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Abstract

The unsteady form of the full potential equation is
solved in conservation form using implicit methods based
on approximate factorization and relaxation schemes. A
local time linearization for density is introduced to enable
solution to the equation in terms of ¢, the velocity poten-
tial. A novel flux biasing technique is applied to generate
proper forms of the artificial viscosity to treat hyperbolic
regions with shocks and sonic lines present. The wake is
properly modeled by accounting not only for jumps in ¢,
but also for jumps in higher derivatives of ¢, obtained from
requirements of density continuity. The far. field is mod-
eled using the Riemann invariants to simulate nonreflecting
boundary conditions. Results are presented for flows over
airfoils, cylinders, and spheres. Comparisons are made with
available Euler and full potential results.

1. Introduction

Nonlinear aerodynamic prediction methods based on
the steady form of the full potential equation are used
regularly for treating transonic!2 and supersonic®~¢ flows
over realistic wing-body configurations. Numerical algo-
rithms to compute the unsteady form of the full poten-
tial equation are still in a developmental stage, and several
researchers’~!! have recently made significant progress in
this area. There are several issues involved in the con-
struction of a robust and efficient numerical algorithm for
the unsteady full potential equation. They are: 1) proper
treatment of boundary conditions in a nonorthogonal grid
system, 2) correct formulation for the production of ar-
tificial viscosity to capture sharp shocks, 3) proper time
linearization concepts, 4) unsteady wake treatment, and
5) nonreflecting outer boundary conditions.

The objective of the present paper is to present a nu-
merical treatment of the unsteady full potential equation
that properly takes into account the importance of the
above listed items. The paper discusses a local time lin-
earization procedure for treating the time derivative term,
a flux biasing concept based on sonic conditions (instead
of the usual density biasing procedures) for the treatment
of spatial derivative terms, split boundary condition pro-
cedures consistent with approximate factorization schemes,
unsteady wake models with proper jumps in ¢ and higher
derivatives of ¢ taken into account from density relation-

< ships, and nonreflecting unsteady far field procedures based
on Riemann invariants derived from the characteristic
theory.
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Use of unsteady methods has application not only to
unsteady problems, but also to time asymptotic steady
state solutions. If the unsteady method is constructed prop-
erly (robust and efficient), then it can even be made to
generate steady state solutions faster than methods based
on the steady form of the equation. Also, in the unsteady
method, since the time direction is always present, the hy-
perbolicity of the unsteady full potential equation will allow
one to obtain solutions to problems across the Mach number
range (subsonic, transonic, and supersonic), whether steady
or unsteady. The unsteady method of this paper, when
combined with the steady marching method of Refs. 4-6,
provides a complete treatment of the full potential
equation.

Results are presented for flows over cylinders, spheres,
and airfoils at various Mach numbers, and some compar-
isons are made with Euler solutions. Use of the split bound-
ary condition technique, combined with the flux biasing
concepts'?!3, has produced a very robust method which,
even for a difficult case with a fishtail shock at the trail-
ing edge of an airfoil, did not require any user-specified
“constants”, such as the ones discussed in Ref. 2.

The paper also presents the results from a “hybrid”
calculation, wherein the spherical blunt body solution from
the unsteady code has been effectively used to provide the
initial data plane for a supersonic marching calculation per-
formed over the Shuttle Orbiter geometry.

II. Formulation

The two-dimensional/axisymmetric unsteady full po-
tential equation written in a body-fitted coordinate system
represented by 7 = ¢, ¢ = ¢(z,y,t) and n = (=, y,t) takes
the form

(5).+03) + (5) oo 0

where
S = 0 for two dimensions, = 1 for axisymmetric

p = density = [l -~ 7—2——11‘420 (24,
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The density p and the fluxes pU and pV are com-
plicated nonlinear functions of ¢, the velocity potential.



Hence, to solve for ¢ from Eq. (1) will require a local
linearization.

Let ‘n’ be the running index in the time direction, ‘K’
in the ¢ direction, and ‘7’ in the # direction leading out of
the surface. The objective is to solve Eq. (1) for ¢;‘,:1 at
the current time plane, knowing the information at n, n—1,
n — 2, --- planes.

A. Treatment of 2 (%) in Eq. (1)

(&) =

(a1 = 60) {(?)n+l - (’})"} — b, {(z;.)" _ (?)"—l}

a1 A7 — 65 (ATI -+ A‘rg)

(2)
where
ay = (AT;I + ATg)z
bl = A‘l’lz

¢ = 0 for first order time accuracy
§ = 1 for second order accuracy
Arp =t g

Aty = 7% — 71

In order to write Eq. 2 in terms of ¢"*!, a local time
linearization procedure is introduced.

a¢

where Ag = (¢"*+! — ¢"). The term (%%) is a differential
operator given by
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where ‘a’ is the local speed of sound.
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Combining Egs. (3) and (4), the nonlinear density
function in terms of ¢ has been linearized, and the coef-
ficients multiplying A¢ are evaluated at the known previ-
ous time level. To maintain conservation form, both pn+!
and p" appearing in the first term of Eq. (2) are linearized
according to Eq. (3).

B. Treatment of C.‘?—g (p%]-)
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where p;‘;’c’i 1/2 appearing in the spatial derivative term has
been linearized to f;k41/2. The symbol ™ appearing over
p denotes that the density has been modified to produce
the necessary artificial viscosity. The modified density is
obtained from a flux biasing concept to be described later
in this paper. For a genuine unsteady problem {where a
time asymptotic steady state does not exist), initially, 5 is
set to p" and then subsequently iterated to convergence by
setting p to the pre—time plane. For problems where the
steady state exists and is of interest {steady transonic flow
over airfoils or blunt objects), § is always set to 5" and
requires no internal iterations at the n + 1 plane.

The only unknown in Eq. (5) is A¢.

C. Treatment of 5% (p%)

V n+1 . ‘a_ ~Vﬂ,+1
(7). =2 (75)
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Similarly, §j+1/2,k is @ modified density based on flux
biasing.

D. Biasing Procedure

The spatial derivative terms given by Egs. (5) and (6)
are central differenced expressions about the node point
(7, k) and are symmetric operators. For shocked flows and
for treatment of hyperbolic regions, these operators are
desymmetrized by introducing the biased value of density
in the upwind direction. This will create the necessary ar-
tificial viscosity to form shocks and exclude the expansion
shock. The biased value of density 7 can be obtained in
several ways, Some of them are presented here.

a) Density Biasing? (in the ¢~direction)

P—
—

. -dp
Pkt1/2 = Prstfz T vAg (3—5‘)

b
k+1/2
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( M k+1/2

where M is the local Mach number. For U > 0, the — sign
and backward differencing («) is used in Eq. (7), while for
U < 0, the + sign and () operator is used.

b) Directional Flux Biaging

—
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c) Streamwise Flux Biasing
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where S is the Jocal streamwise direction. Equation (9) can
be rearranged as

ﬁ—l[pq#:{U
q

Q
where @ = VU? + V2,
In Egs. (8) and (10), the term {pg)~ is defined to be
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The quantities p*q*, p*, and ¢* represent sonic values

of the flux, density, and total velocity, respectively. These

sonic conditions are given by (using the density and speed
of sound relationships)

_ 1+ ‘”’T“QM&, (1-2¢, — ¢t — nedy)

(@)
i

(12)
p* = (g My )2 (=1,

Note that for steady flows, the sonic conditions p* and
g* are only a function of the freestream Mach number, and
for a given flow they are constants. For unsteady flows, p*
and ¢* need to be computed everywhere due to the presence
of ¢, and other unsteady terms in Eq. (12).

The density biasing based on flux, Eq. (10), is more
accurate than the one presented in Eq. (7), since it is based
on sonic reference conditions. To illustrate the flux biasing
procedure for various situations, Eq. (8) is considered.

1) Subsonic Flow (g < g¢* at (j,k + 1/2) and (j, k —
1/2)} for U > 0, the modified density in Eq. (8) becomes

ﬁj,k+1/2 = {(PQ)J}k+l/2

5. k+1/2 (13)

_ [(pq);k+l/2 - (pq)},k-l/z]}

= pjk+1/2 (since (pg)™ at (j,k + 1/2) and (j, k — 1/2) is
zero, according to Eq. (11).

2) Superscric Flow (¢ > ¢* at (5,k +1/2) and (j, k —
1/2)) for U > 0,

1
95,k+1/2
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For steady supersonic flows where (p*¢*) is a constant
everywhere, Eq. (14) reduces to

3) Transition Through Sonic Line (¢ > ¢* at k+ 1/2
and ¢ < ¢* at k — 1/2. Refer to Fig. 1a.) For U > 0,

95,k—1/2
95.k+1/2

ﬁg‘,k+1/2 = Pj,k—l/z{ (15)

ﬁj,kﬂ/z = Gikt1/z {(pQ)]',k+l/2 0
—(rg = £*q")jks1/2 — y(),‘ k—1/21} (16)
_ g
B Qj,k+l/2.

4) Transition Through Shock (g > ¢* at k — 1/2 and
g < ¢* at k+1/2. Refer to Fig. 1b.) For U > 0,

Pik+1/2 = Tikt1/2 {(PD) k4172
0
~0A0) y1/2 — (T — P70 )sk—1/2]} (a7
1 * Kk
= pik+1/2 + {pa~r"a"}ik-1/2
5.k+1/2

For steady flows where p*q* is a constant, it can be
shown that at a pure supersonic point (case 2 above), the

, SONIC LINE
/

E ,/ H
k—1/2,’ k+1/2 k+3/2
—O—H——O—H—O——O—
k—1 | k k+1 k+2

a) TRANSITION THROUGH SONIC LINE

k+1/2 k+3/2

b) TRANSITION THROUGH SHOCK

Fig. 1. Notation for flux biasing.



flux biasing procedure, Eq. (8), and the usual density bias-
ing techrique of Ref. 2, Eq. (7), are identical.

9 _ p
aq - a2q (18)

% 0003 __y

3¢ —‘b’gag —-"“1‘2‘(1‘1; (19)
a — a * ok
5?(/7(1) = ag(pq—p ")
= %(pq) (for steady flows only) (20)
= peq + P4
Using Eq. (20)
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Using Eq. (21), thus, for a pure supersonic point, Eq. (8)
becomes, for U > 0

- 1
Pik+1f2 = Giks1/2
{ o 1 (22)
g — OGP q<l——>}
‘ M2 5k+1/2
Using v = (1 - MA?)’ Eq. (22) can be written as
Pik+1/2 = Pik+1/2 — V(Pa‘,k+1/2 = Pj,k—-1/2) (23)

=(1-v)pjk+1/2 + VPjk—1/2-

Equation (23} is the usual density biasing technique of
Holst?. However, while transitioning through a sonic line
(case 3) or through a shock (case 4), the flux biasing pro-
cedure of Eq. {8) accurately monitors the sonic conditions
p* and ¢*, as given by Eqgs. (16) and (17).

The advantages of flux biasing over the denmsity
biasing® scheme are:

1. Does not require any user-specified constants (the pa-
rameter ‘c’ in Ref. 2) that depend on the severity of
the flow.

2. Provides a monotone profile through the shock wave
(for details, see Refs. 12 and 13).

3. Allows for larger Courant numbers to be taken during
the calculation (by not producing undesired pressure
overshoots at shocks, which could cause instability dur-
ing transient calculations).

4. Provides a two point transition through a shock wave.

A detailed mathematical description of the flux bias-
ing procedure can be found in the works of Osher!? and
Hafez!3.

E. Unsteady Wake Treatment

Figure 2 shows the schematic of a wake cut behind the
trailing edge of an airfoil. This wake cut has to be properly
modeled in the unsteady formulation. An expression for
the jump in ¢ across the wake cut can be derived by re-
quiring that the pressure be continuous across the cut. In
the full potential framework, this results in the continuity
of density. Equating the density p, = p¢ at any point along
the wake (refer to Fig. 2), one can write

2T + (Uu + Ul) (¢;)u - Ulrs‘ =0

(24)

assuming [V ¢,] 22 0, where [f] stands for the jump in the
quantity given by (f, — fi). Equation (24) is integrated
from the trailing edge to the downstream boundary (along
TE in Fig. 2) to obtain the I' distribution along the wake
cut. To maintain stability, the ¢ derivatives in Eq. (24)
are upwind differenced. For a steady flow, Eq. (24) will
result in a constant value for I' along the wake given by
r'= ¢T had ¢T’ in Flg 2.

Beside the I' evaluation, solution to the unsteady equa-
tion also requires information on {¢,) at a wake point. Re-
ferring to Fig. 2 for notation, one can write the following
using Taylor’s series expansion.

$2 =3 — (¢n)u + (¢’M)u/2 +

63 = b5 — (Bu)e + (Ban)e/2+ - (%)

The subscripts ‘v’ and ‘¢’ stand for upper and lower, re-
spectively.

For the chosen coordinate system, requiring that
{#n)u = —(¢y)e and defining ¢, — ¢5 = T', using Egs. (25)
one can write

(ba1e = a4 a2

(26)

Equation (26) requires an estimate for the jump in ¢, at
the wake cut. This can be obtained by setting the jump in
the equation to be zero at a wake point.

P U |4 _
{(7), + ("7); + ("7)”} =0 (27)
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¢ ~ LOWER
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a
-
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o
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-
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Fig. 2. Wake and outer boundary treatment.

594



Writing down Eq. {27) in terms of the transformation met-
rics and requiring that p, = p¢, the following relationship

is obtained.
(panT¢),

paz2

[¢an] == (28)

For steady flows, the jump in ¢,, along the wake is zero
because ', = 0. For unsteady flows, to maintain accuracy,
Eqs. (24)-(28) have to be employed.

F. Far Field Boundary Condition

Along the outer boundary ABCDE in Fig. 2, appro-
priate Riemann invariants are prescribed. The concept can
be explained by considering the Cartesian form of the full
potential equation cast in terms of the Riemann invariants.

—(Z(u 2 + (u+ )i 2 =0
at fy——la T 'y—la -

-a—<u.— 2—tz)'(tz—(z)—a~(f,t—- 2 al=0
at s 8z -1 7

Equation (29) implies that along the (u + a) positive char-

(29)

acteristics the quantity {u + 7_?_—1—(1) is invariant, and along

the (u—a) negative characteristics the quantity (u - %a)
is invariant, known as the Riemann invariants. Usually,
along the outer boundary, the Riemann invariant that cor-
responds to the positive characteristics with respect to the

inward normal can be prescribed as a boundary condition.

For an arbitrary coordinate system (7,¢,%), such as the
one in Fig. 2, the following boundary conditions are
appropriate.

U
\/Zli+

U
\/&_ﬁ+
|4
\/_az-f—

Equation (30) is nonlinear in nature. Hence, to implement
the Riemann invariant boundary condition, a linearization
technique similar to Eq. (3) is employed. For example,
equating the right hand side of Eq. (30) to the freestream
value, along BCD one can write

———-q = constant along AB
-1

a = constant along ED (30)

'1_

2
’—y—t—Ia = constant along BCD

n
(ﬂngag + 02253;;) Ad
V@22

1 /8 9 n
_L v
(61 3§+V3n) As

(31)

a) ( v -+ 2 )"
~ |- a
freestream V @22 7-1

The finite differenced form of Eq. (31) will provide an es-
timate for (A¢) along the outer boundary. Use of the

¥—1

Riemann invariant boundary conditions is better than pre-

scribing ¢ from the compressible vortex solution, and will

serve as a nonreflecting boundary condition.

G. Relaxation and Approximate Factorization Schemes
When all the terms of Eq. (1) are put together, it will

be in terms of the unknown Ag. It can be written as

F(A¢)+R(¢™,¢"7!,-)=0 , A= - ¢". (32)

The Newton iterative procedure for solving Eq. (32) be-
comes

¢n+l

O (ag™ — A¢) = —R($",4™1, ) - F(AF) (33)

8A¢

The off-diagonal elements of -g-f—, which cannot be accom-
modated within the tridiagonal setup of SLOR, can be set
to zero. In Eq. (33), A¢' represents the intermediate it-
erative value of A¢. For steady state problems, A¢' can
be set to A¢™. If all the off-diagonal terms of 2. 3AS ¢ are set
to zero, then the relaxation process becomes the point Ja-
cobi iteration. Results based on the relaxation procedure
of Eq. (32) are presented in this paper.

Another procedure to solve Eq. {32) is the approximate
factorization technique. This can be written as

where
L ap* 3]
L, [1+A71U ﬂagJ u(?;‘

adp* 8 ]
Ban J oy
Y (Y
B= (J”H(“"A"l)2>j,k
a = (1 - 0) + 8 [{a1 - bl(ATI + ATQ)/AT]}/{G] - bl}]
Equation (34) is solved at the (n + 1) plane in two steps.

L [1+A1’1Vi+

LA$=R , Stepl

L,Ap=A¢ , Step?2
¢n+l = nk + Dbk

Both L, and L, result in tridiagonal matrices.

H. Body Boundary Condition

For inviscid flows, the surface flow tangency condition
dictates that the contravariant velocity, V, be zero at the
body. Implementatxon of the condition, V = 0, in the
L, operator is a crucial step in achieving a true implicit
scheme Usually, the boundary condition V' = 0 is set only
in the right hand side term R, and a careless or no bound-
ary condition treatment is imposed in the left hand side L,
operator?. In the present method, the condition V = 0is
imposed on both sides of Eq. (34). Let j = J denote the
body point. Then,

= (a12¢¢ + @2289) 55 =0 (35)
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or

212
=— (=2 . 36
oo == (2200) (30
Using Eqgs. (35) and {36), and the relationship
1), (5)
P =—|p> (87)
( IS i-ape J J+1/2’

the L and the L, operators in Eq. (34) can be modified to
the form, for a body point. J,

LL,Adp=R (38)

where

. 2afp 0 ) ]
b=+ 5 (Bomgy) |
" [ TNV R ATy S
In Eq. (38), the boundary condition is split between the two
operators, L. and L,. Even for nonorthogonal mesh at the
body (ay2 # 0), the boundary condition is set implicitly.

This allows for large time steps, or Courant numbers, to be
taken during the calculation.

I’T. Results

Computer codes based on both the relaxation method
(Eq. (33)) and the approximate factorization method
(Eq. (34)) have been constructed for two-dimensional and
axisymmetric problems. The grid around the geometry can
be either a C-type (Fig. 2) or an O-type. At present, the
relaxation method is somewhat slower (at least 50%) in
convergence than the approximate factorization code. How-
ever, the future implementation of multigrid techniques!?
and implicit relaxation concepts!® to the present relaxation
code can make it competitive to approximate factorization
methods in three-dimensional applications, where the ap-
proximate factorization methods with triple factorization
can be less flexible to handle complex geometries!4.

The unsteady code has been applied, at present, only
to steady state problems. Calculations involving unsteady
motions such as plunge, pitch, and oscillating flaps are cur-
rently in progress. For steady state problems, the time step
A appearing in Eq. (34) is computed from a prescribed
Courant number, usually set much greater than one (~ 50).

Figure 3 shows the result for a flow over a cylinder at
My, = 0.4. The flow is barely critical, and a comparison
with an efficient Euler code'* is excellent. Figures 4 and 5
show results for supersonic flows over a sphere at low Mach
numbers of 1.08 and 1.4. The density distribution for these
cases are compared with benchmark Euler calculations!®,
The present full potential code required approximately 80
time steps to converge (residual < 10~°). It is worth noting
at this point that the Euler code of Ref. 15 requires in
excess of 20,000 iterations to perform the low Mach number
calculation of 1.08.

Figure 6 shows the pressure distribution obtained over
the NACA 0012 airfoil at M., = 0.8 and a = 0° with

10— g — ]
0.751
[
('Y
[+
s
=2
Z 0.5/
I
(3]
L= 4
2 — RESENT FULL
0.254 POTENTIAL RESULT
® EULER
o , , . :
90  -54 18 18 54 90

Fig. 3. Mach number distribution for cylinder flow at M, =
0.4.

a grid of 84 points around the airfoil and 18 in the #-
direction. The comparison with an Euler code!* is good.
Figure 7 shows the results for My = 0.75 and a = 2°
over the same airfoil. Even with a crude grid, the for-
mation of a strong shock without any overshoots is made
possible by the use of flux biasing concepts. Calculatio.ns
of this type require no user-specified “constants” to in-
crease or decrease the amount of dissipation. Depending
on the strength of the shock, the flux biasing automa.t.i-
cally chooses the right amount of dissipation, since it is
based on sonic reference conditions. The perfect matching
of pressure contours across the wake cut (Fig. 7) illustrates
the correctness of the unsteady wake model described in
this paper. Figure 8 shows some difficult cases with fishtail
shocks.

The unsteady code can also be effectively used to gen-
erate the blunt body solution, the outflow of which is to be
prescribed as an initial data plane for a full potential' su-
personic marching code®. Figure 9 shows the schematic of
such a hybrid calculation. The flow over the entire Shuttle
Orbiter with a blunt nose has been simulated at My, = 1.4
and o = 0°. The results of Fig. 5 were used as a starting
solution for the marching calculation!®. The nose region
geometry and the pressure distribution along the leeside
symmetry of the Orbiter are shown in Figs. 10 and 11.

Simulation of unsteady phenomena, such as flutter and
control surface oscillations will be presented in the future.

1V. Conclusions

A computational treatment for the unsteady full po-
tential equation is presented. The method employs a local
time linearization, flux biasing concepts for generation of
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FLOW OVER A SPHERE AT M, = 1.08

PRESSURE CONTOUR
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Fig. 4. Density distribution and Mach number contours for flow over a sphere at M, = 1.08.

artificial viscosity, unsteady wake treatment, outer bound-
ary conditions based on the Riemann invariants, and re-
laxation and approximate factorization algorithms. Use of
the code for problems with steady state solution has been
very effective and computationally fast. Extensions of this
work to simulate unsteady phenomena such as flutter, and
o three dimensions to treat wings, and wing-body combi-
nations, are currently in progress.
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