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Abstrac

Approximating the potential jump across a
wing and its wake within rectangular elements by
constants, indicial aerodynamic coefficients for
rigid and elastic modes of a trapezoidal wing in
incompressible inviscid flow have been calcu-
lated. The results show that the indicial coef-
ficients for different modes can be described by
a single simple function - a generalised Wagner
function. Knowledge of initial and steady state
values and apparent mass coefficients, which
have been calculated too, is thus sufficient.
Laplace transformation yields a generaliszed
Theodorsen function and transfer functions for
flutter or stability analysis.

Introduction

Indicial aerodynamic coefficients are re=-
quired for explicitly expressing aerodynamic
forces for arbitrary motion in terms of the
generalized coordinates.

Laplace transformation of expressions for
arbitrary motion yields transfer functions.
Usually, these functions are calculated by os~
cillating-surface methods, but Laplace transfor-
mation of indicial aerodynamic coefficients is
an attractive alternative. If the indicial
coefficients are given, the Laplace transforma=-
tion can be performed with high accuracy for
any real or complex value of the frequency
parameter. It yields a function that is analytic
at all points of the cut frequency plane.

Unfortunately, direct calculation of indicial
coefficients, which was performed by lomax et
al. (Ref. 1), is very difficult for compressible
flow even on the basis of the linearized theory.
But for obtaining a suitable expression (Ref. 2)
for approximating calculated or measured trans-~
fer functions, which is required in flutter
programs, it may suffice to know the qualitative
behaviour of the indicial coefficients.

For a flutter caleculation in which many
degrees of freedom shall be considered, one has
to calculate transfer functions for many differ-
ent deflectiion modes and reduced frequencies. In
an attempt to simplify such a calculation, it is
interesting to investigate if the variation of
the transfer functions for different modes is
significantly different.

It is known, namely, that a single function,
the Wagner function, is sufficent for describing
the variation of indicial coefficients for all
modes of a thin wing in 2-dimensionsal, incom~
pressible flow or, equivalently, that the
Theodorsen function is sufficient for describing
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all transfer functions in this case.

In & recent investigation by Stark (Ref. 2),
it was found that a single function, & gener-
alized Wagner function, was sufficient even for
rectangular wings and typical modes.

In this paper, a corresponding investigation
for a trapezoidal wing is described.

The results imply that it should be sufficient
for practical purposes to determine apparent
mass coefficients, initial values of so called
deficiency functions, and the steady state limits
of the indicial coefficients plus & characteris-
tic time for the wing considered.

Whether a corresponding simplification is
possible for compressible flow remains to be
investigated.

I ci c iej 8
All quantities in what follows are dimension-
less and referred to typical reference quantities.
Lengths are referred to the semi~-root-chord L,
velocities to the free~stiream speed U, times to

L/U, pressures to the free-stream dynamic pres-
sure .PU2/2, and velocity potentials to UL,

It is assumed that the perturbation pressure
can be calculated by the linearized theory and
that the deflection of the wing can be. described
by the equation

n

z = ;2? hn(x,y)qn(t) (1)

n=1

where the functions h (x,y) are given deflection
modes and q (t) undetérmined generalised coordi=-
nates. The Tormer depend only on the coordinates
x and y (in the free-stream and the spanwise
direction respectively) and the latter only on
the time t.

The perturbation pressure p and the perturba-
tion velocity potential 4 can be resolved into
components p_ and 4 _ which correspond to the n
term in Eq. B(1). Since p is related to £
through the linearised Bernoulli equation, the
pressure jump Ap_ and the potential jump '455
across the wing sBa11 satisfy

sv, = -2(0.26 /)x + dad, /d%) (2)

The potential dn is determined by the wave
equation (referred to the moving coordinates x,
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¥y z), the radiation condition, the wake condi-
tion, the Kutta condition, and the boundary
condition

an/dz = (Jhn/éx)qn + h 4§ (3)

n'n

on the wing (&n - dqn/dt).

¥e let the generalized aerodynamic forces for

arbitrary motion be represented by the dimension-

less coefficients
1
by o0) = [y 20,08 (4)

where S is a reference area, the wing area, and
d5S a surface element measured by the same unit
as S,

The two inglclal serodynamic coefficients

X' (%) and K

ing the aerodyﬁamlc forces for arbitrary motion
in terms of the generalized coordinates are
associated with two indicial potentials dn and
£<. These are definéd by the same differential
equation and the same conditions as Iy , but the
prescribed normal velocity is differeht. The
boundary condition for An on the wing reads

1

r =1 (5)
r =2

2605 = 4 @n_foo)ite)

b, H{t)

where H(t) is the Heaviside unit step function.

The indicial pressure jump is defined by
ap] = - 2344 /3x + Jagd /o) (6)

and the indicial coefficients by
ljjh aplas (7)
S m ©Pn

Nugerical method

The numerical method that has been geveIOped
is similar to Belotserkovskii’s method It is
applicable to a wing with unswept tralllng edge,
but this condition may be relaxed.

¥ (t) =
m,n

The boundary value problem for the velocity
potential is solved in this method by using
rectangular surface elements and by approximat-
ing the potential jump by a constant within each
element. The elements, which are shown in Fig., 1
for the right wing-half, are bounded by equidis-
tant lines in the y and x directions. These
lines are defined by

x = xy = (p-1/4)2a (8)

where M= 1(1)(is*1) and by
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(t) which are needed for express-

A 1o
A 1
A L
:
o -
14 A z
s
A
A
A
/ t
// 11
-
A i-
A ;
Y aim ,
1 x

FIG. 1 WING AND DOUBLET ELEMENTS USED IN NUMERICAL
CALCULATION

vad (9)

y =Yy = y

where V= (1)3 . The coordinates of the element
centers, which Serve as control points, are x =

X =x +d and y = Y, = y._.
i i x 3 h]
The trailing edge and the wing tip are de—
fined by x = 2 and y = b and i_, j and

are chosen such that (213*1) =52 and (53 +1/2)y
d = b . The semi-span b, the aspect ratio A,
afid the taper ratio c /c satisfy the relatlon
b = A(1+c /c )/2 .

The 1ndlclal motion starts at tlme t = 0. At
this time, the approxlmatmn..odi (t) to the
potential jump A4 within the 3 element
with center (x,y)g (X Y ) can be solved from
the equations

ZZ ")Ao’r n(0) - wr(X Y )

Va1 f=p

(10)

where 3-1(1)38, i-1(1)is,
wz(x,y) = ahn/dx r =1 (11)
h r =2

n

w}ll:\J, = K(p-i,p-3) + sK(}'-i,V"'J’") (12)

xs
K(i,3) = o 2 —)dy (13)
z-’O ;[ é{ 3
2 2)%

R-(12+y + z

(14)
(15)

g = 1 if hn(x,-y) - hn(x,y)

-1 "

hn(x,-y) - —hn(x,y)

xi = (Zi-l)dx, xs = (21+1)dx,
and ys = (2j*1)dy .

yi = (23-1)dy,

When the motion starts, a vortex sheet starts
to develop at the trailing edge of the wing.
This sheet moves downstream with a velocity
relative to the wing that is assumed to be equal



to the free-stream velocity. In order to calcu-
late the effect of the vortex sheet, this is
replaced by a planar surface with a potential
jump. The velocity, that is induced by this po-
tential jump, is calculated in the same way as
the velocity, that is induced by the jump across
the wing. Hence, at the time t = t, = k(2d_) the
potential jump approximations shalf sat1sf§

Zzwl'ﬂa&” “(t ) =W (x Y)
V=1 ji=p b +k
-ji H’\{‘,M; ()

V=1 ﬂ-is*1

(16)

According to Kelvin“s theorem, the strength
of the vortex sheet at a point that moves with
the average fluid velocity is constant and
equal to the strength that was generated when

the point passed the trailing edge. Hence, the
potential jump approximations in the right hand
member of Eq. (16) shall satisfy

T,
'ju,v(tk) = 447 ?v(tk ey )

(17)
They can be determlned successively by solving
the equations (16) for k = 1, 2, 3, oo &

The derivatives in kq. (6) may be replaced
by finite differences. This yields the approxi=~
mate formula

a9} (tey) = - 2[‘?‘51‘ LSy

- Aﬁil?’j(tk)]/(de) (18)

for the pressure jump at time t = ¢

k+1 °
For time t oz 0, the linearized Bernoulli

equation gives

4}’ 7(0) = -2 487'%(0) 8 (1) (19)

where S(t) is the UVirac delta function.

For the indicial coefficients, we find the
approximate formula

ZZh (x, 1175 )Apr “(t ) (20)

j=1 i=j

Kr
m, n( k

where AS = 4d_d . This formula yields good
accuracy. y

A generalized W funec

By means of the indicial aerodynamic coeffi-
cients, the generalized aerodynamic forces for
arbitrary motion can be written

t
Ky, n(®) = K] (e-Dg, @z + j
o 0~

(Z')d‘l'
(21)

(t’t?

where &n(27 = dqn(QV/dY'.

A simplification is achieved by introducing
the deficiency functions C (t) and the apparent
mass coefficients D~ .. Togé her with the steady
state limits B kT (0 ), these compose
the total indicial coeffTtlent

n;(t)

KI’ - KI‘ - CI‘ Dr
m,n(t) m'n(oo) . n(t) o (22)

14

Inserting this expression into Eq. {21) yields

X | -1 2 1 . 2 ..
K = K K +D D
m,n(t) m,n(a))qn * [.m,n(oo) m,;]qn+ q

m,n'n
t t

- J'C;’n(t—??én(@d? - jci,

o O~

n(t-?)a'n(z*)dr (23)

The integrals in this expression are less impor-
tant, in particular for low-aspect-ratio wings,
than those in Eq. (21). They are also more
attractive since the deficiency functions vanish
for t+ » .

In an earlier investigation2 for a rectangular
wing of aspect ratio 3, it was found that the
ratios

@) = C;,n(t)/C;’n(O) (2a)

were almost identical for the deflection modes
considered, i. e. independent of m, n, and r.

It is further known that the well known Wagner
function_ﬁ(t) is sufficient for describing the
indicial coefficients for all deflection modes
in the case of 2-dimensional incompressible flow.

There is reason to believe, therefore, that
a generalized Wagner function, or rather a sin,
generalized deficiency function 2(1J$(t %
corresponding to the normalized functions
can be defined for each wing and possibly not
only for incompressible flow. Probably, the
normalized functions are not exactly identical,
but it is possible that a single function is
sufficient for each wing (and Mach number) for
describing the deficiency functions for all
important modes in practical flutter or stability
investigations.

The deficiency function for 2~dimensional in-
compressible flow behaves like 1/t for t - o0,
but those for practical wings_in 3-dimensional
flow probably behave like 1/t3, which was found
in the earlier investigation®. We assume, there-
fore, that a generally useful deficiency function
may have the form

D) = (1 + t/1)73 (25)

where T is a characteristic time. This parameter
is probably not too much different for different
wings.

In terms of (t), the expression for the
aerodynamic coefficients for arbitrary motion
may be written as
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1 | 2 1 2
K X + [K +D ] D T
m,n(t) = m,n(a))qn m,n(a)) myn qn+ m,nqn

t
-[pte-ne] (0q,(0+ed (05 @)]ar  (26)
0

A generalized Theodorsen function

Applying Laplace transformation to Eq. (23)
and assuming that the initial values q 0) are
zero, we get n

L{Km’n,p} - Am,n(p)L{gn,p} - Di,nén(o) (27)

where the quantities A (p) are the aerodynamic
transfer functions and p the dimensionless trans-
form parameter (p = ik, k being the reduced fre-
quency). If the normalized deficiency function

is utilized, the expression for the transfer
function becomes

1 2 . } 2 2
A = K [k +D + D
m,n(p) m,n(a)) * m,n(oo) m,n JP m,n’

’

- &;ﬂﬁo%yﬁ (oﬂzh-ﬁ-nn) (28)

m,n

where 2(1-C(-ip)) = pl{yﬂ,p} . For 2-dimensional
incompressible flow, the function C(-ip) is the
Theodorsen function and the expression is then
identical to the formulas of Theodorsen and
Kilssner. For plunge and pitch about 50 % chord,
we then have

Tla,nl® [0 2 o+ 1 0 76
0,-1 -1, o 0,1/8
- [b, 2l+p[ 2, 1 I1-C{-ip))
0,-1 ~1,=1/2

If the simple expression {25) is used for

sp(t), we get

(29)

2(1-C(-ip)) = TpP,(Tp) (30)
B (p) = (1-pF,_,(p))/(k-1) (31)
F,(p) = ePE (p) (32)
E,(p) = - ¥ - 1a(p) Zzit (-1)%Y @@ (33)

n=1

for Iarg(p)i<9f; ¥ is Buler’s constant, 0.577215
664901533... (See Ref. 4).

The function defined by Eqgs. (30)-(33) is a
generalized Theodorsen function which seems to be
applicable for finite wings in incompressible
flow. It is illustrated in Fig. 8. Like the
original Theodorsen function and Birnbeum’s’
formulas, .the. generalized function contains loga-
rithmic conwributions. Due to these, the imagi-
nary part of the function is discontinuous on
the negative part of the real axis of the p
plane.
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Co tation of indicial coefficients

The numerical method has been programmed in
Fortran end run on the CRAY computer. By the
present version of the program, & maximum
number of 500 unknown quantities can be solved.

Results will be given for the wing that is
shown in Fig. 1. This has aspect ratio 2.4 and
taper ratio 0.17. The program was run for i_ =
24, j_ = 20, and 100 time steps. During this
time ~the wing moves a little more than four
root-chords.

Since there are only asbout 4 wing elements
on the chord at the tip, the accuracy of the
results for certain deflection modes may not be
as high as desirable.

The reference quantities L and S are equal
to half the root-chord end the wing area respec-
tively.

The deflection modes considered are symmetric
and defined by

b= J 1 n=1 (34)
g{y/v) 2
x 3
xg(y/b) 4
1 on C 5
0 off C
{ x-x on C 6
L 0 offcC

where x and y are coordinates with origin at the
wing apex and g(Q) = 1.2p° - 0.2 . Cis a
control-surface bounded by the leading edge x =
1.75 and the side edges y = 20b/81 and 40b/81 .

Results

Kesults for the apparent mass coefficients,
the initial values of the deficiency functions,
and the steady state limits of the indicial
coefficients are given in Table 1-3 for r = 2.

Results for r = 1 are not tabulated since, for
the modes considered,
1
- - 1
K ) {o n - (35)
[} 2
2
K
2,1(t) 3
X
m,Z(t) 4
9] 5
2
K 6
L m,5(t)

The results for the normalized deficiency
functions are plotted in Fig. 2 - 7 for m =
1(1)5 and n = 1(1)6, and the function ¢o(t) =
(1+t/7)-3 is represented by the solid lime for
T = 2,55 in each figure.

The calculated values are seen to be approx-
imated very wellin most cases by (t). Certain
deviations are observed, but they are small and
it is difficult to say, therefore, .if they are
due to numerical errors or if they really exist.



Table 1

Apparent

.. 2
mass coefficients Dm
e ——

o
1
2
3
4
5

n=

1 2

3

4 5

6

1.6339 0.3031
0.3031 0.1064
2.1082 0.4391
0.4501 0.1678
0.0110 0.0026

2.1752 0.4625 0.1088
0.4515 0.1722 0.0253
3.0015 0.6911 0.1788
0.6916 0.2767 0.0430
0.0187 0.0045 0.0047

0.0154
0.003%6
0.0256
0.0062
0.0008

Table 2

Initial values szn

n(o)

B

1

2
3
4
5

ns

1 2

3

4 5

6

0.5255
0.1770
0.6084
0.2430
00110

0.1324
0.0468
0.1562
0.0650
.00028

0.9158 0.2396 0.1417
0.3089 0.0849 0.0476
1.0607 0.2830 0.1640

0.4241
00191

0.1181 0.0653
00052 .00030

0.0266
0.0089
0.0307
0.0122
000055

Table 3

< 2
S i K
teady state limits .n(oo)

—I

ne

1 2

3

4 5

6

1

2
3
4
5

2.7193 0.6979

0.7464 0.2748 1.3174
2.8609 0.8704 5.6658
0.9871 0.3875 1.8293
0.0049 0.0016 0.0173

4.7415

1.2650 Q.7242
0.5071 0.1867
1.6667 1.0842
0.7408 0.2928
0.0049 0.0138

C.1357
0.0349
Q.2081
0.0559
Q.0047

2 n/ed o
14

0.5

2 t 3

FIG. 2 NORMALIZED DEFICIENCY FUNCTIONS FOR PLUNGE
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FIG.3 NORMALIZED DEFICIENCY FUNCTIONS FOR BENOING
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FIG.6 NORMALIZED DEFICIENCY FUNCTIONS FOR TONTROL-
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FIG.7 NORMALIZED DEFICIENCY FUNCTIONS FOR CONTROL-
SURFACE ROTATION



Cl-ipl=1-5 ToFy(Tp) Cheip)

arg (p) = Tt Im(Tp)

’/////;><\\\\ REAL PART
/ 2

-3 -2 o) 1
Re{Tp}
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——d
arg(p)=TC-

FIG.8 THEODORSEN FUNCTION FOR TRAPEZOIDAL WING IN
INCOMPRESSIBLE  FLOW

Comparison

The coefficients of the expression (28) are
determined (partly via the relations (35)) by
the tabulated results in Table 1 - 3. By means
of these and the result for the characteristic
time T, it is possible to calculate the aerody-
namic transfer functions 4 (p) for arbitrary
values of p. m,n

Such a calculation has been performed for
imaginary values of p and the result for one of
the transfer functions is compared to that from
a corresponding calculation by an oscillating-
surface program in Fig. 9.

The agreement is seen to be close as it
should be.

The oscillating~surface program that was
used in the comparison is a program developed
by this author by dividing the wing into a large
number of trapezoidal surface elements and ap-
proximating the advanced velocity potential jump
by a constant on each element. The advanced po-
tential is obtained from the ordinary potential
by replacing t by t+x.

o o a
Ay o y
1
0.51
1]
2 1 2 x
CALCULATION VIA INDICIAL COEFF.
o OSCILLATING SURFACE METHOD
Re {p}=0
0 DS —
0.1 0.2 0.3 Im(p} 04

FIG.9 TRANSFER FUNCTION FOR LIFT DUE TO FLAP ROTATION

Conclusions

A numerical method for calculation of indicial
aerodynamic coefficients for trapezoidal wings
in incompressible flow has been developed and
applied to such a wing.

The results obtained for 6 typical deflection
modes including control-surface deflection show
that the normalized deficiency functions for
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these modes are almost equal and that they can
be represented by a single function for prac-
tical purposes.

The representative function may have the
simple form (1*#1;/'1‘)"3 where T is a characteristic
time. For the wing considered, this is about
1.275 root-chords divided by the flight speed.

During this time, the deficiency functions
decrease to 1/8 while the corresponding figure
for a wing that travels one chord in 2~-dimen-
sional flow is 2/3.

The results imply that it should be sufficient
to determine apparent mass coefficients, initial
values of the deficiency functions, and steady
state limits of the indicial coefficients. In
addition, it is required to determine the char-
acteristic time, but this seems to be indepen-
dent of the deflection mode and only slightly
different for different wings.

The representative function in the frequency
domain is a generalized Theodorsen function
which is_obtained by Laplace transformation of
(1+t/1)73,

The indicial coefficients or the corresponding
transfer functions in the frequency domain can
be used both in the flutter analysis and in the
dynamic stability enalysis of an airplane.
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