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Abstract

The importance of investigating unsteady wing
problem in shear flow is increasing. However,
nonpotential property of the flow prevents using
a perturbation velocity potential. In this paper, a
theory of wings which are oscillating in a weak
shear flow is presented. The flow is assumed to
be incompressible and  inviscid, and  the
nonuniform velocity distribution is normal to the
wing surface. The potential lifting surface theory
is extended into the shear flow case by the
method of successive approximations. The integral
equation for the lift distribution to the first order
approximation is derived by the double Fourier
transform, .and it is solved numerically by the
mode function  method. Calculations regarding
oscillating rectangular wings with heaving and
pitching modes in a shear flow are presented as
examples. Generalized forces which can be easily
related with unsteady lift forces and moments are

obtained. Results ~show that the shear flow
decreases all forces in amplitudes.
I. Introduction

The problem calculating lift and pitching

moment on a wing, especially in an unsteady

condition, is fundamentally important for several
kinds of studies of aeronautics. In almost all of

the cases discussed, the flow is assumed to be
uniform (potential flow) . In engineering
applications, however, the upstream condition is

not always uniform, but rather nonuniform, being
disturbed by several obstacles ahead of the wing.
It is possible to divide the types of shear flow
along the spanwise direction (the upper figure of
Fig.1l), and the shear flow normal to the wing
surface (the lower figure of Fig.1).

For the former type, the author(l)presented
the results of calculations in which rectangular
wings are submerged in the uniform shear flow
along the spanwise direction; unsteady lifting
surface theory was applied. Due to the linearity
of the flow wvelocity distribution and the
rectangular wing, the integral equation for the
lift distribution reduced to a well known form
which could be solved I?¥> the already developed
method of mode functions .

For the latter type of shear flow, some
theor?tg'i?al works have been already published.

Tsien ~‘obtained the exact solutionof a uniform
shea](4)flow past a symmetrical Joukowski airfoil.
Chen " used - the second order theory in
calculating the pressure distribution over the
airfoil in  uniform  shear flow. Chow et
al.(5) vreated an airfoil in nonuniform flow, and

solved nonlinear differential equations numeri(:g)lly
using(7‘5he ﬁnite(8siifference method. Ventres s
Yates' “and Chi succeeded in obtaining the
effect of boundary layer on wing surface by the
lifting ace theory. Nishiyama and
Hirano( RE Ew)fanalyzed the unsteady
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Fig.l Two Types of Shear Flow

characteristics of an airfoil in the shear flow.

In this paper, the latter type of shear flow is
analyzed, and an unsteady lifting surface theory
based on an inviscid and incompressible shear
flow model is presented. Since ‘the velocity
distribution of laminar wake (see Fig.2) is
adopted, the method of Ref.l cannot be applied.
A weak shear model is used in order to  extend
the linearized potential theory by successive
approximations. Accordingly, an approaching flow
is assumed to be slightly disturbed from the
uniform flow on the plane normal to the wing
surface, and then a small positive quantity ¢
representing a measure of this deviation is
introduced. By a double Fourier transform, the
partial differential equation for the pressure is
transformed into an ordinary differential equation.
The integral equation for the lift distribution is
derived and solved by the mode function method.
Generalized forces are calculated to the first
order approximation by the collocation method.

II. Basic Equations

Let a thin wing be submerged in
incompressible and inviscid flow as illustrated in
Fig.2. If it 1is assumed that the disturbed
velocities are much smaller than the free stream
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Fig.2 Wing in Weak Shear Flow

velocity U(z), the

/ . can be
linearized by the small perturbation theory as

equations of motion

du du dU{z) 1 9p _

75—5+U(2)—BE+ dz +58x—0 (@)

v v 13p _

=t U(z)% * 3 7 0 (b) €D)]
w dw 1 9p _

3 " U@ MR IR ()

and the continuity equation is given by
U, v | w _
= El t o = 0. (2)
After differentiations and algebraic manipulations
between Egs.(1) and (2), the following partial
differential equation for pressure can be derived

3 3 yg2 du(z) 3°p

2+ —] - =

b7 U(2)-1V7p = 2 = Saiz = 0 (3)
Assuming simple harmonic motion, p is written by
p(@,y,2,t) = p(m,y,2)e™?. 4)
Therefore, Eq.(3) can be rewritten as

, 9,02z _ AUz 3D _
[iw + U(z)am]v p - 2 = Behs = 0. (5)

Now, we can transform (x,y)-space into

(e, B-space by using a double Fourier transform
expressed by

x ®©

p*o,83z) = [ | ﬁ(x,y,z)e—i(mgy)drdy. (6)

—Co—00

As is well known, the inverse transform of Eq.(6)
is given by

_ l o oo _ .

Plysa) = ryr [ [ presgime P Wanag.  (7)

Applying the double Fourier transform to both

sides of Eq.(5), the  following  ordinary
differential equation is obtained.

2= % % —
dp? oo dU(z) dpt _ pogs . g, (8)

dz? T “wtU(zya dz dz

where R%=o’+@” Eq.(8) is a linear differential
equation of the second order. Here, we confine
our attention to the weak shear case, in which
the velocity distribution is given by

Uz) = U {1 + ef(a)} 9)

where ¢ is a small quantity of the first order. In

this case,z}* may be expanded into a power

series of € as follows:

p* = p* + ept + Pt + o0, (10)
0 1 2

where the p.*(£=0,1,...) are functions

of z, a and B . Slbstituting Eqs.(9) and (10) into
Eq.(8), successive differential equations can be
obtained by collecting the same order coefficients
of € as follows:

dp*
—— - R¥*p* = 0 : 0(1) (11)
CZZ 0
dzﬁf X 20 of !
- 7 L - p— o I
7&;2— R p’: UH'UQO—OC_pO : 0(g) (12)

ey

where the following approximation is made.
2

O r '
w+ U {1+ ef(z)}ocdwgf (2)
2el_af’ U of
_ o0 _ oc 2
_w+Uwoc{1 €w+Umoc+O(€ e

It is clear that Eq.(11) expresses the potential
flow case, and, therefore, in order to solve
Egs.{(11) and (12), we can use the method of
successive approximations; i.e. (i) solve Eq.(11)
first, (ii) solve Eq.(12) by substituting p* into
the right hand side. 0

III. Derivation of the Integral Equation
and Method of Solution

Before deriving the integral equation for the
lift distribution,_ it is _convenient to obtain the
relation between p* andw*, The Fourier transform
is applied to both sides of Eq.(Ic).

. - 1 dp*

% 4 = = 13
o + Ulz)alw* + 5 da 0 (13)
follows. Substituting Egs.(9), (10) and 0%,
expanded as
zf;*=§;*+ez?;*+ezzf;:+"', (14)

0 1
into Eq.(13), the following successive equations
are obtained in a manner similar to that of
Eqgs.(11) and (12).
1 P}

; w* 4 =t = : 5
T(w + Uoooc)wo + 0 @ 0 0(1) (15)

dp*

; ¥ 3 % 4 L 1 . .

{w + Uoocx)w1 + tUmocfwo + - = 0 : 0(g) (16)
At this  point, the boundary conditions: can be
expressed in (0,B)-space as follows:

(1) p*=> 0 at 2—3 +% j.e. any disturbance
should dsiappear_at plus and minus infinity.

(i1) w¥a,8,+0) = w{o,B,-0) (this is the condition
of tangential flow.)

First, let us consider the Of(E)~case, Egs.{(12)

and (16). Eq.(12) can be easily solved as
- Rz -Rz
# = +
pl(oc,B,z) Cl_e Cl+e
+ EL B ()5 (0,8, ) sinhR(s-1)dE (A7)
where
2U_ o
G () = ———— (18)



By the boundary conditions,
constants are related as

+ & “"(f

the two integration

-{c

Cly - +f )f7 (£)5*(@,8,) coshRtdt)

¢ (a)

1
c = Z/OZOZ;* + & (“)f hild <t)p*<oc,6 t)sinhredt
Gf o , -

- n {75 (t)pz(oc,B,t)Costhdt (b) (19)
where 1* is the lift force by the shear flow as
follows: !

Z;*_(OL,B,t) - Z;* (()L;B’t)

1% = 1 th (20)
1 1 /2
-2_p oo

Combining Eqs.{(16) and (17) with Eqgs.(19)
and (20),
7:7’;(06,6,0) UOOOC ZD:((X,B’O)

U, * wtl_ ocf(o) U,

u R “u GF@) = 2Rt
S T8 - _‘_{&ww ) [ rre
X1*(a,B)dt - [Fr ey 2R 24(a,8)dt) (21)

is derived, where 7¢* is the lift distribution of
the potential flow case; this is the equation for

the lift distribution 7:* in (o, B)-space. The
integral equation for 7; in (x,y)-space can be
obtained after inverting Eq.(21) and some
algebraic manipulations (see Appendix A):
"
wl(x,y) W (x,y)
g + fO)—— g + Sl(x,y) + Sz(x,y)
1 AV
- ﬁfsf%l(x',y’)el xoCZK(xo,yo)dx’dy’ (22)
where xo=x-x' , yo=y-y' , V=we/U_  and
B (e =8 (e T
- (23)
Zl(m,y) = ril(x,y)e-l\)x
Y
_ zw (x',y) 1 °°w (x »Y)
5 (@) = -t {f ez’ - f dx'}
S ) = - ~l~fﬁ @'y e S (e Ly Ydw'dy
27 8mg o 7 0 0*Y, Y
e—l\).’L‘ 13
T + -V )= =
@y ) = fo{f B+ (=2)} M (1-i% )2 5
x ei\-)k 1. -
x{f © N SK (O (22)%))
_~00‘/>\Z+y2+(2§)2 0 0
-1 0 A 5% AV
+ 471\)3{; el 2 [ c A
/:c§+y§+(22)2 o/ A 4y 24 (22)
_ 0
1,v A W IRAN
+ i (\)/y§+(22)2) 1 (24)

It is easy to ascertain that the integral equation
for 7, (the O(1)-case, the potential flow case) can
be derived by applying the same process used in
the O(€)~- case to Egs.(11) and (15). The process
is omitted here. Consequently, Zo can be obtained
by solving the potential flow case, and then 7:
can be obtained by solving Eq.(22) using the
value of Zg.
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Several kinds of methods have been presented
in -order to solve the integral equation in lifting
surface theory. Among these methods the 'mode
function method' is applied in this paper. The
detail of this method can be found in Ref.2. The
points different from the wusual method are
explained in Appendix B.

iV . Examples of Numerical Calculations
and Discussion
Numerical calculations are performed by the

collocation method. The wing surface is divided
into many small panels as follows:

e(n) .
x =x,(n) + (l-—cosd}),pl ’
pv JANRY (25)
by
n\) = ’? = —cose\) , v =1, W,
where
_ 2w __vm
¢p~21\7+1’e\)—m+1' (26)
Then, the integral equations are transformed
into a set of linear equations as follows:
"
w (p,V)
- = 2 Z r"rsz (p,v,r) : 0(1) (27)
N o q—lr-l q
wl(p,V) O(D V)
- - ) - -
7 f(O 7 ERCRY Sz(p,v)
=2§r A (Pyv,r) 2 0(E) (28)
g=lr=1 o q
where
M1
- =) ’
Qq(p,v,r)—le{l?q(p,v,%)KMHP ®,V)0,,+F (2,0,

+(—)2E (CROL.
In the above equations B P E Y

and T take tHe sag]e fo%ms gs those
in ]quef\?q. There\fore if the upwash velocities wp
and w1 are given on collocation points, the
simultaneous equations Egs.{(27) and (28) can be
solved, and the lift distributions can be
calculated. In order to obtain the unsteady
response in the shear flow, it is effective to
calculate the generalized force which is defined

by

a.

. = (29)
id

1
- mgzizjdx‘dy .

where 1 denotes force mode, and J oscillation

mode.

In this paper, rectangular wings with zero
thickness are adopted as examples of numerical
calculations, where the aspect ratios are 3 and
6. The number of collocation points is ¥ = 3 in
the chordwise direction, and m 11 in the
spanwise direction. Some oscillation modes are
given subsequently. Since a simple harmonic
motion is assumed, the heaving osc111at10n J =1,
and the pitching oscillation J = 2 are used,

-h ., 2

= =0 oX (30)

Z. . = .

J=l J=2
Both heaving amplitude % and pitching amplitude
ao are taken as unity in calculations. Therefore,
upwash velocities are given by
» (x,y) 9z . (x,y)

s b4
0 . ] 7,\)35{ Z + 7/__2 @)}

o

J



AV AY) iz, . ivx

" - ( d)j=1’ 1- 73 J=2

wl(x,y) AV 9z . (x,y) vz

T]J. = e J“(O)—sL——»——,aJc = Oj=l’ e f‘(O)j=2,
(31)

and force modes are given by

= - = - 32
O R 32)
where 7 = 1 denotes a half of the lift coefficient,

and 7 = 2 a half of the nose-down pitching moment

coefficient about the leading edge. Finally, the
following velocity profile f(z)is assumed as

2+ 3z
f@) = - expl-(—97%}, (33)
where 2z, is the wing position, and 7 is the

degree of spread of the shear flow. This profile
simulates the wake produced by an object ahead
of the wing. Generalized force given by Eq.(29)
are obtained for the first order approximation at
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Fig.3 Stiffness and Damping Derivatives against
Frequency Parameter in Heaving Mode
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Fig.4 Stiffness and Damping Derivatives against
Frequency Parameter in Pitching Mode
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Fig.5 Stiffness and Damping Derivatives against
Wing Position in Heaving Mode
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Fig.6 Stiffness and Damping Derivatives against
Wing Position in Pitching Mode

¢ = 0.1, i.e. the maximum loss of the approaching
flow velocity is 10% of the reference velocity U,
Complex generalized forces in the unsteady state
can be rewritten as
= 4 oo

Q5 = A+ VY, (34)
where @! and g Mare the ftiffnessf and damping
derivati¥es re7’s7pectively @ The former is related
to the vertical and angular position of the.cases 7
= 1 and 2 respectively.

In Figs.3 and 4, these derivatives in two
oscillatory modes are shown for the wing with
aspect ratio 6. The broken line shows the

potential flow results (O(1l)-case). The parameters
of the shear flow are taken as #»n = 1.0 and 3=
0.5. It is clear from these figures that the loss of
flux in the shear flow decreases all force
coefficients except the values forQi in  the
heaving mode. The difference between fdsults of
the potential flow and those of the shear flow is
not so affected by inV the range of these
calculations. As described above, subscripts (1,1)
and (2,1) are vrelated to a half of the 1lift
coefficient and nose-down moment coefficient about
the leading edge in the heaving respectively, and
(1,2) and (2,2) are those in the pitching.

In Figs.5 and 6, generalized forces are plotted
against zgfor three values ofn. Since they are
symmetric with respect to 290 = 0, and have a peak

604

T T T
—_— , |
2 == R ;
————{—— — ____AR
IS
)
1=
©
o
Py — o
potential
v=05 .
n= |
20=0.5
0 L I i
0 0.2 0.4 0.6 0.8 1 1
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Fig.8 Spanwise Pitching Moment Distribution
in Pitching Mode

at zp = 0, the results of the positive region are
illustrated. These tendencies can be predicted
by the form ofS,(x,y) given in Eq.(24), because
it includes the second order derivative off(z),
which is symmetric with respect toz. Although
the shear flow decreases all force coefficients
near the center of the wake, these coefficients
take the same values at the center of the wake
except for @{:and@{:, and they gradually
approach the potential flow values as 2o becomes
large. The largern becomes, which means the
wake extends in thexz-plane with the constant
maximum loss €, the wider the influence of the
shear flow becomes. It seems that not the total
loss of flux but the wvelocity gradient with
respect to 2 becomes dominant at small#.

Sy (x,y) is more affected by # than by any other
parameter. In Figs.7 and 8, the spanwise
aerodynamic force distributions are _shown for
aspect ratio 3 and 6 in the case of V= 0.5, 7 =
1.0 and 20= 0. By these figures, results already
established in the potential flow case are
obtained.



V. Conclusions

The response of oscillating wings in the weak
shear flow are obtained by unsteady lifting
surface theory. The flow is assumed to be
inviscid and incompressible, but has no potential.
The partial differential equation for the pressure
is transformed into an ordinary differential
equation by the double Fourier transform. In

order to simplify the problem, a method of
successive approximation is wused, i.e. all
variables are expanded into power series of g,

which is the degree of strength of the shear
flow. Moreover, it is formulated in arbitrary
modes of oscillation of wings.

Numerical calculations are performed for the
velocity profile which simulates the wake caused
by an obstacle ahead of the wing. Generalized
forces are obtained in heaving and pitching
oscillatory modes of rectangular wings with aspect
ratios 3 and 6. Lift coefficients and pitching
moment coefficients for each mode can be easily

calculated by the generalized forces. The loss of
flux in the approaching flow decreases the
amplitude of all force coefficients. Unfortunately,
no experimental results have been found.

However, these results seem to agree well with
those described in the two-dimensional steady flow
case.
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Appendix A

The double Fourier transform and its inverse
transform are expressed as

Pl = [ [ - & O gy (a.1)

ey = ko] [ PO ggp (A.2)
@m* 7.

respectlvelyzp Therefore, inverse  transform

of ¢*(a), e and R/1- 2(w+U o) can be obtained

as follows:

. ..Uﬁ
FHet @ 1= 8@ - 36D Usgn@ ) (4.3)
-1, -2t 1 t Ak
Fole iy {x2+y2+(2t)2}3/2 “-o
it — 1= i@ L;A A (A.5)
F [i.z(wywu) = lm U _£500t" P o/ N2y A :

The right hand side of Eq.(A.5) is the kernel
function of the integral equation for the Ilift
distribution in potential flow.

Next, the convolution formula of the inverse
transform is given by

Flp*-p*] = | f F(z-a'yy- yE (@ L,y Nde'dy ' (A.6)
1 2 oo

Using Eqgs.(A.3), (A.4), (A.5) and (A.6),
following results can be obtained.

[G*(oc)w (a,8)1=f f Gl (y-y N (a',y"Ndx'dy’

=00 0O

. < W
=2[50(x,y)-7;§ﬂe‘%‘“{f ST B (a'y)de’

-0

© L ®
Y U @t (A7)
~l. G*() 2Rt
F ‘"7:'2((1)"‘[] OL) A (0698)]
- ac e wA
1 f e U
= —[[ e U ra- —--)—-{j —°% Yo7
”Uwf-oo It 24y 24 (2t)
- %‘K (‘U@”/yz+(2t)2)}+ 9 {———__i“&
0 Yoo 0 Voo Vs +y2+(2t)2
JWA
W x 87/U_ 1 W [’y 2 2
i = 5 K Gy (26) ) 1]
Veozeo VAZ4y 24 (28) 2 w & Yo 0
0
Xlo(x',y’)cbc’dy’ (A.8)
Appendix B
Let rfl be expanded into following series.

Ly ‘(n' B.1
%1(‘%‘ y') = Wc(yr)ff(ﬂ )\{’ @n , ( )
where

cos(g-1)¢' + cosgd’ (8.2)

sing’

¥ (91) =
q(¢)
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Substituting Eq.(24)
equation is rewritten as

into Eq.(22), the integral

$1Cx,n> $O<x,n>
At FO g

© oo}

+ S (x,n) + Sz(x,n)
f Z Tl(ﬂ’)F (x,n3n"dn’ (B.3)

where

S (x,mn)
1

n,
xw (x’

4%
_ s 12w (@0
~IOf () {f m—d’ - 5f —F

UEX)

"
¥ . (a)
2 rg<n'>wq<¢>e”vxoaz

g, @m = ffwc(n'>
XT(:JC Y, )c(n ) indddsdn’
1 l
=55 ] & Z romNS, (,nsndn’
nv=_1 g=1 9

(b) (B.4)

S (z,n3n") = - *J cle Ve T(xo,yo)Wq(¢)sin¢d¢ (B.5)

In order to Cdlculate the right hand
Eg.(B.5), it is convenient to divide
parts as follows:

side of
into four

4
T@ »y ) = klek(x,n;n’) (B.6)
where —
A
T (@,n3n')=- 0(l—iﬁxo)f’(O)F(O;xo,n,n')
-i\—)
T (@,m3n’)=- 0 (1-70x )f {frz)=f"(-2)}

F(z; % 5T n')ds
—'L\)x
T (x,m3n "= ———=—4v2f {F )+ (-a)}
F(z; z 5N, n")dz
"7/\).%' S
T (xz,n3n")= -——41\)2f {rr ()+f' (- -z)}
ei\)x

e T oy P G T

(8.7)
and
x 75\—)%
F(zx ,y )= f o
—oo /A2+y +(22)°
x FAVDN o
N s—— YA S1E vy +(22)%)
DMy o

1, =5 E
A= 5K OV 22)?)

-in{zh(v¢y§+(zz)2)-ﬂ%(vvy§+(zz)2)}] (8.8)
Accordingly, Sqis rewritten as
S (x,msn') = Z S (x,m3n") (B.9)
q k=1 9
where

s (z,m30")=— —f &2 ivxoT (2,151 )Y, () sinods,
k'123

Logarithmic singularity included in Sq
by

72 (z,m3n’) = 8§t (x,n3n’) - ¢ (x,n)log|n-n’
5@ y i gl |

(B.10)

is removed
(B.11)

= Ty d ' 1t a
C;(-?C,T])‘ ;{1+’LU(Z -0 (0){2f0fq(X0)dX0

X ] X
.U 1 2 - 2
-2f fox yax 1= i O G] F e 2f Foxpax )
(B.12)
fclz(Xo) 7———*-—-}( 1% {cos{(g=1)cos” (1 ~2X )
+cos{qcos (l 2X )1
f;(XO) 7-————*}( 1% [cos{(g~2)cos™ (1 2X )
+cos{ (g+1)cos L-2x )}] (B.13)
where
Xo = %(1 - cosd)p)
Finally S2 is written as
RN
S (p,v) = r / (p Vs AK
2 g=lr=1 =1 4
a2 ro ot
’ qzlrzl %Y Toe
it
-8 S (p,v, )\)K (B.14)
g=1r=1 q”x =149
where
r . = s 5 B.15
Sq(“pv’”v’“x) kZz q( o yimy) (B.15)
and
% 9 A1 %
Z,(,nsn )= Kli’z Z_(x,n; “x>[ + Zlcoswexcost']
W= (B.16)



