by differencing continuity and
momentum equations for the EIF and RVF, ie the
'deficit formulation'.

The transpiration velocity is given exactly by
differencing the countinuity equation for the RVF
and EIF, then integrating the difference across
the shear layer, to give

= L4 *
Viw p.  dx {piwuiwaA} D
iw
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with 6: = "
Piwiv 0
distance along the surface, where suffices 1

and w indicate the equivalent inviscid flow and
conditions at the surface of the aerofoil

respectively.

It should be noted that SX is not a stream—

line of the flow, whereas the 'classical' dis-
placement thickness 6§ , defined by equating the

total mass flow in the EIF and RVF, is a stream-
line of the flow. Typically the difference
between GX and 5% is 1%, whereas the differ—

ence between GX or 5§ and the first order

definition of displacement thickness, which does.
not take account of pressure variation across the
shear layer, is larger (4 to 5% say).

By neglecting the small terms from the
integrated form of the difference of the normal
momentum equation for the EIF and the RVF, a
simple numerical approximation for the difference
in wall pressure between the EIF and RVF is
derived as:

AWV o ex(p + 53) )
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where «k* 1is the curvature of the displacement

surface. Thus the pressure calculated in the EIF

has to be corrected before comparison with

experimental values.

In the wake similar boundary conditions apply
on a convenient line dividing the flows from the
upper and lower surfaces of the aerofoil. The
displacement effect of the wake is given by a
jump, Av , in the component of velocity normal
to the wake and by analogy with equation (1) is
given by

Ll el ) G
Avi T P, dx {piuuiuéu} + o,, dx ETASTAR ] 3
iu i%

where suffix u refers to the side of the wake
developing from the suction side of the aerofoil
and £ refers to the lower side of the wake.

Fig 1 shows the pressure variation through a
normal section of the wake: the pressure varia-
tion in the EIF and the RVF are differeant. The
flows outside the wake are made the same by
placing a vortex sheet on the dividing streamline
in the EIF. By analogy with equation (2) the
pressure difference across the vortex sheet is
given by:
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are the curvatures of the upper and lower

displacement surfaces (taken as positive if the
is the

surface is concave upwards) and Kwk

curvature of the dividing streamline.
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Fig 1

The boundary conditions described above mean
that the flow at the trailing-edge is different
in the RVF and the EIF. Practical experience
tells us that in the RVF the pressures on the
upper and lower surface of the aerofoil approach
a common value at the trailing edge. However in
the EIF equation (2) indicates that there is a
jump in pressure at the trailing edge which is
given by

2

= * *
(8py )y [Kupiuuiu(su to

2

+ k¥%p, u,, (6% + 8 )]

LrigTint e L TE (5)
which is exactly the same value that would be
obtained from equation (3) and approaching the
trailing edge from upstream. Equation (5) is
taken as an expression of the 'Kutta' condition
for the EIF and it expresses the continuity of
vorticity through the trailing edge region. 1In a
surface-singularity method the 'Kutta' condition
can be explicitly satisfied by equating the bound
vorticity at the trailing edge of the aerofoil

with the vorticity in the wake: for inviscid flow
the bound vorticity is set to zero at the
trailing edge and all points on the dividing
streamline downstream of the trailing edge.

I1I. Outer Calculation: Inviscid Flow

Although the matching scheme will allow solu-
tions of the Euler equations to represent the
outer flow, for simplicity in this paper the
outer flow is assumed to be incompressible and
irrotational and is given by a solution of
Laplace's equation. The outer—flow problem is
now linear and a solution of the equivalent
inviscid flow is obtained without iteration.
Through Green's third identity the solution of
Laplace's equation can be expressed as a combina-
tion of fundamental solutions distributed on the
surface of the aerofoil. 1In two dimensions the
fundamental solutions are taken as sources and
vortices and this forms the basis of panel
methods. Some of the strengths of the sources
and vortices must be specified a priori whilst
the remainder are determined by satisfying a
proper set of boundary conditions. In a panel
method the aerofoil is approximated by an
inscribed polygon with N sides and the singu—
larity distributions are approximated by piece-
wise continuous functions defined on the panels
sides of the polygon). In practice the parti-
cular mix of sources and vortices, their degree
of approximation and the choice of appropriate
boundary conditions effect the stability and
accuracy of the resultant method.

A numerically stable scheme, developed by
Newling “, is produced if the source distribution
is specified as constant on each panel and the
vorticity is allowed to varying linearly. The
particular mix of sources and vortices is chosen
so that the source and vortex density on opposite
panels on the upper and lower surface are taken
as equal. This reduces the number of unknowns to
N + 1 of which N are determined by satisfying
a Neumann boundary condition at the centre of
each panel of zero normal velocity for inviscid
flow and non—zero normal velocity given by
equation (1) for the EIF. The final unknown is
obtained from the Kutta condition of smooth flow
at the trailing edge and is expressed by setting
the vorticity at the trailing edge to zero for
inviscid flow or by maintaining continuity of
vorticity in the EIF as described in the last
section.

The shape of the streamline from the trailing
edge is calculated by an iterative process. An
initial guess at the shape of the streamline is
split into panels and, by sweeping down the wake,
each panel is progressively aligned with the
local flow direction. In the wake the boundary
conditions for the EIF are represented by
constant source panels along the dividing stream—
line for the displacement effect and a linearly
varying vorticity distribution for the curvature
effects. The strengths of the sources and
vortices are derived from equations (3) and (4)
respectively.
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IVe Inner Calculation: Shear Layer

The direct form of the lag~entrainment method
given by Green , calculates the development of
the boundary layer with first order equations
from given initial conditions through a specified
pressure distribution. East et al® derived an
inverse form of the method by deriving a func-
tional relationship between the velocity gradient
and the slope of the displacement surface. An
inverse solution is found by solving this rela-
tionship with the momentum integral equation, the
entrainment equation and the lag equation for
entrainment. The first order boundary-layer
equations of Green' were first extended to
include higher order terms by Weeks and the
full equations are given in Ref 8.

Inverse formulations of the shear layer
equations as proposed by East et al” can only be
integrated if the correlation between the shape
factors H(8§*/8) and Hl((s - 6*)/9) does not

contain a minimum. Unfortunately this excludes
separated flows where experimental measurements
indicate that dHI/dH passes through the value

zero close to separation. Lock! has suggested a
rearrangement of the equations for the inverse

mode including the higher order terms which
removes this restriction. The equations are
formulated with the independent variable taken as
1

L ou, dx (plwulwéA)

iw iw

which is equivalent to the normalised transpira-
tion velocity, viw/uiw , rather than the slope

of the displacement surface. The full set of
rearranged equations are given below.

the source strength § =

The streamwise momentum integral equation to
second order is used in its original and simpler
form.

du
9 i - (F - b dw
ax =y - (HAE2 Mz)u. ax
iw
1 d 2
2 E;'{piwuiwfe} ®
Piw iw
Kk (8 + 8%) i-1] %
where f = +—2——-—-———-—— 0.072
8 H CT
EQ

and the equation can be reduced to standard form
by defining:

(X

C

= %C -

1 d 2
£ 2 dx {piwuiwfe} ‘
P, U,
iw iw

*
£

Some third order terms have been omitted from the
full equation and some assumptions have been made
about the velocity profile, but full details can
be found in Lock and Firmin'. The first
component of f represents corrections due to
the effects of curvature of the mean flow, whilst
the second component quantifies the effects of
Reynolds normal stresses. It should also be
noted that in the direct mode the development of
the boundary layer should be calculated through
the pressure gradient from the EIF whilst in the
inverse mode the pressure gradient in the EIF
will be found.

The rearranged form of the relationship
between the velocity gradient and the source
strength is

) duiw
(H+ 1)D ==~
iw
dH _dH
- ——_~1—s+%cg(1+;—mz)nl—n—_l—
dH di
12
S+ zm) (D)
di,; dH
1
where D = H - H ———'+ e M2 Hl +2—1 .
dH dH

The rearranged entrainment equation is
di - L % -2
Sl = ws-Llatmcr-cla-2d) @

and equations (6), (7) and (8) are integrated
simultaneously with the lag equation for the
entrainment given by

o Xu _
dx
du
4 ] iw
F(C,C) z(c) - c’$+(—— )
B Ty A+ )\, 9% Jgg
o Wiy 2(1+02M)
-2 d 1+ 0.075M 2T te2B ) 9
Yiw (1 + 0.14)

As described in Ref 4 extraneous influences on
the turbulence structure are embodied in the
coefficient A in the lag equation (9) and the
most important influence in this context is the
effect of longitudinal curvature on turbulence
structure. To take gecount of this effect X is

set to 1 + BR.l + %——Ri where Ri is the

'Richardson number' and an average value through
an equilibrium boundary layer is given approxi-
mately by

H

Ri = %(H+H1)§—_—l+ o.3$ (10)

wir

H

and BR is taken from Ref 4 as 7 on a convex

wall and 4.5 on a concave wall and R 1is radius
of longitudinal curvature.

The method is completed by the specification
of a correlation between H and Hl which can

be derived from the velocity profile. Previous
correlations were derived from a velocity profile
described by 'Coles' wake function

ooy - p(1 + cos ﬂ) (i

u 8

e
where 6 1is the thickness of the layer and in
the limit of infinite Reynolds number the inner

logarithmic law has collapsed to a slip velocity
of 1 = 2P at the inner edge of the layer. The

(d ~ Hl) relationship is illustrated in Fig 2 by

1y . =
curve l. In practice Green  found this H~ H

1
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relationship to be unsatisfactory and he artifi-
cially distorted the curve to give a better
account of the development of a boundary layer in
zero pressure gradient (see curve 2 in Fig 2).

In Ref 4 Green further modified the curve to
reproduce the development of attached boundary
layers in strongly adverse pressure gradients
(curve 3 in Fig 2). Rather than modify the

"~ Hl curve it now appears preferable to extend

the description of the velocity profile to
include these flows and separated flow so that a

truly universal H~H correlation can be

1

derived. The two parameter velocity=-profile
family of Lock provides a major step in this
direction.

The velocity profile is assumed to take the
form

8

u = 1+ ¢ log n - CZF(n) (12)
where n = y/8 and F(n) takes the form
F(n) = 1 4if 0< n € n* (13a)
n_-n* .
F(n) = f{m"} if n* < n<1 (13b)
and n* 1is zero for attached flows and defined

empirically for separated flows. Lock found
that a close fit to experimental profiles is
obtained if f 1is taken as Coles' wake function,

so that
£(8) = (1 + cos mg) (14)
= N~ n*
where £ T %

For the_empirical definition of n%*
Le Balleur suggested that it should be taken as
a function of of(= §*%/8) and that as o
approaches 1 (ie H approaches infinity) then

2.3 . (15)

Lock proposed a quadratic fairing of the
linear relationship implied in equation (15) to
the zero value of n* for attached flow.

n* «

The value of af(= 6*/§) is determined
directly by integrating the velocity profile to
give

@ = G + CyI (n*) (16)
1

where I;(n*) = n* + (1 - n¥%) [ £(E)dE -
0

By matching the velocity profile in
equation (13) to the law of the wall as n
approaches zero, Lock obtained C1 in terms of

o and the Reynolds number based on the displace-~
ment thickness and an equation connecting C1

and Cf « For given values of a and Re6 s a
Newton iteration was used to determine C1 from
its relationship with o and Re, . The skin

§
friction is then determined from the second equa-
tion and 02 follows from equation (16). The

velocity profile is then fully determined and H
can be determined by integration.
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The value of H follows from its definition

1
since
T S b W }
no= 2288 H{a 1} . (17)
The (H, Hl) relationship for Regy = 105 is
plotted in Fig 2 as curve 4.
l Symbot | Curve
........ 0
sol } ——— 2 ~

7.0
6.0
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5.0
wof
3.0

8.0 8.0

—
—

1.0 H 12.0

0o
Fig 2
For attached flows the (H, Hl) curve depends

upon the Reynolds number and pressure gradient
but for separated the curve is almost independent
of these parameters. Since we are coancerned
primarily with separated flows the variation of
the (H, Hl) curve with these parameters is not

included.

V. Viscous—~Inviscid Matching and Stability

Analysis

The inviscid and viscous calculations can be
matched by taking combinations of the direct and
inverse methods of calculating the inviscid flow
and the development of the boundary layer. Three
popular schemes are indicated in Fig 3, the
direct method, the fully inverse method and the
semi-inverse method. For flow involving separa-
tion of the boundary layer the direct method need
not be considered since it involves a direct
calculation of the boundary layexr through the
singularity at separation. In the inverse
calculation of the boundary layer an estimate of
the normalised transpiration velocity gives an

estimate of the velocity uzw in the equivalent

inviscid flow. The inverse boundary-layer
calculation can either be coupled with an inverse
inviscid method to give a fully inverse method or
with a direct inviscid method to give a semi-
inverse method. 1In the fully inverse method the

; PP . \
inverse inviscid method with u;, as boundary

condition gives a new value of the normalised
transpiration velocity and the cycle of calcula-
tion is repeated. 1In the semi-inverse method the
normalised transpiration, which was used in the
inverse boundary-layer calculation, is also used
as boundary conditions in the direct inviscid

1
method to yield another estimate, wu, , of the

iw
velocity in the EIF. The difference between the
two estimates of the velocity in the EIF,

v I
S P
iw iw
transpiration velocity and the two simultaneous
calculations are repeated.

is used to correct the normalised
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The converged solution of the matching problem
can be characterised by the normalised transpira-
tion velocity and the velocity distribution. The
stability of the various schemes (direct, fully
inverse and semi-inverse) is studied by examining
the behaviour of small perturbations s and u
of the converged values of the normalised
transpiration velocity S and the velocity U
in the inviscid flow and the boundary layer flow.
The small perturbations are represented by
Fourier expansions and the conditions, under
which a particular pair of methods is stable, are
determined. The apalysis follows the original
work of Le Balleur” as extended by Lock’ and
Wigton and Holt®,

Firstly examining the inviscid flow, the
normalised transpiration velocity S and velo-
city U almost coincide with the flow directions
normal to and along the wall, thus a perturbation
potential ¢ «can be defined by u = U¢X and

s = ¢y « For subsonic flow

(1-w). _ +¢ = 0 (18)

XX yy
with boundary conditions ¢y =s at y =0 and
uniform flow at infinity and where M is the
local Mach number.
The solution of equation (18) subject to the

boundary conditions is

¢ = celvxe—svy

where C 1is a coanstant, B8

is v/l—M2 and the
HBvy

solution involving e is discarded as it
does not give uniform flow at infinity. On the
surface of the aerofoil the perturbations in the
velocity and source strength are given by

u(x,0) = Uivé(x,0) and s(x,0) = -Bv$(x,0) thus

u(x,0)

- 3% 5(x,0) (192)
or
£ x50 = Fsx0 (19b)

which gives the relationship between the pertur-—
bations s and u for the direct and inverse
inviscid calculations.

For the boundary-layer equations a relation—
ship between the normalised transpiration velo-
city and the velocity gradient is given by
equation (7) so that in the direct mode

9 du

§ = -8B T dsc

+C . (20)

For the direct mode a small perturbation in the
velocity gradient produces a change in the source
strength given by

B6 du
S U__d.)-{— (21&)
whilst in the inverse mode the response of the
boundary layer to a small change in the normal-

ised transpiration velocity is given by

du

du _ _ L
dx 6

(21b)

w|n

Stability Analysis

1f the counverged solutions for the velocity
and normalised transpiration velocity are U and
S then at the nth iteration of any matching

scheme let S(n) and U(n) be the curreat value
of the normalised transpiration velocity and
velocity. 1In general different values for these
variables are obtained from the inviscid and
boundary layer calculations and these are denoted
by the superscripts I and V respectively. If
the errors in the normalised transpiration velo-

city at the nth iteration is denoted by s(n) s
then for the inviscid calculation equation (19b)
can be rewritten as

du 1 aut®

1
Udx T SHm T dx

I(n)
s

(22)

v
B

and for the boundary layer calculation
equation (21b) becomes

tau 1 a1 k) |,
U dx Uv(n) dx 9B ’
Eliminating the velocity U gives
R TAA A W i AR IC RS TR L O
UV(n) dx UI(n) dx ) 0B °
ceseee(24)

This general result is simplified for each of the
methods since either the normalised transpiration
velocity or the velocity can be equated for the
inviscid and boundary layer calculations.
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For the direct method the inviscid velocity is
used to calculate the development of the boundary

layer, ie UI(n) = UV(n)
tion reduces to

SV(n)

and the general equa-
_ 6Bv _I(n)
- $ .

The normalised transpiration velocity
resulting from the boundary-layer calculation
becomes the estimate for the inviscid calculation
at the next iteration, so

gI(nt1) _ 8Bv _I(n)

25
8 (25)
where = 9Bv/B is an amplification factor and
the method converges if ‘9%?11 < 1.

For the fully inverse method again the same
velocities are used in the inviscid and boundary
layer calculations, but now the normalised
transpiration velocity resulting from the inverse
inviscid calculation is used in the next itera-—
tion for the boundary layer calculation and the
general equation reduces to

V(n+l) g _V(n)
s 68 © . (26)
The fully inverse method converges if ;%E- <1

and the amplification factor is the recriprocal
of the value for the direct method.

For the semi-inverse method the same normal—
ised transpiration velocity is used for the
inviscid and boundary layer calculations and the
general equation reduces to the correction
formula first given by Le Balleur

v I
(n) _ (n) _ BB 1 du” _ 1 du
s S-S5 TEHurE Vax Tax @D
U U
where BBY___ can be considered as a relaxation
B6v + B
factor.

If the typical length of a panel in the
inviscid calculation is Ax then the highest
frequency contained in the Fourier approximation
is w/Ax . The amplification factor for the
direct method can be rewritten in terms of the
local discretisation and convergence is then
obtained if

BOw
BAxX

<1 .

(28)

The amplification factor also depends upon the
local state of the boundary layer as described by
B and © . For separating flows B 1is large
and Ax 1is decreased to improve the accuracy of
the integration of boundary~layer equations: the
amplification factor becomes greater than unity
and the direct method diverges.

For the fully inverse method the amplification
factor is the inverse of the factor for the
direct method. 1In general the method converges
for separated flows. However the stability of
the method depends upon the lowest frequency in
the Fourier representation and the amplification
factor increases as the computational domain is
extended.
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For the semi-inverse method the relaxation
factor also depends upon the state of the
boundary layer and the discretisation in the
inviscid method. The relaxation factor varies
throughout the field of calculation but is
calculated rather than estimated.

If the error s(n) contains only one Fourier
mode then the semi-inverse scheme given in
equation (27) produces the converged solution,

S , in one iteration. In practice the error has
many modes and following Wigton and Holt™ the
performance of the relaxation scheme is studied
for Fourier modes vy s which are not equal to

v , the frequency used to determine the relaxa~
tion factor. From equation (19) the error term

(s - S<n)) has the form
iv,x

= = BvlCe .

sin) (29)

From equation (27) the corresponding difference
in the velocity gradient parameter is given by

a1 aut (n) (BOV *8)

s (30)
U UI dx 1 8 Bo

A new approximation to the source strength

S(n+l) is given by the relaxation formula as

1 auY

UV dx

1
1 du §

-2 1 31
UI dx

g(m 8 B9

S(n+1) _
Bov + B8

The difference in the velocity parameters are
eliminated from equations (30) and (31), and

using S(n) =8 - sgn) gives
Bev, + B
o+l 1 - (n)
S = 8§+ 3—-——39‘) r 1§ ) . (32)

The amplification factor for the error mode of
frequency vy is given by

(n+1)
O i S T
1 Sﬁn) Sin)
Vo= vy
ie u(Vl) TFG/®Y (33)

The variation of B~ with H for the two-
parameter velocity-profile family is shown in
Fig 4; 8 s positive for attached flows
The
occurs at dHl/dH =0,

If v

(H < 2.85) and negative for separated flows.
change in sign of gt

the minimum of H,6 . is chosen to take

1
its maximum value, Vv
max

flow B_1 >0 and |u(v1)| < 1 and the method

, then for attached

converges. For large values of vy the ampli-

fication factor is almost zero leading to fast
convergence. For low frequencies the amplifica-
tion factor is much larger and the convergence
rate is correspondingly slower. For separated
flow B< 0 and if v is given its maximum
value then the method converges for errors made
up of high frequency components but for the low
frequency components the amplification factor can
be greater than unity and the method would



diverge. If the value of v 1is allowed to vary
from iteration to iteration, then a sequence of
v (with the related relaxation factors) can be
selected so that for a part of the sequence of
iterations the amplification factor is much less
than unity for each component of the error.
Numerical experimentation has indicated that a
sequence of four relaxation parameters based on
an arithmic progression of Fourier frequencies
decreasing from the maximum gives the best
resultse.

0.12

0.08
i/B
0.06F

0.04 ¢

0.02F

-0.02}

1 1 5 ! i i

2.0 3.0 4.0 " 5.0 6.0 7.0

Fig 4

1.0 8.0

Details of Semi-Inverse Method

Details of the implementation of the semi—~
inverse method are described. The method must be
given the aerofoil coordinates, the Reynolds
number, Mach number and angle of incidence.
the laminar portion of the boundary layer is
calculated by a compressible version of the
method due to Thwaites'®. The computer program
allows for three different mechanisms for tran-
sition to a turbulent boundary layer. Natural
transition is predicted by Granville's correla-
tion"". 1If the laminar boundary layer separates
before natural transition has been predicted then
the development of the laminar separation bubble
is calculated by Horton's semi~empirical
method” ., The transition to a turbulent boundary
layer can also be fixed at a specified point as
long as neither of the other criterion has been
satisfied upstream. The development of the
turbulent boundary and wake are calculated by the
inverse formulation of Green's lag-entrainment
method. Although the momentum integral equation
given in equation (6) contains all the signifi-
cant second order terms, not all these terms have
been included in the calculations reported in the
next section. In particular the correlation for
the Reynolds stress terms was derived from
attached flow data and there is experimental
evidence that the normal stress is significantly
larger in separated flows. However there are
insufficient data to form a reliable correlation
so this term has been omitted from the calcula=-
tion. 1In a separated boundary layer it is found
experimentally that the growth of the displace-
ment surface is almost linear, thus the terms

Then
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involving the curvature of the displacement
surface have also been ignored.

VI. Comparison with Experimental Results

Detailed measurements of the separated flow on
a NACA 4?&2 have been taken by Wadcock™ ™ and
Hastings  at two different Reynolds number and
these results are used to show that the semi-
inverse method predicts the stall and post-stall
behaviour of the aerofoil. The convergence of
the matching procedure is studied and it is shown
that a sequence of relaxation factors speeds up
the rate of convergence.

Wadcock data

The flow about a NACA 4412 aerofoil is calcu-
lated at a Reynolds number of 1.52 x 10° and a
Mach number of 0.15 in accordance with Wadcock's
experiment. The incidence is taken as 13.87°,
the geometric incidence measured in the tunnel at
which the maximum 1lift was attained. In the
experiment the transition from laminar to
turbulent boundary layer is fixed by trips at
x/c = 0.025 and x/c = 0.103 on the upper and
lower surfaces respectively: no laminar separa-
tion bubbles were detected ahead of the trips.
However in the calculation the laminar boundary
layer on the upper surface separates at
x/c = 0.012. The development of the laminar
separation bubble is calculated by Horton's semi-
empirical method and the shear layer reattaches
at x/c = 0.020. Thus in the calculation the
boundary layer on the upper surface is turbulent
before it reaches the trip; some allowance is
made for the presence of the trip by increasing
the momentum thickness of the boundary layer at
the trip by 50%. The size of the increase is
chosen so that the predicted momentum thickness
agrees roughly with the value at the first
measuring station in the experiment at
x/c = 0.62. The calculation of the boundary
includes the effect of longitudinal curvature on
turbulence structure, but no other second order
effects. The representation of the EIF includes
the effect of wake thickness but not wake
curvature.

The initial guess for the strength of the
source distribution linking the inviscid and
viscous flows is taken as 0.0028 which corre-
sponds to the growth of a boundary layer in zero
pressure gradient. The initial guess for the
strength of the source distribution does not have
to be close to the final solution to obtain
convergence, thus solutions can be obtained at
any incidence without having to use the converged
solution from a slightly lower incidence as an
initial guess. As described in section V the
relaxation parameters in the iterative solution
are defined locally in the field depending upon
the panel size and the state of the boundary
layer. 1In Fig 5 it can be seen that the rate of
convergence is slow if the relaxation parameters
are based on the local panel size as implied by
equation (33). However a sequence of relaxation
parameters produces more rapid convergence. For
each sequence of relaxation parameters, the first
two iterations have a relaxation parameter based
on the panel length. In subsequent iterations an
arithmetic progression of panel lengths is used
to define the relaxation parameter, ie the third
iteration uses twice the panel length, the fourth
iteration three times the panel length, etc.
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After the specified number in the sequence has
been reached the next iteration uses the panel
length and the process is repeated. The cyclic
nature of this process can be seen for the first
thirty iterations with eight parameters in the
sequence in Fig 5: relaxation parameters based on
small multiples of the panel length result in a
small decrease in lift whilst parameters based on
large multiples of the panel length produced
large reductions in lift.

The best results are obtained with between two
and four relaxation parameters in the sequence: a
smaller number produces an initially slower rate
of convergence whilst a larger number soon over—
predicts the loss of lift and the solution is
slow to recover. The location on the upper
surface of the point of intermittent separation
of the boundary layer at which H is approxi-
mately 2.7 as the iterations progress is shown in
Fig 6. For a sequence containing eight relaxa-—
tion parameters the long wavelength errors are
damped as well as the short wavelength errors and
the theoretical separation point quickly moves to
the region in which separation occurs in the
experiment. The more rapid forward movement of
the separation point with increasing number of
relaxation parameters in the sequence explains
the variation of 1lift coefficient shown in Fig 5.
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The data published by Wadcock include no
allowance for tunnel constraint, but more
importantly the tunnel reference velocity is
measured at a point influenced by the velocity
field of the aerofoil. The experimental set—up
used by Wadcock is shown in Fig 7. The model is
placed in a two-dimensional insert in a 10ft
(3.048M) circular wind tunnel. The reference

iy 2957 filiiii
1 1.495m ;Qz%m
Ref pt
« 1
Vo012 13.87°
o.488m) %
3.048m . . .
3.048m
g, W Eeewsed

Fig 7

velocity was measured at a point about 1 chord
from the pressure side of the aerofoil in line
with the trailing edge and this reference velo-
city was used to non-dimensionalise the pressure
and lift. The error induced by using this
reference velocity is assessed by calculating the
inviscid flow about the aerofoil and its image
system representing the effects of the tunnel
walls. According to Ref 18 a circular tunnel can
be represented approximately by a rectangular
tunnel with a height given by 84.3% of the
diameter of the circular tunnel. The inviscid
flow about the aerofoil and its image system in
the equivalent rectangular tunnel are calculated
by the surface—singularity method of Hess and
Smith ~ with the aerofoil at incidences of 4° and
13.87°. From these values it is deduced that an
incidence of 9.3° will give a lift coefficient of
1.669 (the value given by Wadcock at an angle of
incidence of 13.87° in the experiment). At an
angle of incidence of 9.3° the velocity at the
reference point is only 90.6% of the freestreanm
value which implies that all the quoted veloci-
ties can be in error by up to 10%.

The classical constraint corrections, calcu-
lated by the method of Ref 18 are not very large.
Solid and wake blockage imply an increase in
velocity of 1.14% whilst the coustraint correc—
tion gives an increase in incidence of 0.278° and
a decrease in 1lift coefficient of 0.0422.
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These corrections are taken into account by
calculating the flow about the NACA 4412 aerofoil
at an incidence of 14.15°. The inviscid and
converged viscous pressure distributions are
given in Fig 8. These are compared with the
experimental pressure distribution which has been
corrected for an 8% error in the reference
velocity.

In spite of the rather uncertain nature of the
corrected experimental data and the lack of
second order effects in the theoretical calcula-
tion there is reasonable agreement between the
measured and calculated pressure distributions.
However a more detailed examination of the deve-
lopment of the boundary layer on the upper
surface indicates the need to include some second
order effects. 1In Fig 9 it can be seen that
there is good agreement with the measured shape
parameter at x/c = 0.62, but the theoretical
method predicts full separation (ie H = 4.0) at
x/c = 0.745 which is upstream of the measured
position at x/c = 0.87. After separation the
rate of growth of H is too large and this could
be caused by the omission of second order
effects, in particular normal stress.

18.0
P
16.0F a Experiment
o =13.87°
® Theory
14.0F A=1415"

Fig 9

The comparison demonstrates that the matching
procedure produces a converged solution which has
all the essential characteristics of separated
flow about an aerofoil. The lift coefficient is
predicted reasonably well but some second order
terms will have to be included in the calculation
of the boundary layer before the drag can be
estimated adequately.

Hastings' data

A two dimensional model with the NACA 4412
section has also been tested in the RAE
3.962m x 2.743m (13ft x 9ft) atmospheric low-
speed wind tunnel during the first qpgrter and
the last quarter of 1982 by Hastings . The
chord of the model is 1.0 m and it is mounted
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horizontally spanning the tunnel. The Regnolds
and Mach number of the test are 4.17 x 10° and
0.18 respectively. To avoid the occurrence of
laminar separation bubbles the transition from
laminar to turbulent boundary layer is fixed by
placing a single wire at x/c¢ = 0.014 and 0.113 on
the upper and lower surfaces respectively for the
tests in the first quarter of 1982. For the
tests in the last quarter of 1982 distributed
roughness was added ahead of the transition
wires. For both tests boundary-layer forces are
placed down the chord at 0.85 m on either side of
the mid-span to maintain reasonably steady and
uniform separated flow over the mid-portion of
the wing and these are effective up to an angle
of incidence of 13°. The main set of data is
taken at an incidence of 12.23° for which the
separation point was at about x/c = 0.8. The
lift coefficient was calculated by integrating
the static pressure distribution around the mid-
span of the wing. A laser doppler anemometer was
used to obtain mean velocity profiles at eight
stations between 0.59 < x/c < 0.99, whilst a
pitot probe was used at x/c¢ = 0.2 and 0.4.

The flow about the NACA 4412 aerofoil at
12.23° incidence is calculated with transition
from laminar to turbulent boundary layer fixed in
accordance with the experimental trips. The
theoretical method does not implicitly contain an
estimate of the change in the state of the boun-
dary layer as it passes over the trip, but this
is simulated by increasing the momentum thickness
at the trip in the following manner. The calcu-
lated value of the momentum thickness of the
laminar boundary layer at x/c¢ = 0.014 (the posi-
tion of the trip on the upper surface) is
0.000037 m which is to be compared with a trip-
wire diameter of 0.0002 ms The momentum
thickness of the boundary layer is increased by
0.0002 m at the trip and as indicated in Fig 10
there is reasonable agreement with the momentum
thickness measured at x/c = 0.2 and 0.4.
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Calculations with the same increase in
momentum thickness at the trip are repeated for
angles of incidence between 0° and 14.5°: the
1ift coefficients are compared with the experi-
mental and inviscid values in Fig ll. Up to an
incidence of 12.23° there is good agreement with
the experimental results.s However the theor-
etical results extend beyond the range of the
experimental results and indicate a decrease in
the lift coefficient as the separation point
moves towards the leading edge.

Also included on Fig 11 are some results using
a direct coupling, ie the boundary layer is
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calculated in direct mode up to the point of
separation after which an empirical correlation
is used to determine the displacement thickness
rather than an integration of the boundary layer
equations. The direct method predicts that the
boundary layer on the upper surface separates at
x/c = 0.999 at an angle of incidence of 4°. As
the angle of incidence is increased the separa-
tion point moves forward very slowly and it has
only reached x/c = 0.96 at an angle of incidence
of 12°. At an incidence of 14° the values of the
1ift coefficient predicted in the iterative cycle
become very erratic and eventually the boundary-

layer calculation fails.

The direct method of

coupling fails to produce results which agree
with the experimental values as soon as there is
a significant region of separated flow on the
aerofoil.

The calculated and measured pressure distribu-
tions are compared in Fig 12 and the two distri-
butions are similar except over the separated
region for which the correct shape of the
pressure distribution is predicted but at a
slightly too high level. Using the criterion
that a shape parameter of 4.0 identifies the
point of separation, then separation in the
experiment occurs just ahead of x/c = 0.80 whilst
in the calculation it occurs just ahead of
x/c = 0,90 and this accounts for the difference
in levels of pressure in the separated region.
There are two easily identified factors which
could account for the difference in separation
position: the change in momentum thickness at the
trip could be incorrect or the three-dimensional
nature of the flow in the wind tunnel could
produce a change in the effective incidence of
the model. The plausibility of these factors is
checked by performing a calculation with the
change in the momentum thickness at the trip
increased from 0.0002 to 0.0003 and another
calculation at an angle of incidence of 13.5°.
Increasing the momentum thickness moves the
separation point forward to x/c = 0.82 but the
1ift coefficient falls to 1.38 which is 7% below
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Evaluation of the measurements of the velocity
profiles close to and in the separated region by
the laser doppler anemometer is at a preliminary
stage but it seems worthwhile comparing the
available results with the theoretical predic-
tions. The momentum thickness from the experi-
ment and the calculations at angles of incidence
of 12.23° and 13.5° are compared in Fig 10. The
measurements by the pitot taken at x/c = 0.2 and
0.4 are closer to the calculation at an incidence
of 13.5°. For the remaining measurements by



laser doppler anemometer the same calculations
more closely reflect the trend of the measure-
ments. However it should be noted that the
measurements of the velocity profile are rather
unreliable close to the surface and this portiom
of the profile makes a major contribution to the
momentum deficit. Fig 14 indicates that there is
good agreement between the measured displacement
thickness and the values calculated for an angle
of incidence of 13.5°, although it should be
pointed out that the displacement thickness is
one order of magnitude larger than the momentum
thickness. Reasonable agreement of H is shown
in Fig 15 and this would be improved along the
momentum thickness in the last 20% of the chord
by the inclusion of normal stress terms in the
calculation.
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In summary the semi~inverse method adequately
predicts the liftfor a NACA 4412 section up to
and beyond the stall although there are detailed
differences in the surface pressure distribution.
A detailed comparison of the experimental values
at an incidence of 12.23° are in good agreement
with a calculation at an incidence of 13.5°: this
may arise from a change in the effective inci-
dence of the model induced by three-dimensional
features in the flow.
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VII. Conclusions

An integral boundary layer method is extended
to calculating separated boundary layers by
assuming a two parameter description of the velo—-
city profile which adequately describes current
measurements of separated profiles. Coupling the
boundary layer method with an inviscid flow by a
semi~inverse method gives a reasonable estimate
of the maximum lift coefficient. A good estimate
of the drag for separated flows cannot be made
until the boundary layer method includes such
second order terms as normal stress. However no
universal correlation for normal stress in terms
of integral parameters of the boundary layer for
separating and separated flows has yet been
established.

The stability of various matching schemes,
direct, fully-inverse and semi~inverse are
studied by a linear stability analysis. This
analysis indicates that the semi-inverse method
of a direct inviscid calculation coupled with an
inverse calculation of the boundary layer is the
most suitable choice for a mixture of attached
and separated flows in external aerodynamics.

The linear stability analysis of the coupling
methods yields optimum relaxation factors which
are useful estimates for the non—-linear problem.
The relaxation factors depend upon the grid size
and the local state of the boundary layer and
they take different values of points throughout
the field of calculation. It is also demon-
strated that a systematic variation of the
relaxation factor from iteration to iteration
leads to a faster rate of convergence.
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