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Abstracts

A quantitative analysis was done of the signi-
ficance of nonstationary aerodynamics effect in
the mathematical model of an unsteady longitudinal
aeroplane motion at a constant flight speed which
was excited by a pulse deflection of the elevator
in a slow steady straight flight. By using two
sorts of the angle-of-attack changes, i.e. of the
"attitude" and "path" changes, in terms of genera-
lized coordinates, comparable analytical expres-
sions were possible to be deduced for aerodynamic
frequency transfers of the whole aeroplane. The
expression for deviations of the moment equation
of motion in the frequency domain involves both
an experimental frequency transfer of moment of
the inertial aeroplane forces and the total aero-
dynamic frequency transfer of the aeroplane.

A quadratic loss function following from their dif-
ference may be exploited in three ways. From an
analysis made for a light transport A 145 aero-
plane interesting conclusions have followed on the
transport lag of the downwash angle at tailplane
and on the significant effect of the inertial part
in the nonstationary aerodynamics model in the
moment equation of aeroplane motion.

1. Introduction

When analysing the results of flight measu-
rements carried out with A 145 light transport
aeroplane and described in /1/, some differencies
were found out at longitudinal motion in frequency
transfer functions of the aeroplane responses to
different time histories of elevator deflections,
that were of trianqular, step and sinusoidal shape.
There were also observed differencies in aerody-
namic derivatives values according to having been
measured at steady or unsteady flights. At that
time the opinion was pronounced that it might be
owing to the fact that a more complicated model
of nonstationary aerocdynamics should be considered
instead of the used quasi-stationary one. Similar
conclusions have drawn authors of /2/ and /3/.

The significance of the nonstationary aerodynamics
effect was proved qualitatively in /4/ by means of
"Weighted complex aerodynamic derivatives".

In this paper an attempt is realized to esti-
mate parameters in an analytical model of nonsta-
tionary aerodynamics. It is started from the
physical analysis done in /4/ and from the data
given in /5/, /6/ and /7/ for a rigid wing and
tailplane and for interactions of the wing on
the tailplane. »

A nonstationary aerodynamics model is proposed

in the frequency domain and besides aerodynamic
derivatives it comprises also nondimensional norma-
lized aerodynamic frequency transfer functions. The
benefits and disadvantages of the frequency domain
application at parameters estimating were analyzed
in /11/. As addition it must be asserted that for

a linear system the freguency domain allows a pos-
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sibility of averaging frequency transfer functions
of aeroplane responses from a set of measurements
at one class of input shape by the elevator. In the
given case the triangular shape inputs are conside-
red. By the averaging the precision of data measu-
red in flight may be increased. At using triangular
pulses with a time base shorter than 0.4 s, the
frequency spectrum contents is grater then 0.8 for
nondimensional angular frequences considered up to
0.33, as it can be seen from fig.ll in /4/. The
expression of nonstationary aerodynamic forces and
moments in the frequency domain makes possible
also to avoid convolutory integrales and to simp-
lify in this way numerical calculations which will
be also physically clearer.

With respect to the features of methods for
optimal parameters values estimation the number
of parameters to be estimated in the nonstationary
aercdynamics model should be as small as possible.
This may be achieved by a "a priori" statement of
some aercdynamic derivatives on the bases of measu-
rements at steady flights, which are relatively
precise and correct, see /1/. It is also convenient
to estimate the transport lag of the wing trailing
edge vortex moving to the tailplane. It is given
by the aeroplane geometry and by the measured re-
lative velocity of the airflow at the tailplane.
This approach is justified by the fact that this
transport lag estimation from measurements fails,
see /1/. It remains then to estimate optimal values
of parameters of nondimensional normalized aerody-
namics frequency transfer functions from measure-
ments at unsteady longitudinal flights having two
degrees of motion freedom at a constant flight
speed, which are excited by elevator pulse form
deflections. Essentially certain methods of "motion
equation" described e.g. in /B/ and /9/ are dealt
here with. These are extended to estimation of pa-
rameters of nondimensional normalized transfer aero-
dynamic functions being nonlinear in parameters.

For a more detailed quantitative study of non-
stationary aerodynamics phenomena, a quadratic loss
function of individual motion equations for non-
steady longitudinal aeroplane motion at a constant
flight speed may be used. The attention is aimed
at the moment equation in which the nonstationary
aerodynamics effect was seen to be the greatest
one. The loss function may be utilized in diffe-
rent ways: a) to prove the correctness of aero-
dynamic frequency transfer functions determined
by numerical methods on computers; b} to study the
influence of the nonstationary aerodynamics model
form and of the model parameters values on the loss
function; c) to estimate optimal parameters values
in nondimensional normalized aerodynamic frequency
functions on a basis of flight measurements results.

2. Equations for the longitudinal

motion of an aeroplane

It is assumed that a nonstationary longitu-
dinal motion of a rigid aeroplane with the zero
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propulsion thrust at the steady straight gliding
flight in the calm atmosphere is excited by a tri-
angular pulse deflection of the elevator. The tra-
ced time interval of the motion is as small as the
flight speed and state quantities of the atmosphere
may be considered to be constant. A motion of an
aeroplane with the defined mass and geometry cha-
racteristics is then dealt with which is control-
led by means of an elevator deflection as the input
quantity. In order to be possible to consider the
controlled system defined in this way to be linear,
maximum values of the elevator impulse must be 1li-
mited to suitably small values. As this aeroplane
motion is of two degreed of freedom, it is determi-
ned by four state quantities. For the given aim it
is sufficient to consider two generalized coordi-
nates: the aeroplane angle-of-attack and the aero-
plane pitch angle or pitch angular velocity.

It is convenient to write the equations of
motion in the air-path axis system and in the
form of deviation equations from an initial steady
flight condition. As the influence of nonstationa-
ry aerodynamic forces and moments is studied, the
forces and moments acting on an aeroplane are put
together into two groupes: the forces and moments
of the aerodynamic origin and those of some other
origin. This is also the reason why in the equa-
tions aerodynamic forces are not divided into the
control and response ones and why the motion equa-
tions are not reproduced as state equations.

If considering real time, the motion equa-
tions are

AC,[A p (1), A J(1); AKS), AW A CE), AR (E); ¢] =

=UT AP+ C Ay (t) (1)
AC,, [Apt), A jet); AGCE), ABM; Aq(E), A4 £ ]=
Rt RS- 140 (2)
where
AOD=Ap®)+A o) aNd  ABH) = wy (1) .

As they are deviation equations from a steady
state, the initial conditions are zero. By the in-
tegral Fourier transformation and by dividing them
by means oFAq‘ eq.(1) and (2) are converted into
theAéorm

A — — (4
[ (zu))] MTA[A"L ( w)]

—-1w
(W) -1 A

1. - &
CwoLw A% w) ‘ﬁ(u»] (3)
ACm N . —J .
= )} = il Tl iw = (iw) 4
fin (1w iy Ty i~ (4)

In the following analysis the moment equation
only is considered, as in it the influence of non-
stationary aerodynamics is expressed in the most
outstanding way.

With respect to the assumption of constant
speed of flight, the equations (3) and (4) are
correct from angular frequencies only which are
appropriately greater than the angular frequency
of the phugoid oscillations, at which the flight
speed changes with time.

In the moment equation is:

Y2

s

the experimental frequency transfer of the moment
of inertial aeroplane forces and

T2 iw % (tw) = Y (iw) (4a)
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AcC,, :

[—um] = Y, Giw) (4b)
Am T

the total aerodynamic moment frequency transfer.

These frequency transfer functions may be plotted

in the complex plane as vectors

]

Y; (iw) =Ug (W) + Vg Cw) (5)

(6)

An analysis of these vectors (5) and (&) is
given in chap.4.

34 <4

YeGicw) = Up(w) +iVy (w)

3. Nonstaticnary aerodynamics model

3.1 Basic relations

A historical survey of the nonstationary aero-
dynamics research is given in /4/. There is also
given a classification scheme of nonstationary
aerodynamics phenomena in fig.5. As a nondimensio-

nal parameter for these phenomena, the Strouhal
number is considered. In the time domain it is

defined by s =t/Ty and in the frequency domain
byw*= w?, , where T, = lJy is the aerodynamic
time unit.

A 1ift change for a unit span of a rectan-
gular wing is defined:
a) for a step form of angle-of-attack by

2
AAj(s)=T-l.2$’-kJ(S).Ao( (7)

where kj(s) are nondimensional normalized transi-

tion functions, called aerodynamic /indicial/
admittances. for j = 1, this is the Wagner function
for an instantaneous angle-of-attack change all
over the whole wing and for j = 2 it is the Klssner
function for an gradual angle-of-attack change
suceeding from the leading edge;

b) for a sinusoidal form change of angle-of-attack

amplitude o by
Lw*s

(8)

9 C(th)\
AA(s)= = -L. ZﬂT\H(th)/

where C and H are nondimensional normalized
frequency transfer functions for 1ift. For an in-
stantaneous angle-of-attack change on the whole
wing, it is the Theodorsen function and for an
angle-of-attack change succeeding from the lead-
ing edge it is the Sears function. For a wing with
a final span, in all the mentioned cases the aero-
dynamic derivative CAa. must be used instead of

29 . Generally the Fourier integral transform of
the admittance AA o« ¢S 1is related to the frequency

transfer function (ihf9 by

¥ {Am<s>}

The index A used in the symbols for functions in
eq.(9) denotes the 1ift A as a response to a change
of the input quantity o« , which has at the admit-
tance a step form and at the frequency transfer
function a sinusoidal form.

An arbitrary time change of the angle-of-
attack excites a 1ift change which is given in the
time domain by a convolutory integral and in the
frequency domain by a simple relation

AAGiw =F,  (w*). B (iw*)

X e
o (LX) o

(9)

(10)
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Instead of the very complicated functions
kl(s), kz(s) and C{tw*), H(iw*), approximate supple-

mentary exponential functions and Fourier integral
transforms of them may be used. So e.g. for j = 1

/Wagner function/ the following formulas are used
n

. -by;
FOREE 121 ", € 1° (11)
b @© UG 3
CCiw®) = 1+»‘w“f [kisr-11.e7 ds =
o n X
) Tii
_ - x I . LIS
S -t e Ty (12)
where x
-by: S 1 L
° 1i . ——aen . o= x
?{ @ } " b:;uw"’b" /Tu (13)

Original nondimensional normalized aerody-
namic functions were extended to different wing
shapes, to different wing aspect ratios and for
a compressible fluid environment. The Wagner and
Theodorsen functions, deduced on the basis of ve-
locity ecirculation around the wing section, were
completed by members expressing the influence of
air moved by the wing. This 1lift component is here
called the "inercial comporment"A A in contradiction
to the "circulation component'"A

The total aerodynamic nondimensional norma-
lized admittance for an instantaneous angle-of-
-attack change A«on the whole wing is given by

ky(s)g = k,(s), + k(s); , (14)
where the circulation component k,(s).is expressed
in (11) and the inertial component™is given by

ky(8Y, = Ky 8¢,

where Ka=Ka(A),

A is the wing aspect ratio and J(8) is the unit
impulse function. Analogically the total aerody-
namic nondimensional normalized frequency transfer
function is expressed by

€ (1w )g=Ciw )+ C (w™)y ,

(15)

(16)

where the circulation component is given by (12)
and (13) and the inertial component is determined
by

CliwNi=iw™ Ky F{8GE} = i Ky o,
A schematic illustration of the mentioned func-
tions is given in fig., 1.

*Axg = AG

Zg Zq

FIGURE 2- SCHEME DIAGRAM OF ANGLES

The modern computation techniques has opered
new possibilities for improving method for calcula-
tion of normalized nondimensional complex coef-
ficients of generalized aerodynamic forces and
moments for a rigid aeroplane of different geo-
metric shapes. Inspite of it, there is sometimes
more suitable in dynamics of flight and in identi-
fication of models of conventional aeroplane mo-
tions to use approximate analytical aerodynamic
expressions, see /1/, /2/ and /3/.

3.2 Realization of angle-of-attack channes

In analytical expressions for aerodynamic
admittances and for frequency transfer functions,
an angle-of-attack takes place which is deter-
mined by two semi-straightlines, see fig. 2. One
of them has the direction of the relative velocity
vector of the aeroplane with respect to the air
and the second one lies in the direction of a re-
ference axis fixed to the wing or to the aeropla-
ne. Angle-of-attack changes may be realized in
two ways: by a rotation of the relative velocity
vector and by a rotation of the reference axis of
the aeroplane. Each of these both directions is of
physically different nature. One can thus expect
that each of the both possible modes of changes
will show itself in an aerocdynamically different
way.

A change of the angle-of-attack due to
the change of orientation of the aeroplane refe-
rence axis is called here the "attitude change"

. An angle-of-attack change due to a
rotation of the relative velocity vector of the
aeroplane with respect to the environment air is
called the "path change" Aocp=-Ay. To describe
the total angle-of-attack change Aa =A@ -Ay'=
=Ac, + Acke , two genmeralized coordinates A

and Aoy are thus needed. In aeroelasticity and
sometimes also in flight dynamics, a pair

AB and(AZa is used instead of the mentioned

two generalized coordinates. They are e.g. in aero-

elasticity a rotation of the section reference axis
and trenslation of the origin of this axis /twisting
and bending of the wing/. A disadvantage of the
pair A@ and Az, is that these coordinates are di-
mensionally and physically nonhomogeneous and expre-
ssions for aerodynamic forces and moments due to
them are not comparable.

In the following aerodynamic considerations
the use of the physically homogeneous pair of the
angle-of-attack changes A® and ACgis prefered.

3.3 Interaction of a wing and tailplane

In /5/ R.T.Jones deals with a proposal of
approximate relations for computation of an admit-
tance of the down-wash angle at tailplane which
was brought about by a step form change of angle-
~of-attack at the same time on the whole wing. He
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has used a model of four vortices: the lifting vor-
tex A fixed to the wing; the trailing edge vortex

B of a contrary orientation than the vortex A and
fixed to the calm air in which the aeroplane moves;
the free vortices C,D which are due to the final
span of the wing.

For calculation of a velocity induced by the
vortices A, B, C, D in a sufficiet distance from
the wing, there is assumed that to the wing just one
vortex A is fixed in the middle of the chord of a
supplementary rectangular wing and that from the
trailing edge of this wing just one vortex B sepa-
rates at a step change of the angle-of-attack.

The induced velocity orientation at the tail-
plane leading edge depends on if the wing trailing
vortex B is before or already behind tailplane
leading edge. In the case that this vortex would be
Jjust in this leading edge, the induced velocity
theoretically should change its value from - <o
to + e . This case may be modelled in the fre-
quency domain by a transcendent "integral exponen-
tial"™ function.

In the frequency domain the frequency transfer
function of the down-wash angle may be expressed
according to /5/ by:

Fotgroe () = B L GDF, (i) (18)

The freguency transfer ﬁtd describes the evolu-
tion of the circulation on a wing in dependency on
the wing angle-of-attack. The freguency transfer
E%a-P describes the effect of the vorties A, B, C,
D which depends on the change of velocity circula-
tion around the wing. According to /5/ the first
transfer consist from a sum of three Fourier trans-
forms of exponential functions with six parameters,
the second transfer is formed by a sum of four
Fourier transforms of exponential functions with
eight parameters and one freguency transfer function
due to the wing trailing vortex B.

F (i =iw*al. e ™™ B (iwoxey)

8 = -dg. . LW w) (19)
X a-U

where Ei(x) = f eu - du is the trans-

e
cendent "integral exponential” function;
1 ~ ity

ho 5 e is the Fourier transform of
the transport lag of a step form change of the in-
duced velocity at tailplane leading edge and

x
ag =

Ty=Tw/Ta
lag.

is the nondimensional transport

The transport lag 7, = fH/V defined in

this way does not respect the flow velocity redu-
ction at tailplane leading edge. Also definitions
Toyw = §n [Vh and Ty =T, [V are used that

will be proved in chap. 5.

It follows from this analysis that the ana-
lytical model according to /5/ has 16 parameters
which represent from the point of view of parame-
ters estimation from flight measurements a too
great number. Therefore in /4/ a simplified analy-
tical model was proposed of the following nondimen-
cional normalized form:
~WwXT S

C“a( twX) = 1 __.¢

A +IWXTR (20)

In the quasi-stationary aercdynamics model
the expression (20) with Tl = 0 is considered and
the transport lag is then éxpessed as follws:

cos T — & SINWT ™2 1 - iw*Ty (7))

By means of this mathematically correct simplica-
tion the physical nature of the model is changed.
The time lag of the circulation component of a
tailplane lift is formally transfigurated in the
complex domain into the form of the inertial compo-
nent of the lift (17). A more detailed analysis

is in chap. 5.

3.4. Total aerodynamic frequency transfers

Changes of aerodynamic coefficients AC,
and AC,, in (1) and (2) in the nonstationary aero-

dynamics model are functions of time as explicitly
as even implicitly by means of time changes of the
control quantity A% (1) and of the generalized

coordinates Ao(r(t)and ABG(t), see chap. 3.2. As

deviations with zero initial conditions are dealt
with, changes of the considered aerodynamic coef-
ficients may be expressed after the Fourier integral
transformation in the form:

Ack“‘*’”=Fck.nl(iw">-5-1(iw") +
+ R (b Bog o) o o000 (1), (22)

where k = A, m.

The first frequency transfer F represents

€k
a control frequency transfer which is determined by
the aerodynamic 1ift due to a deflection of the
elevator of tailplane. The second and third frequen-

cy transfers %k~“a' and sz.e include the influen-

ce of aerodynamic forces of the whole aercplane due
to a "path" and "attitude" changes of angle-of-
attack. For expressing these effects, an analysis
was done in /4/ in which expressions from the appen-
dix in the book /6/ by Scanlan and Rosenbaum were
used. As a reference point a common point for the
wing and for the tailplane in the aeroplane c.g.
was considered. It is illustrated in fig 3 together
with characteristic lengths defined on an aeropla-
ne. 'The expressions from /6/ were transduced into
the present notation according to the ISD 1151
standard. From the analysis af /4/ a very important
relation follows:

3 e(iw*):FCk_%(m*)w*iw‘. R .ex i)y (23)

[
k = A, m.
When using (23), the relation A® +Z§&x=lﬁ; and by
dividing them by Zgiﬁxoﬂ, the relations (22) are

transformed into the form which expresses the
total aerodynamic frequency transfer__
AC, . ] . o Ax
2k X = WA +E WA —=(tw*)+

. w
+Fék,é><<"wx)' Z;l— (twX)
where k = A, m
NF O; S Ng; N, O, Ng,
] l [ by 1
1/2 |a 3 Hal'H
Xng | Xngs - —0 |
L NP | Ne ] 3
Xg N
| Iy

FIGURE 3 - SCHEME DIAGRAM OF LENGTHS
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In this total transfer the aerodynamic control
frequency transfer function Fck',,,z(iw") is not de-

pendent on the aeroplane motion. But the effect of
aerodynamic transfer functions {-Z,k.q“and %x-é"

does depend on dynamic frequency properties of the
aeroplane that are characterized by the responses
transfers of the aeroplane to elevator deflections.

But they may be alsc expressed analytically so that
the influence of quasi-stationary aerodynamics may
be separated by means of using aerodynamics deriva-
tives independent on iwX*from the effect of nonsta-
tionary aerodynamics by means of using nondimensio-
nal normalized aerodynamic frequency transfer
functions.

For individual aerodynamic frequency transfer

The frequency transfers of aeroplane responses F‘-’""l

and  F_x ain the total aerodynamic transfer (24)
are theréfore considered as a measure of the utili-
zation of the aerodynamic frequency transfers

F and F. «x at the given aeroplane motion.

Cprxyp Cy® [\Ek .

The total aerodynamic frequency transfer [T(leJ
T

functions Fck.x (k = A, m; x :"'l,aa‘,e) analytical

expressions may be proposed according to /4/ in the
form:
a) for the lift coefficient:

} a ' .
F-(“k-"l<th>=d4kH'<§g,')' Ayy Cy i) (26)
therefore is not only an aerodynamic function but
also a freguency transfer function of flight dy-
namics. Frequency transfer functions of aeroplane
responses may be measured in flight or they may be
calculated from the system of motion equations.

The expression (24) for a nonstationary aero-
dynamics model may be transformed into a gquasi-
stationary aerodynamic model when instead of aero-

FCAﬁdgiw"ﬁ [a.CClw®) + aky &),y (i) +

- 4k, ay, 292 ¢, i ]« (27)
#iwX[aKy, + gk Koy - g 1;

Fe,.ox (™ = [a.al Cptiwd +agky. dyy Cy (iw")}c *

dynamic frequency transfers the complex aerodynamic + WX Eﬂ"lKAF-a::,,*d,kHK;m-alm,,]i (28)
derivatives are substituted in the form: ; ¢
. i i t ffici :
fo, x(i@00=U, (©O)+ X Vé 0)=C, xﬂw"Ck o b) for the pitching mo:en coerficien
kK K* g % B Mol . _ 2 1 .
"(25) fo W = a'k”'(—a‘;)' My -Gy (i) (29)

where k= A, m and x = M, &G,
3.5 Analytical models of aerodynamic frequency %m'“r(dw)‘): [dmé1CF(t~wx)+a1ka.H1CH“wx) +

o o X .
Sl Gyl ). hyCwm] + (30)

transfer functions

"d4kum:-n "
Aerodynamic frequency transfer functions in
the total aerodynamic transfer {(24) may be deter-.

. ]
+ 10X [aK’\Fm":z - a'l1kH K(‘” Myg ] i
mided by numerical methods by means of computers.

PARA- WING PARA TAILPLANE
METER METE
_ GEOMETRY | AERODYNAMICS| || GEOMETRY _ ©| AERODYNAMICS *
s ~
z. KA - a= BCA;/GO(F 2 St agky =k BCAH/ao‘H
™~
~N ~ =
-9 a2 - akK ¢ 2ne Sl a1k n Kym
=N o~ —~ ~ = -~
- E 33 ste=(0,75'Xs) a agg | Sy (7 +0,50).74 a, ky,
Wl oa, Xs = 0,50 aKyr age | Su(7,+0,25) Ty ag kn Ky
—~ ~
m':, XNFS a m’” —f‘H SH a‘ kH
'ﬂ-). sz ‘;s - 0750 aKA'F mM *(;"; 0,25)§HTH TH 31 kH KA,H
[« ~2 ~ ~ =
z | me | Ry 075-%) a myg |-7 5, (% +050) T, ayky,
A
o~ ~
év Meq 0,25 aKyg mus |+025 S, T, ay ki Ky,
z 0 ' ~ 2 ' ~ oy 252
w Meo= (X~ 0,50) m' =S .1, [T4+0,25]1
Meg Fsu * alkypemgmegl | myg | 7 ii[—: o agk[K i Mias # M |
Mes = 1/128 my = Syl Ty .1/128
R x) X
a, = a'xi‘a;i y o myg=my; o mp , X=FH; i=12,3,4 i, My xx) agi , My
(ALY I A TH=|H/1/kH Kie 1 Kop €807 | K cums(ag; + 3, ) 5 Kagr=+(ag, +ayy)
Kng* = +(me, — My, )= bB/TA Kméx=-(n1“+mm)= b9/TA Kngx == (Mgg + o )"'bto/'[}.\2

TABLE 1 - PARAMETERS OF AERODYNAMIC FREQUENCY TRANSFERS
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ch.é“ (w9 =famg, Ciw) + Akymiy, CH(“""")JC+
._{*‘ [a.KAFm'F‘r*- A”kNK/\H m'H#:] s
tiwr La(Kmig+mi) +

+ d1kH(KhHm'H5 +m'g) ]}

(31)

i
In these expressions the following notation is used:
a) aerodynamic derivatives:

a:Q.(_:AE,d1=_a_(_:Aﬂ, &=_9i
Bop doxy a4 an,
ffﬁi -~ the downwash angle derivative at tailplane.
o
b) coefficients:
kH = qH/q ~ the airflow retarding coeficient;
K K - coefficients of aerodynamic inertial

AF ! CAH
forces, see (17).

c) aerodynamic nondimensional normalized frequency
transfer functions:
CF(iw*) - for the wing, CH(iw"), hH((w") for

the tailplane (Theodorsen or Sears type),

C (1w~ for the effective downwash angle at

% tailplane.

d) geometrical parameters d;q up to d;#_and My

s are defined in table 1.

up to m;
4. Loss function of the moment

equation
4.1 Basic relations

The Fourier transform (4) of the moment
equation (2) expresses in the complex, plape a dif-
ference of two vectors (5) and (6): Y, - Y =

The first vector defined in (4a) and the second one

defined in (24) comprise the frequency transfers of

aeroplane responses E""l and En" m* These frequency
%

transfers may be computed from flight measurement
results as mean values on individual levels of the
angular frequency w¥ (j = 1,.. , k) from data got
at repeated experiments with numbers of reperitions
v=1,.. , n; , see /1/ and /4/. The measured data
with experiméntal variance Séj are loaded also by

uncorrectable residua of systematic errors due as
a rule by "freezing" of random errors from instru-
ments graduations. Experimental variance with re-
sidua of systematic errors in the experimental
vector Y. are deformed by the derivation which is
expresseg in the form fw* Eng.n(ﬂuﬁand in the

second vector Y they are deformed by the aerody-
namic frequency transfers k .agand F, gx In conse-
guence of it the equation C&) is of the form

LR 9 . - CoxX
YE(w)j)—-Y_r(zw}) e(wl) (32)
As an "a priori" estimation of the covariance
matrix of the motion equation deviations e(iu)})in

the sense of the above analysis is difficult and
untrustworthy, for the proposal of a loss function
the most simple relation was used, for which as an
"a priori" information a knowledge of the measured
values of freguency transfers of aeroplane respon-
ses is sufficient. The loss function is then defi-
ned by the relation

k
S= Zlgjlz=X[eZR(w§)+e_2-,(w})], (33)
=2 i

where ep and e, are the real and imaginary parts

of the deviation €(iwX) from (32). The function

S in (33) is called the "loss" function because it
is a measure of the loss of information involved in
both vectors.

The loss function according to (33) in con-
nection with measured frequency transfers of aero-
plane responses may be used in three ways: a/ for
proving the correctness of the aerodynamic frequen-

cy transfers ch_ﬁl , chco(r, ch'é" given in a

tabular or analytical form; b/ for investigation
of the influence of individual aeroplane para-
meters on the loss function S ; ¢/ for parameters
estimation in the aerodynamic nondimensional nor-

malized frequency transfers CF’ CH’ q”a and for
estimation of the coefficients KAF’ KAH'

For the first purpose it is suitable to define
the motion equation deviation in the form:

e(iw?) =w . [tw]. Fog.q W], +

; o : (34)
- {ch.,l(twsf)w- ch'“r(twj )[E’"“Z(' cuj.‘)]e*

+ ch.éx(iw-’j‘). [Fwi‘,l(iwj‘)]E}

As a comparation measure for the loss function va-
lues, its maximum value S for Y.. = 0 suits,
> max Tj

Smax = %‘Y‘Eil'
This method of proving the correctness of aerodyna-
mic frequency transfers has the advantage that one
need not know any analytical model for the aeropla-
ne responses in the real time domain nor in the
frequency domain.

For the second and third purpose the vector
?} must be expressed analytically as a function of

i.e.

the investigated or estimated parameters /% (1= 1,

‘e p), i.e.
Y-rj = VGl )

In the second case the parameters ﬂ[ influence is
estimated by means of the loss function S(pg)value.
In the third case the loss function S (f3;) is used
for estimation of the optimal values parameters in
nondimensional normalized aerodynamic transfers.

(35)

4.2 The loss function for estimation nonstationary

aerodynamics parameters

As a basis the equations (29), (30), (31) are
used, where for a simplification the coefficients
in the sense of tab. 1 are introduced. The total
aerodynamic moment frequency transfer YTj in the
loss function is in the sense of (35) espressed in
the form

. ooy X,
YTJ=YTQ(tw;;ﬂ3’ﬁIy)+ YTc(‘wJ' ? /5,;2:3.‘&.5-617) +

+ Y, CEw] (36)

ipggw)
where

a .
Yrms= s 'a“j C (£w]5 Ry, ) (37)

is the control transfer of the circulation origin;

Y, = Ko (Cw). Coliw s B, 3,0 +

Tej
+ KCH(iw}‘)-CH(t'wj‘ 3 Pys Pyt

* K (W) G (G ; g g 2) (38)
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is a component of the cireculation origin;
\(rc_,'= “*’f [&f'z(';“’f)]s'/’a +
+ [Fw;.q(‘W})JE ’ /39 ¥
* i) [Fapq(1wD] Ay,

is a component of the inertial origin. In the trans-
fer (38) the following functions are enclosed:

LX : ¥
KCF( (W)=m,, [&('ﬂ(twj):]e-rm‘:s[ﬁoj _n(lw;)JE(QOa)

Kcu(g,'w"i‘) =My, {E""l (f;wj“)JE +Mys ["L,;_Q(fw}‘)_]a(aob)

(39)

K5, (£l =ty %‘aﬂ [FmCiwD], (40c)
CdH(iw}‘):C“a(éw}“;ﬁs).hn(iw}';[56") (41a)
h(GW¥) = Hy (w¥; f ). e*tw] Toas (41b)

The functions (40a, b, c,) do not depend on
the estimated parameters. In the function (4la) in
the first approximation hy = 1 may be considered.

The loss function used for this purpose is
not linear in parameters and is of the from:

= 2o X, 2 .
S(/bl) § [ER (“‘JJ ,ﬂ’() + e, (“";“ ) /3[)] H (42)
{=1,..., P
When estimating parameter optimal values by
some gradient method one need still know: the
column matrix {p x 1) of the loss function gradients
with elements asla/3t and the Hess square matrix
(p x p) with elements 228/38 3/3¢ ,which has two

components and should be positively semidefinite
one at least.

5. The infuence of various parameters on the

loss function.

For apalyzing the influence of various
parameters 3 in (36) on the loss function (33),
results of flight measurements of a light trans-
port A 145 aeroplane described in /1/ and /4/ are
used as are also theoretical values of nonstatio-
nary aerodynamics paremeters given in ref /4/.
With respect to the form of the measurements

S LTAS LT I YA
sy | 0065 [0,0725 | 0,082 | 0,095 | 0,105
CASE LOSS FUNCTION S
Q-s 7| 0,544 | 0,524 | 0,505 | 0,488 | 0,485
1t} 0,653 - 0,680 | 0,725 ~
s ¥ 0,429 - | o049 | 0,571 | =~
10 1| 1,004 | 1,080 | 1,181 - -
X} + .
Caaﬂ -iWT, C(Xa- cos W, isinWT,,
CASE 1,5,10, see TAB 4 ; & /v, = 0,0685

TABLE 2 - EFFECT OF TRANSPORT LAG
IN C_ FUNCTION ON LOSS FUNCTION
OF THE A 145 AEROPLANE
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results in ref /1/, the analysis is done with
using the dimensional form of circular frequency
w = Uth% £ s1Jto which estimates of parameter

values b£< {=1,..,10) in tab. 4, case 10, corres-
pond.

In the first place the question should be
elucidated how to define the transport lag in
the frequency transfer Caa(au)of the downwash
angle at tailplane. Further a global evaluation
is dealt with of the effect of components of non-
dimensional normalized frequency transfers CF’ CH’

Caq due to the circulation and the effect of their
inertial components. )

5.1 Effect of transport lag

The transport lag T, occurs in all the consider-
ed expressions of the frequency transfer of the
downwash angle at tailplane. In the literature
above all four definition expressions are used
which are given in tab. 2, where 'waafH Iv y

’CWH=§H IVH , ngzglvH y and TH::rH ’VH

the definitions of the lengths enclosed are shown
in fig.3. According to the theoretical analysis for
a correct one the expression T, = § v, should be

and

regarded. The results of proving the given expres-
sions for the four basic cases of parameter values
are shown in tab.2. The first two cases correspond
to the quasi-stationary model in which all the
parameters are considered to be zero, i.e.

by = Tugzs =0 for [=1,..,10. These two cases

differ just in the form of expressing the transport
lag:
for the case Q-5 :

~ewTy .
e Wi - cwry, (43)
for the cases 1, 5, 10 from tab.4:
e "V - coswr, - Csincw (44)

The cases 5 and 10 from tab.4 correspond to a non-
stationary aerodynamic model. In the case 5 just
the effect of the inertial components of aerody-
namic forces is involved which are represented by
the parameters by, bg and by, . The case 10 cor-

responds to a complete set of nonzero parameters
by in a dimensional form.

The corresponding values of the loss function
are shown both in tab.2 and in fig.5. In this figure
a different character of the dependence(S, Tw)is
striking for the cases where the transport lag is
expressed according to eq. (43) or to (44). For
the (43) expression the optimal value is

Tw=Ty = 0,095 s, whilst for (44) this value is
Tw =0,065 s. This may be explained by the fact
that expression (43) is formally the same as the
expression of the inertial component according to
(17), where K has an analogical function like
Tw in (43). It follows then already from tab. 3
that to the decreasing negative values of the pa-
rameters bg and by, which correspond to the in-
creasing values of Kae and Ky, a diminishing of
the leoss function follows. The transport lag des-
cribed by (43) expresses in fact, especially at
greater circular frequencies, the other effect than
is that of the transport lag, namely the effect of
the inertial 1ift component of tailplane which in-
creases with lengthening the arm in the expression
of T, . By this the fact may be explained that a
physically incorrect length of the arm T, gives in



CASE
1 2 3 4 5 6 7 8 9 10 n
o= tnf 0 0 0 0 0 0 0 0 0 | 0,361 | 0,361
o) T =byesa] 0 0 0 0 0 0 0 0 0 |0,0358]0,0358
§ olocu=by | 0 0 0 o | o | o o | o 0 |0283 | 0283
= "é Y1t =b,es0] 0 0 o | o o | o | o |0 0 [0,0184 |0,0184
§ 5 Ty=bgesa] 0 | 0075 | 0075 0075| 0 0 | 0075]|0,075| 0,075 | 0,075 | 0,075
S E|°hy=b, 11| 0 0 |o0679| 0679 © 0 0 | 0679|0679 0679| 0
i v T,=b,cs3| 0 0 |o00178{00178| © 0 0 |0,0178 |0,0178 {0,0178| ©
. Kmi=bgts2| 0 0 0 0 00229 |-0,0229 |-0,0229 |-0,0229 |-0,0229|-0,0229|-0,0229
§ O |Kmé=bsts1] 0 0 0 0 0 |-00096 0 0 |-0,0096{-0,0096| O
S Kmg=bgs1| 0 0 0 0 |-0,0020/-0,0020-0,0020 }-0,0020 }-0,0020 |-0,0020/-0,0020
X =0,00497cs3| T 055 0 0 0 X 0 0 0 x x X 0
LOSS ::’fg{'g:) 113] 0,653 | 1,074 [ 1,181 | 1,137 | 0.429 | 0,490 | 0,958 | 1,029 | 1,173 | 1,004 | 0,825
Smax =1;oé9 )| 3,43 | 563 | 619 | 596 | 225 | 2,57 | 503 | 540 | 6415 | 527 | 432

TABLE 4- PARAMETER INFLUENCE ON LOSS FUNCTION OF THE A 145 AEROPLANE.

TRANSPORT LAG T, 0.065s

the quasi-stationary aerodynamics model Better
results than the physically justified 1ength§%.

5.2 Global influence of various components

of nonstationary aerodynamics

IQ this paragraph by means of the moment loss
function S the influence of nondimensional normaliz-

1,2
114 10
= 104 CASE Q-S : TABLE 2
bt é CASE 1,5,10: TABLE 4
“ 091
08-
S 07 i)/é
2
Es 5
S 0s- g
Q-s
04 -
TABLE 5
03

006 007 008 0.09 010 0,11
TRANSPORT LAG T, rs3
FIGURE 4- INFLUENCE OF TRANSPORT
LAG ON LOSS FUNCTION OF THE

A 145 AEROPLANE
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ed aerodynamic transfers of various physical origins
is researched at the same optimal value of the
transport lag Ty = 0,065 s. The survey of the
searched cases is given in tab. 4, where also the
correlation of symbols used in the functions CF’
CH’ qﬁa
rameters effect is compared according to the respec-
tive values of the loss function.

From comparisons of columns 1 and 5 and also
of columns 2 and 7 a very favorable effect of
inertial lift components is visible with exception
of the b, parameter in the column 6. An unfavorable
effect o? using more complicated expression for the

Caa transfer is seen in the columns 3 and 4. The

addition of circulation 1lift components in the
column 10 shows an improvement in comparison with
the column 9. An improvement in the case 10 is
achieved in the column 11 by a simplification of
the expression Ce, {bg = by = 0) and by omission
the bg parametera?bg = 0). As to this case the
value S = 0,825 corresponds, it was taken as a
basis for estimation of optimal values of para-
meters by. The case 5 gives the minimum value

S = 0,429 which is minor then S = 0,488 for the
quasi-stationary model with the transport lag

Tw = 0,095 that involves alsc the effect of the
inertial 1ift component in the sens of par.5.1.

A favorable effect of the inertial lift component
is seen also from tab.3.

The analysis of values in tab.3 and 4 supports
the statement that in the moment equation of motion
the nonstationary aerodynamics effect is applied
mainly by means of inertial 1ift components of the
wing and of tailplame (in the real time domain by
lift pulses at t = 0).

, in table 1 and in (36) is shown. The pa-



PARAMETER CASE OF TABLE #

£s3 OF £sy 5 - - -

by = Kex.T, [-00229 |-0,0270 |-0,032 [-0,037

by = Knax.T, 0 0 0 0

bo = K, 4« Ta [-0.0020 |-0,0025 (-0,0030 |-0,0035
s t11 |0,429 {0,402 | 0,380 | 0,367

bi=Tyoas=0 : i=1234567 :  Ty,=0,065s

TABLE 3- EFFECT OF INTERTIAL COMPONENT
ON LOSS FUNCTION OF THE A 145
AEROPL ANE

6. Estimates of parameters of a nonstatio-

nary aerodynamics model

As the loss function is not linear in para-
meters, for their estimation a set of minimum
gradient method was used. From orientation calcu-
lations performed for initial values which are
nearly corresponding to the quasi-stationary aero-
dynamics model (group A) and carried out for values
which correspond to the theoretical values from
/4/ (group B), see tab &4, case 11, it follows that
in the loss function more local minima exist, some
of them giving indeed parameter optimum values,
but not always having a physical meaning. Therefore
for parameter estimation a space of their values
must be given with respect to physical analysis.

A parameter estimation in the limited space
of their values was done by the method described
in /12/. The survey of the considered parameter
values limits, parameter initial values in the A
and B groups and the resulting estimates of para-
meter optimal values are shown in tab. 5. One can
see that estimates of parameters, of the loss
function values and of the sums of real and imagi-
nary components of the moment equation deviations
are nearly the same for both the groups A and B
of parameter initial values. The loss function
values in tab. 5 in both groups are smaler than
in the cases quoted in tab.2, 3 and 4 and they
prove the existence of the nonstationary aerody-
namics effect especially by means of the inertial
components. To the parameters by and bs the non-
dimensicnal coefficients Ky = 0.260 and Ky =
= 0.433 correspond. The nonzero sums of the moment

equation deviations disclose the presence of the
systematic errors remnants, to the origin of which

any statement can be made for the present (measu-
rement or model). The research is geing to be
continued also with regarding to the effect of
variances of aerodynamic derivatives measured at
steady flights (by means of bayesian approach)

7. Conclusions

The object of this paper is an guantitative
analysis of the sighificance of nonstationary aero-
dynamics effects in a mathematical model of a
longitudinal unsteady motion of an aeroplane at a
constant flight velocity which was excited by a
pulse deflection of the elevator in a slow steady
straight flight.

For assuring the physical comparability: of
expressions it is considered that generalized
coordinates are two sorts of physically different
angle-of-attack changes: the "attitude" and "path"
ones. It was proved that aerodynamic frequency
transfers of the whole rigid aeroplane for the
"attitude" changes of angle-of-attack are equal to
the sum of transfers for the "path" changes of the
angle-of-attack and of the transfers for time rates
of the attitude angle. The expression for deviations
of the moment equation of motion, expressed in the
frequency domain, contains both the experimental
frequency transfer of the moment of imertial aero-
plane forces and the total aerodynamic moment
transfer. Frequency transfers of aeroplane respon-
ses on an elevator input have in the total aerody-
namic transfer the meaning of a measure of exploit-
ing aerodynamic moments at the considered control-
led aeroplane motion. With respect to difficulties
at "a priori" estimation of a covariance matrix of
the motion equation deviations, a loss function is
proposed as a simple sum of squares of deviations
composed by real and imaginary parts.

The loss function may be used in three ways:
a) for proving correctness of aerodynamic freguency
transfers found out by means of numerical calcula-
tions or determined experimentally in a wind tunnel;
b) for stuying effects of the form and of values of
an analytical model of nonstationary aerodynamics;
c) for estimating optimal values of parameters of
aerodynamic nondimensional normalized frequency
transfers.

For the last two purposes an analytical expres-
sion was proposed for the total aerodynamic trans-
fer which starts from aerodynamic derivatives that
were stated by measurements at steady flights. In
their expressions three components may be distin-
guished: a control moments component and components

a | ESTIMATED e | T % | Tu | T | Kea [Kes | S (i=2%25) Zep |Ze
Z|PARAMETERS | & | b R :, : 1,,
_ Iparamerers [™n] © | o© 0 0 0 |-0026|-00025 - - - -
LIMITATION |max (045 | o004 | O40 | 0,02 | 0,08 |-0,014 |-0,0012] - - - -
INITIAL o045 | 0,015 | 0,35 | 0,010 | 0,020 |-0,018 |-00015| 0,503 | 2,638 | 1,555 | 1,465
A OPTIMAL |2 |0.450 | 0,0211] 0,271 | 0,020 . © 0,026 [-00025{0,339 | 1,780 | 1,340/ 0,833
g | INITIAL § 0,361 |0,0358| 0,283 | 00184/ 0,075 |-0,0229/-0,0020/0,823 | 4,314 | 1,013 | 1,864
OPTIMAL |™ | 0,450 | 0,0211| 0,271 [0,020| o0 |.0,026 |0,0025/0,339| 1,780 | 1,340 0,834

TABLE 5- THE A145 AEROPLANE AERODYNAMIC PARAMETERS ESTIMATION BY MEANS
OF THE GRADIENT METHOD FROM REF. (12]
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of aerodynamic moments one of which is of the cir-
culation origin and the second one of the inertial
origin. With respect to properties of methods for
optimal parameters estimation, for the third mentio-
ned purpose the number of parameters is decreased
to the lowest possible value i.e. to seven para-
meters. Orientation computations have shown that
for optimal parameters estimation it is moreover
necessary to delimit a space of physically meaning-
ful parameters values.

By an analysis of results of flight measure-
ments done on a light transport A 145 aeroplane
it succeeded to make clear a physical difference
between the two basic expressions (43) and (44)
for the transport lag in the frequency transfer of
the downwash angle at tailplane. The aerodynamic
inertial component has proved to be the most signi-
ficant one in the nonstationary aerodynamics model
applied in the moment equation of aeroplane motion.
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8. Appendix

The A 145 aeroplane data are taken from /1/
and are given in tab.6. The values af parameters
of aerodynamic normalized nondimensional frequency
transfer functions Ces Cys Hys hy and Cma , appro-

ximately expressed in (12), (13), (17), (20) and
(41b), are taken from /4/ and are given in tab. 4,
case 10 (to the parameters bg and b, nondimensio-
nal coefficients Ky, = 0,267 and K,y = 0,351 cor-
respond).

Aerodynamic derivatives and coefficients from
measurements at steady flights are given in tab. 7.
Coefficients for computations of the loss function,
see tab, 1 and expressions (34), (36) and (40a,b.c)
are in tab. 8. The aeroplane responses frequency
transfer functions fy ., (iw) and Fwy,,l(iw) and the

experimental frequency transfer of the pitching
moment of inertial forces Yg (f¢w) for the A 145 aero-
plane will be given in an ARTI Report. Mean experi-
mental variances of freguency transfers of aero-
plane responses are (sé—)o‘_,,z = 0,004 56 and

(88)wy.m = 0,015 00 s.

9. Symbols
AL ALA, Lift of aeroplane, wing an tailplane
respectively
Ay.x(s) Unit step admittance- response of the
y quantity on a unit step change of
the x quantity
b parameter estimate
4 {
CA=A/qS Lift coefficient of aeroplane
Cm-_- M] ‘18[ Pitching moment coefficient
?C Aerodynamic derivative, vy = A, m or
Cy.x ax Ap s Ay 3 X =0 o“r,@ s &, 0% i
Xg g Ky -
C, Drag coefficient
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m kg 1530 v m/s 54,20
A 089 | H | m | 139
A 0,247 kg/m’| 1,070
W 1 112,95 T | s 0,027 31
Taput,| 3,084 |1/¢, | s' | 36622
ne | 1 0126 |%q | 1 0,503
Xnes | 1 0,121 " 1 2,373
1 1 1,480 | m | 1030
b | m | 12,25 by | m | 3,39
A 1 8,78 An 1 347
S m? 17,09 Sh m? 3,31
r m 5,119 f m 4,940
E | m 3,770 &, | m 3,512
T4 0,696 | T, | 1 0,726
A 3,338 ool 4,796
S| 1 0,194 [Fr025| 1 5,046
Sury | 1 0,646 |Fs05| 1 5,296

TABLE 6 - CHARACTERISTICS OF THE A 145
SMALL TWIN ENGINED AEROPLANE
AND OF STEADY FLIGHTS, REF. [4]

DERIVATIVE | VALUE |COEFFICENT |VALUE

a2 =dC,; /3o, | 4,735 Cro 0,546

a,= OCa, /Aoy 3,261 | ky= a,/q 0,920
a,/a, 0,587 VK 0,959
dox, / doc 0,304

TABLE 7-DATA FROM STEADY FLIGHT
MEASUREMENTS OF A 145 AEROPLANE

VALUE

VALUE

My +0,57293501)| m,, [-1.939427 (1]
Tamgy |+0,007869 €s1| T,.my, [-0,203503 (s
mg 7 [+0072 386 (3| T, 0,027 306 (s

) msng:%

i =

me - (W), By (W)

TABLE 8 - COEFFICIENTS OF THE A 145
AEROPLANE LOSS FUNCTION




Aerodynamic normalized nondimensional

Cliw™) transfer function of the Theodorsen
type
CBJFLLOX) Normalized nondimensional transfer

function for the downwash angle o<y

Fy.x (G =Uy (¥ + i Vy , (W*) Frequency transfer
function of the response y on the
input x

FoGw®=U. (w9 +iw Ve, ( W) Aerodynamic tran-
Cy. Cy-x

Cy-x Y sfer Functi%n, y = A, omy Ap, Ay

X = X, O(r,@,? ; éx.

Aerodynamic normalized nondimensional

transfer functions of the Sears type,

related to the leading edge or to
0,251, respectively

H(w, h(iw*)

Nondimensional moment of inertia
around the y - axis

Ty =y [mi?

Ky=qu(g

k1(s) Normalized nondimensional 1ift admit-
tance of the Wagner type

{ Length of aerodynamic mean chord -
- geroplane reference length, £m3

m Aeroplane mass, [kql

9ﬁ=9V212 Kinetic pressure, CN/mZJ

™ Distance between aeroplane c.g. and
tail aerodynamic centre, rm3

s=Vt]{ Strouhal number

S=3 e} Loss function, j = 2,...,k

J
S,SH Wing or tailplane area, [mZJ

10. References

/1/ KOEKA, Vil.: Downwash at Unsteady Motion of a
Small Aeroplane at Low Airspeeds. Flight
Investigation and Analysis. ICAS Paper
No. 70-25, 1970.

/2/ WELLS, W.R. - QUEIJO, M.J.: Simplified Unsteady
Aerodynamic Concepts with Application to
Parameter Estimation. J. of Aircraft,
Vol. 16, No. 2, 1979.

/3/ QUEIJO, M.J. - WELLS, W.R. - KESKAR, D.A.:
Influence of Unsteady Aerodynamics on
Extracted Aircraft Parameters. J. of
Aircraft. Veol. 16, No. 10, 1979.

/4/ KOCKA, Vil.: Identification of Longitudinal
Flying Characteristics of an Aeroplane
and the Effect of Nonstationary Aerody-
namics. ICAS Paper No. 80-7.4, 1980,

/5/ JONES, R.T. - FEHLNER, L.P.: Transiens Effects
of the Wing Wawe on the Horizontal Tail.
NACA TN 771/1940.

/6/ SCANLAN, R.H. - ROSENBAUM, R.: Introduction to
the Study of Aircraft Vibration and
Flutter. Mc. Millan Comp., 1951.

/7/ DRISCHLER, J.A.: Calculation and Compilation
of the Unsteady-Lift Functions for a
Rigid Wing Subjected to Sinusoidal Gusts
and to Sinusoidal Sinking Oscillations.
NACA TN 3748, 1956.

195

v True velocity of an aeroplane, £m/s3
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