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Summary

The paper gives a brief description of a
method which enables linear non-stationary aerody-
namic characteristics of an aircraft as a whole to
be computed. The method has been derived under the
assumption that the aircraft is in an ideal gas
flow in the subsonic region.

The actual aircraft is simplified in the
computation ~ it is replaced by the so-called basic
shape. The basic shape is then divided into panels
and the continuous load of the panels is replaced
by a discrete force. The computation, conceived in
this manner, contains no integration and has no
particular demands on the computer; also the com-
puter times required are sufficiently small so that
the method may be used for parameteric studies.

The basic computer program for computing
aerodynamic loads was developed to enable the
direct use of intermediate results, or of the re-
sults of the basic computation, as inputs for other
computer programs, for example, the computation of
the generalized aerodynamic force coefficient, the
induced drag coefficient, and for simulating aero-
-elastic properties. Further applications were then
developed by applying the reversed flow theorem.
Some examples of the computations are also given.

List of symbols used

Cp srrvenn. pressure coefficient

K o vivennen reduced frequency

Lg ........ discrete force acting on panel
I veenees band width (3.7)

11PN number of computation step
Moo, Mach number

o pressure

Pq(N,t) ... value of aerodynamic transient
function at time t

*
Pq(N,GD) ... steady-state value of transient aero-
dynamic function

R.v vevnn distance between point where discrete
force acts and point where bopundary
conditions are satisfied

At ool time step

Toeeernnnn. velocity of undisturbed flow

R vector of the absolute disturbance ve-
locity of gas

Vi erereees boundary condition on panel

P oaeineen matrix of normal shapes of oscillations

@ .. transposed matrix of normal shapes of
oscillations

D oiirinnnn Laplace s operator

Poooeronnt angle of band with plain xz
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1. Introduction

In recent years, methods of computing the
aerodynamic characteristics of whole aircraft are
being published more and more frequently. The
methods are more or less general and mostly con-
centrate on solving concrete problems of a parti-
cular class of aircraft of a particular manufactur-
er. The methods also reflect the traditions of the
manufacturer and the experience of the authors.

From the very beginning, our intention was
to develop a method of computing the basic aerody-
namic characteristics, which substantially affect
the performance and properties of aircraft of the
classes on which research in our institute-is con-
centrated. In developing the method, emphasis was
put from the beginning on the usability of the
method in practical engineering and minimum require-
ments as regards computer equipment. The latter and
simple preparation of the input data are a prere-
quisite if the method is to be used for parametric
studies in the initial stages of the design. With
this object in mind, certain simplifications may
be introduced as regards the gas flow, on the one
hand, and as regards the aircraft, on the other.
The method has been developed for Mach numbers
smaller than the critical value. The solution is
based on the linear theory, i.e. on the assumption
of continuous flow. This assumption is acceptable,
because the shapes of aircraft in the principal
flight conditions conform to linear dependences of

lift , side force and moments on kinmematic para-
meters.

2. Basic formulation of the problem

This method is based on the direct solution
of the mathematical formulation of the flow problem
of solving a system of linear partial differential
equations with the prescribed boundary conditions.
Under the assumption that the body in the flow may
be considered to be a thin body, and this is pos-
sible in practically all the cases of the aircraft
class involved, linearized equations of motion of
an ideal gas are obtained, using the method of
small perturbations, in the absolute coordinate
system and dimensionless form:
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Inspite of the considerable variety in design,
the aircraft of this particular class have one
feature in common, i.e. the small value of the
ratio of the thickness measured in the plane perpen-
dicular to the longitudinal axis to the length
along this axis. They may thus be considered an
thin bodies, which enables the method of small
perturbations to be applied in basic flight condi-
tions.

The method of small perturbations assumes
that the changes relative to some basic condition
are small. Small changes in absolute gas velocity
are caused not only by small changes in the kine-
matic parameters, but also by small geometric
changes of the basic shape, which yields a zero
absolute disturbance velocity of the gas under
non-zero velocity of the undisturbed flow. This
indicates that the basic shape may be composed of
a system of infinitely thin surfaces parallel with
the longitudinal axis of the aircraft. The thick-
ness of the sections of the aircraft in planes
perpendicular to the planes of this system and the
deviations of the controls are considered to be
small perturbations of the basic shape.

Under this choice of the basic shape, the
normal velocities on both sides of the surfaces
forming the basic shape are the same, and this is
sufficient for calculating the aerodynamic deriva-
tives. This concept of the basic shape also enables
the values of some other coefficients to be obtain-
ed, such as the lift coefficient and the pitching
moment coefficient under zero angle of incidence,
values of the coefficients due to controls devia-
tions, using the reversed flow theorem. It is known
that in the first approximation, i.e. if the pro-
blem is linearized, the distribution of thickness
has no effect on the aerodynamic derivatives. This
is the reason why the effect of the thickness of
the aircraft parts relative to the basic shape will
not be considered further.

In very much the same way as in the theory of
the thin profile, the boundary conditions here are
also satisfied in their basic form, which conforms
to the adopted accuracy in the case of bodies with
a low aspect ratio.

Therefore, not only small values of the
normal component of the absolute disturbance velo-
city of the gas flow are assumed, but also small
values of the derivative in the direction of the
normal. The method of small perturbations allows
this assumption to be upset locally. Here this
applies to the neighbourhood of the leading edges
of the surfaces forming the basic shape. The singu-
larities in these places will have no substantial
effect on the final result of the linear approxi-
mation. As in the classical linearized theory of
a wing of finite span, the induced drag coefficient
of the aircraft as a whole can also be obtained in
this case. Figure 1 shows the comparison of the
calculation of the induced drag coefficient with
the experiment for the jet trainer L 39. The com-
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parison of the computation of the basic characte-
ristics and of the experiment for a rectangular
wing with an aspect ratio of 6 is shown in Fig. 2.

3. Solution of the general formulation of the
problem

The general formulation of the problem reduc-
es to solving system (2.1) for the given values of
the normal component of the flow velocity along
basic shapes and to solving the problem of deriving
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the relations between the prescribed normal veloci-
ty component and the loading of the basic shapes.
The. continuous motion of the basic shapes
can be expressed as a continuous sequence of pres-
sure pulses applied to the basic shape at every
instant of time. By using the equation for a double
layer and subsequent time integration, Eq. (2.1)
will yield the following relation between the
normal velocity component and the loading of the
shape:

dr, X

0 (3.1)
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To compute the time variation of the load, the time
integration in (3.1) is approximated in the fol-
lowing manner:
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The indices m and g denote the individual
time instant. After dividing the basic shape into
N¥panels in the way described in Section 4 and
replacing the load on each panel by the discrete
force L., we may formally write the system of
algebralc equations for computing the panel loads,
based on Eq. (3.2):
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In comthing the elements of the matrix of system
(3.4) Hi.q, the element is considred to be the
differefide of two parts,
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These expressions are already given in the frame of
reference of the basic shape. After calculating

the integrals in (3.6) for the elements of the
matrix of system (3.4) we arrive at
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The same relations also hold for (H]3%)
the only difference being that in Egs (3.79 a%é ’
(3.8) (tm - t ) is replaced by (t - t + Aat)
and (m - q) byl(m - q + 1). n 9

4. Basic shapes

The basic shapes should be chosen as simple
as possible but sufficiently representative of the
aircraft involved. The basic shape must, in the
first instance,reflect the effect of the parameter
which is most important in the problem being treat-
ed.
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In general, it may be said that the basic
shape is given by substituting the actual shape
by the mean areas of the aircraft elements. These
areas are then considered to be parts of the planes
parallel with the longitudinal axis (the x-axis).
Depending on the configuration of the aircraft and
possibly on the solution of a partial problem, one
then arrives at one of the types of the basic
shapes shown in Figs 3 to 7. The basic shape is
marked by the bold contour. Experience with basic
shapes chosen in this manner indicate some interest-
ing properties, e.g. in computing the characteris-
tics of the forward motion of the aircraft, the
basic shape in Fig. 3 may be replaced by the part
of the xz-plane bounded by the aircraft ground
plan, provided the wing does not have excessive
coning and the seperelevation of the tail-plane
relative to the wing is small. Experience also in-
dicates that the ground plan can be adopted as the
basic shape also in computing the characteristics
of the longitudinal motion of thin rotational
bodies; the same conclusion was also drawn in /2/.

Fig.3
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In computing rockets, it was found that the
result was the same whether one adopted the part
of the xz-plane bounded by the sections defined by
the axis of the fuselage and the stabilizer chord
rotated into the xz-plane as the basic shape, or
the basic shape shown in Fig. 7.

If the solution is to be effected by the
method of discrete forces, the basic shape is divid-
ed into small elements - panels. The panels are ar-
ranged in sections of constant width, parallel
with the longitudinal axis. The edges of the sect-
ions are chosen to reflect as best as possible the
changes of shape given by coordinates x and z, and
also identical with the edges of ailerons, flaps,
spoilers, etc. The sections are further divided
into bands; the latter are chosen to provide the
possibility of computing the wing itself, the air-
craft without the tail-planes, etc., with minimum
intervention in the input data. The band is also
considered to be a rigid part. In developing the
method, the opinion was reached that it was suf-
ficient to choose panels in the shape of parallelo-
grams. Experience has shown that, given a suffi-
cient number of panels, the directions of the
leading edges of the sections could, to a certain
extent, be chosen arbitrarily, e.g. parallel with
the tangent to the contour of the basic shape at
the point where the section axis intersects the
leading or trailing edge of the basic shape, paral-
lel with the z-axis, or with the axis of rotation
of one of the deflected parts. A similar delibera-
tion may be carried out in placing the sections on
the basic shape, because their lengths are equal
to multiples of the chord of the panel. In practi-
cal computaions, the leading edge of the band is
located along the leading edge of the basic shape,
or at the point of intersection of the section
axis with the contour of the basic shape. In some
cases it has been found advantageous to locate the
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sections so that the leading edges of the panels
lie along the axis of rotation of a deflected part.
Locating the sections on the basic shape so that
the leading edges of the sections are identical
with the leading edge of the basic shape has be-
come established mainly with a view to to the beha-
viour of the load along the longitudinal axis and
to computing the moment characteristics. The divi-
sion of part of the basic shape into panels is
shown in Fig. 8.

The load on each panel is approximated by a
discrete force acting in 1/4 of the panel chord,
and the boundary condition is satisfied in 3/4 of
the panel chord where the axis is located.

5. Calculation of the derivatives of aerodynamic
coefficients and transient curves

The division of the basic shape and the
computation procedure, described in the previous
two sections, enable the derivatives of aerody-
namic coefficients to be calculated in two ways.

In the first, classical method, the appro-
priate boundary condition from Eq. (3,4) is satis-
fied simultaneously on all panels. In this way the
loading of all panels is determined directly and
the calculation of the derivatives of the coef-
ficients is then very simple. The second method
makes use of the assumption that every band is
rigid, i.e. it may be displaced along its normal
and rotated about its axis perpendicular to the
aircraft axis. If one also considers that it is
the linear region we are working in, any deforma=
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tion can be compounded of these two deformation
created artificially. It is, therefore, advanta-
geous to carry out the computation by considering
gradually a unit displacement or rotation of only
one band. In this way we obtain the matrix of
influence coefficients of the panel loads. These
matrices are stored and used to calculate the deri-
vatives of the coefficients for any deformations
the basic shapes within the scope of validity of
the theory. The actual panel loads are obtained
from the load values for the unit displacements by
multiplying by the actual deformations, and the
derivatives of the aerodynamic coefficients are
then calculated in the same way as in the first
case. This second method is particularly advanta-
geous, €.g. in computing the coefficients of gene-
ralized aerodynamic forces, i.e. at that stage of
the project when the external shapes of the air-
craft are no longer changed, but the rigidity cha-
racteristics may still be subject to considerable
changes.
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Equations (3.4) and (3.7) indicate that two
procedures may again be adopted in considering
unit changes of deformation at a jump in the ini-
tial stages of motion. If the time step is taken
to be a very large number, steady-state values of
the coefficients of aerodynamic derivatives are
obtained. If the calculations are made at indivi-
dual instants of time corresponding to the displa-
cement of the basic shape by one panel length, the
aerodynamic transient curves are obtained. The
computation is terminated as soon as the increments
in the successive steps are small and the values
are close to the steady-state value of the deriva-
tive, which is also part of the computation. It
has been found that in some cases of computing the
coefficients of generalized forces of a wing or a
T-tail, it is sufficient to carry out the computa-
tion of the aerodynamic transient curves in the
first few steps and to compute the steady-state
value. Increasing the number of steps has only
very little influence on the result. This has been

verified by computing various cases and also compar-
ed with the results of other authors, e.qg. /4/,
/9/. This can again be applied to both methods of
computation mentioned. In this way one obtains the
aerodynamic transient curves for the aircraft as a
whole, schematically shown in Fig. 9, and for an
isolated wing, Fig. 10. This procedure also enables
the computation to be carried out for Mach number
equal to zero without any modification to the com-
putation procedure at the beginning of the motion
as is the case, e.q. in /1/.

(N, t)

Fig. 10

6. Computation of the general load distribution by
means of transient aerodynamic functions

After computing the aerodynamic transient
curves, the general time variation of the aerody-
namic loading is determined with the aid of
Duhamel”s integral. The following relation for the
time variation of the pressure function as a
function of parameter g(t) is used in the computa-
tion:
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If the time variation of parameter q(t) is consider-

ed to be
0....t<0
(6.3)
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we arrive at the following equation for the guasi-
stationary harmonic motion:

ikt
Faink) = [PQ(N,k)e ] -

t =0

(6.4)

@

» . ~ikv
=Go {PiNwi +iK | Igineg)€ dr

[+]

Let us now take a more detailed look at the case
of quasistationary harmonic oscillations under
deformation of the aircraft; if we again consider
the possibility of resoclving a general deformation
into two independednt parts (translation and rota-
tion), Eq. (6.4) will yield that part of the load
due to translation and rotation. The total load
may then be expressed as

- Fo +Pg ]
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(6.5)
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This indicates that, having solved the fundamental
problem, i.e. the computation of the aerodynamic
transient curves, the basic conditions of flight
mechanics, dynamics and aeroelasticity, as regards
knowledge of the time variable loading of the air-
craft, can be satisfied with the aid of Eq. (6.1).

7. Simulation of aeroelastic properties of
aircraft

The simulation of aercelastic properties of
aircraft can be given as a new example of exploi-
ting aerodynamic computations based on calculating
the aerodynamic transient curves and matrices of
aerodynamic influence coefficients.

Several mathematical models of aircraft are
known, /2/, /5/. The individual models differ
namely in the way aerodynamic data have been used.
In developing the mathematical model for simulat-
ing aercelastic properties, we started with the
combination of modelling the properties of a non-
-rigid aircraft by means of discrete points of the
construction /3/ and of the method of free oscil-
lations /3/, and we used our own computation of
the aerodynamic data.

The formula for the dynamic equilibrium of
all mass points (panels), which schematically
replace the non-rigid aircraft, was taken as the
basis; in matrix form this can be expressed as
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mar = al - aF (7.1)

where m is the diagonal matrix of weights, ar the
column vector of small changes of position perpen-
dicularly to the surface of the panel relative to
the initial state, at the column vector of dis-
crete aerodynamic forces acting along the normals
to the panels, and AF the column vector of dis-
crete rigidity forces of the construction, acting
against the changes of position ar .

After some algebra using the matrix of
normal shapes ¢ and a coordinate system whose axes
are identical with the principal axes of inertias,
we arrived at a matrix model which can be expres-
sed as

o 2

M(ql'+23e5?.q2+522q) - olal (7.2)

where M is the matrix of generalized masses, 2
construction damping, ® natural frequency and g
the output parameter. The r.h.s. of the equation
is in dimensionless form.

The solution of this equation in time is
complicated because the r.h.s. depends of the
input and output parameters. The input parameters
are the deflections of the control elements, wind
gusts, atmospheric turbulence, etc.

After resolving the r.h.s. of Eg. (7.2) into
two parts, which correspond to the input and output
parameters, and considering the computation at in-
stants spaced at at, this equation becomes

Mldn+ 202G+ 22G ) = ghlgm+ pal,. (7.3)

m=12...

q_ is the vector of output parameters, alg, the
vector of aerodynamic loading due to cutput para-
meters at time t_, algy the loading due to the
input parameters at time t .

To treat the r.h.s., it is advantageous

to consider Eq. (4.5) for time t . in the following
matrix form:

HOALm+H1ALm—1+ ----- +HkALm k+....-V
m=12...

The solution

(7.5)
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is used for simulation; here



(7.6)

Since the linear theory is involved, the
boundary condition for computing aerodynamic loads
due to the output parameters may be expressed as

LI

ax q’m

Vi = 9Gm - (7.7)

The same applies to the input parameters, expres-
sed in terms of matrices ¢, which are functions
of the generalized coordinates €:

3¢,
Ax

€ (7.8)
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Based on these relations, the aerodynamic loading
due to the output parameters may now be written as

?TALqm - ((PTAD‘?) q:m + (‘PTA‘\(P )q:m~1 .
(7.9)
(AP Tm+ (9TA 0 gy

and the aerodynamic loading due to the input para-
meters as

T - T 3 T 4 R
Plaley = {pAgepe)€n+(9TA p )€ 1+
(7.10)
T \ e
*(? Aoe?ex)em *(? A1e?ex)€m_1*
where A are the matrices computed for the input

parameters. Transient functions can be used to an
advantage to compute matrices of the typeslqﬁ4k¢)
and {9TA, 9x ) instead of Eq. (7.6) The following
holds for the transient function of the j-th gene-
ralized coordinate if t 20 :

i
- ,¢\ -
g = (0,0.‘.,1,.._0)7-0,}"
(7.11)

4=(0,0..0)"= ]

If we denote by Al%k the vector of aercdynamic
loading of the transient function for the j-th
generalized coordinate at time t, , E£q. (7.9) will
yield the following for the individual time steps:
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Since (9"Axp)gjtis the j-th column of matrix
19TAL ), the wéole of matrix (Q’Ak¢) can be de-
termined on the basis of £q. (7.12) from equation
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If the aerodynamic transient functions are
known, we are able to determine all the matrices
required for modelling aerodynamic loading.Equation
(7.13) clearly shows the physical meaning of the
elements of matrix (YA, ¢ ). For a particular time
these elements are proportional to the increment
of aerodynamic loading of the transient curve
between a particular and the preceding instant of
time. It also follows that the corresponding number
of matrices of type (7.13) can be used to simulate
aerodynamic loading with the required accuracy,
because the differences between the individual
steps approach zero asymptotically with increasing
number of steps, as can be seen from the transient
curves. The required accuracy and, consequently,
also the number of matrices to be used can be de-
termined from the difference of the time-step value
and the steady-state value of the transient func-
tion. One can see that it is convenient to take the
value of the steady-state transient function as the
last loading value.

Figure 11 shows an example of simulating the
properties of a trapezoidal wing with an aspect
ratio of 10,5.

8. Conclusion

The paper presentsa description of the method
of computing non-stationary aerodynamic characteris-
tics of an aircraft, based consistently on comput-
ing the aerodynamic transient curves ‘and matrices
of aerodynamic influence coefficients.

The computer programs were written for an EC
1040 computer, which is comparable with an IBM 360.
The computer time required is relatively short and
data preparation does not require very much time
either.

The method has already been used for prac-
tical purposes and there are possibilities of de-
veloping it further.
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