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Abstract

This paper deals with how to solve
the flutter problem by a tridimensional
unsteady panel method; both cubic splines
and Pad2 approximation are used to inter-
polate aerodynamic forces.

Flutter speed is assessed by means of an
automated solution based on the procedure
of following any single flutter mode when
speed increases. Examples of application
are discussed.

I. Introduction

Flutter phenomena, as is well known,
consist of dynamic self-excited instabi-
lity where lifting surfaces absorb enerqgy
from the airstream; flutter is likely to
occur in modern aircraft because of increa
sed flexibility, high velocities and the -
presence of a wide variety of wing-suspen
ded loads.

Several methods for solving flutter pro-
blems exist; the ability to give accurate

~flutter prediction on speed and frequency

depends greatly on the aerodynamic model
which is used. Efficient numerical methods
of calculating aerodynamic forces have re-
cently been proposed; their utilization

in flutter prediction seems to be of con-
siderable interest from the point of view
of accuracy, time consumption and the pos
sibility of taking the aerodynamics of
suspended bodies, etc, into account.

In this paper, a method for calculating
the aerodynamic potential field is consi-
dered; in this method the integral equa-
tion of motion is solved in terms of the
limit value of the velocity potential func
tion on the body surface, in accordance
to the Morino formulation, instead of re-
sorting to direct application of the boun
dary conditions.

This method is simple and a limited
number of panels is necessary in order to
take the main aerodynamic effects into ac
count; moreover, interesting applications
in flutter suppression and control are per
mitted.

The flutter solution proposed in this
paper is based on the procedure, which is
well known, as can be seen from the litera-

ture, of following the evolution of any
single flutter mode when velocity increa
ses up to the critical flutter condition.

A computer program has been worked
out to solve flutter problems in the con-
text described above ; a flow chart in this
connection is to be found in fig. 1.

The main features of this program and,’

_ in particular, the aerodynamic operator

and the procedure for sclving - the problem
of flutter will be examined in the rest
of the paper.

II. The flutter problem and methods of
solution

The equation of an elastic system in
motion in a fluid stream, when "n" genera-
lized coordinates, {q(t)}, are considered,

‘can be written in the aeneral form

"

1 [M] @Gy + [ tary + [K] {qte)}

where:
[m] , [c] and [K] are generalized matri

ces defining the inertial, damping and
elastic properties of the system;

{Fa} is the vector of the generalized

aerodynamic forces. When the modulus of
the asymptotic speed, V, equals that of
critical flutter, motion is harmonically
self-excited, that is

2y {q(tvryl = {q }elwt
where w is the circular frequency and
"i" and "t" indicate, respectively, the
imaginary unit and the time variable;
in more general terms, damped or ampli-
fied vibrations of the type

t
2.a) {qitr} = {g} &Pt
where p is a complex number, are consi-

dered and, consequently, the expression
of the aerodynamic forces becomes

L2
» () = == [a)(ql 0,



where ¢ is the indisturbed flow densi-
ty and the elements of the matrix [A] de-
pend on the Mach number, M, and the redu-
ced frequency,

wC

k= 5,

{(c is a reference length and

V is the asymptotic speed).
The eguations of the motion become,
then,

49 [F] (@} = (o)

where

a.2) [r] =[] p" + [c]p + [] -

P 2

- ._§LY. (2] .

The methods for the solution of {4)
depend on the model of aerodynamics which
is used.

In the case of quasisteady (or simple
forms of unsteady) aerodvnamics, where it

can be put [A] = [AO] + [Al] p, the rela-

tionship (4.a) defines a polynomial in p
with real coefficients{aerodynamic matri-

ces [Ao] and [Al] are real); for assigned
values of speed and density the equation
det [FJ = 0 gives rise to conjugate com-
plex roots, p =vk + ik, where y is inter-

preted as the rate of the amplitude decay
of two successive cycles; this well-known
method is named "p-method".

When more sophisticated formulations
of the aerodynamics are required to study
effective configurations, as in the case
of panel methods (which are of interest in the
present paper), the aerodynamic matrices
are available only for harmonic motions
{(p =ik ) and the elements of these matri-
ces are complex numbers which depend on k
and M.

Three methods seem particularly inte-
resting in the literature, namely: the
"k-method ", the "p-k method " and direct so
lution of the problem as non-~linear system
(/1/, /2/).

In the "k-method”, the flutter equa-
tion is written in the form (/3/):

. 1 2 1 1
5) [ 5 [m]x" +« = [kK]- 350
c \Y

[atix,

» M) ] ] {q} = {0} ;

at selected values of k, M and p , the

values of l/‘v2 which solve (5Xreal or complex
can be obtained as solutions of an eigen-
value problem and expressed in the form:
1 . . R
) (1 + ig); the term ig [K] {g} is inter
v .
preted as an hvsteresis damping and, then,
the flutter speed corresponds to the con-
dition: g = o.
The “k-method" was not implemented in

the present computer program shown in

fig. 1 owing to some disadvantages of the me-
thod, regarding:

a) the interpretation of the frequency-
-speed and damping-speed plots;

b) the impossibility of assessing flutter
by relating the values of p_,M and V
by means of,e.g., the
ISA {Internationa Standard Air); in
fact, should Do and M be fixed, the
speed would be given as

1}

Vv =Ma =Mflp_) , where the speed of

the sound, a, is a known function of
p, according to the ISA, without being
solution of the problem (5);

c) it is quite difficult,in general, to di
stinguish any single aeroelastic mode
in the speed-damping plane because the
order of extraction . of the eigenvalues
is not always the same when the eigen-
value problem is solved for the diffe-
rent values of k ; thus, the aeroelastic
mode becoming critical is unknown and
no indication is available on possible
modifications of the structure.

In the "p-k method"the flutter problem
is written in the form.

2
60 [ S [M)p° + [x]- 30, v [nli
[

M ] Jiq = {o}

or in a more generalized form (/3/) inclu-
ding e.g, artificial viscous dampings, the
effects of controls, the presence of an
hysteresis damping, etc.

It transpires from (6) that the pro-
blem must be solved in terms of the com-
plex eigenvalue p = d + ik, where "d" is
a damping parameter, while the aerodynamic
matrices are available only for the harmo-
nic motion and, consequently, the solu-
tions of (6) are strictly valid only for



this type of undamped motion; neverthe-
less, ean (6) is supposed to be valid al-
so for relatively small values of "4".
Bom . (6} is solved by an iterative pro
cedure according to the scheme in fig. 2,
showing that, for assigned values of o
and M, the procedure of iteration is car-
ried out for an initial speed and, subse-
guently, for a set of preselected speeds.
The procedure starts from suitable
initial trials for p (which are indicated as
in fig. 2)

p. = dl + Jkl and p, = d_ + ik

1 2 2

and determine the iterated value p. = dc +

+ ikc {by means of wvarious techniques

{e.g. /4/)) for which a prefixed degree
of convergence is obtained; some kind of
interpolation laws are requested to compu

te [A(ki,Mj )] because these matrices must

be assessed at any step of the iteration.

In the "p-k method", the above mentio-
ned disadvantages a) and b) disappear; in
particular, the modification shown in the
lower part of the fig. 2 to relate the
input quantities by means, e.g., of the
ISA,can be easily introduced into any compu
ter program where the p-k method is imple-
mented.

As for the previously mentioned item
c), it is easy to realize that in the
"p-k method" any single complex eigenva-
lue can be univocally associated to the re
levant aeroelastic mode; the correspondent
shape of the mode can be assessed succes-
sively, by making use of the general equa-
tion (6).

In order to obtain this information
as a direct result of the computation pro-
cedure ( avoiding also possible numeri-
cal problems relevant to the elimination of
an eaquation in the system (6)) and, mo-
reover, to maintain the possibilities of
the "p-k method" regarding the items a) and
b) mentioned above, the following solution
method was adopted by the present authors.

The unknown guantites of the problem
are the "n" oomponents of the vector {q}
-and the complex eigenvalue p; the equa-
tions available are "n" in (4) and another

one is the normalization equation; so the

' system 'to be solved is

[F] {gl= o
(7)
z2=% fa} T{@ -1=o0

where [F] is defined in (4.a),or, being the

vector {g} complex,

(Re[F] + i Im [F]) (Re {q} +

(7.a) + i Im {q}) =0
Re(z) + i Im(z) = o
that is,
frRe[F] Re {q} - Im [F] In (q} = ©
m [F] Re {gq} + Re[F] Im (g} = o
(7.b)
Re (z) = o
,Fm(z) = o

The method of solution of the system
7.a) is the classical Newton-Raphson me-
thod ,the main features of which are
briefly summarized in the rest of this pa
ragraph and for more other details, refe-
rence can be made to /1/.

Let {X} indicate, for brevity sake,
the unknown vector; let {r}=0 be the set of
the n + 1 equations depending on {X} and,
finally, let{xo},be a reference condition;
by the linear Taylor expansion from the
condition {XO} we get

fre x 13+ L3 ] x 3-1x) ) = o,

or

8) [5. ] texy={r]},

where {aX} = {XO—X} , [JO] is the
Jacobian matrix calculated in {Xo} and
{ ro} = {r( {XO} ) }.

In the expanded form, (8) is equiva-

lent to



Re [F] -Im [F] Re(v) -In (v} + Re{w}] [Refaq)] [Refr]]
' Im [F] Re [F] Im {v} Re {v} + Im{w} Im{a q} Im{;é
8.a) ‘ < = < ¢
T T . ]
rRe {g} -Im {g} o 0 ‘ Re (A p) Re(zo)
T T
|Im {q} Re {q} o} 0 Im(A p) Im(z )
., —O J . »
where I1I. The unsteady Aerodynamic panel method
8.c) v} = [2' [M)p + [ij{q} Let us consider the aerodynamic field

produced by a body, which, apart from small
displacements, is in translation with a
BEA] constant speed =~ U with reference to still

§.d) {w} [ - 9»% c " ] {g} ;

air (assumed to be in uniform conditions).
The acoustic approximation of the air
motion egquations, referred to a system in
Now,starting from the reference condi  translation with the same speed, - U, of
tion {X } {(that is, a certain natural mo- - -
° the body is
de, {qo} and the relevant natural eigenva- . 2 2
) ) 9) A¢g = M {D/Dt)” &
lue, P, = i wy s relevant to harmonic mo-

tion), the incremental vector {AX } (or that where A indicatesthe Laplace operator in

the (x,, x5, x,) = x spatial coordinates of

in the l.h,s. in (8.a)) is obtained by means of an '3

this reference system, ¢ is the velocity

iterative procedure until a fixed conver- potential, D/Dt = 3/3 t + a/a;;l with the
gence level is obtained; the terms of the
matrix [Jo] are relevant to an initial Xy axis fixed so that the angle between

flight speed, Vo, {(which is constant during this axis and the U vector is very small.
> ) in

the iterations); the previous step is re- All Fhe q?antltlés involved (9)

are non dimensional with reference to |U]|

peated at V., = Vo + AV and, subseguently,

1 and to an arbitrary length.

at Vn = Vn-l + AV so as to cover a pre- Note that the effects of the Mach

. : , number (M > o)} in (9) are linearly appro-

fixed range of significant flight speeds.
When convergence is not obtained

after a maximum number of iterations at

ximated by means of the small perturbation
theory.

Let x = X be the initial position of

th =
e speed V;,y = Vy * &V, the procedure any material point of the body surface and

! ich is ed to be very small

is repeated at a new speed Vi+l = Vi + Df » which is assum y ’
the displacements of the same point; D x

* @bV, a <1, and the opposite is valid is taken as the contribution of the rigid

when the convergence occurs too quickly; and/or elastic displacements and we sup-
for other features of the method, referen pose it can be expressed by N generalized
ce may be made to the flow chart in coordinates qj so that

fig. 3. ‘



z}jﬂf) qj {t)

, The wake is a discontinuity surface
Sw embedded in the irrotational field
and originating from the trailing edge so
that the Kutta-Joukowsky condition is sa
tisfied; the positive and negative faces
of the wake are indicated, respectively,

1 )
by Sw+and Sw_.
The aerodynamic field is external to

] ' ] '
the surface § =8 + s + 8
b wt W
¥ v
Sb is the body surface; the surface S is

where

approximated by means of a polyhedron who-
se quadrilateral faces {panels) are por-
tions of hyperbolic paraboloids (or, in
particular , of planes) with straight sides.
The parametric eguation of a panel
is
1] t 1] '

1 %*D}f:?o*gfl*”?.z*én?:;;

each pair of parameters ¢ , n , with
€]l <1, |n|< 1, specifies a material

point of the panel.
Let X = §S be the initial position

-~

th of the four corners of a panel,

of the s
numbered from 1 to 4 consecutively, and
D Xs be the corresponding displacement;

putting, for r =0,1,2,3,

4
12) P = 5
~X a=1 r+l,s ~s
4
12.a) = 3 L D
pr s=1 r+l,s fs
where Lr+1,s is the element on the (r+l)th

row and s-th columm of the matrix

13) « 1 1 1
l 1 "1 "l 1
1 -1 -1 1

-1 1 -

L N

Now, the condition of tangency for
the velocity of the air relevant to the
body is

" .Vd=n - (== (Dx) - u)

15) n
ot -

-~

where V indicates the gradient operator

1
in the (xl, x2:1<3) coordinates, n is

-~

“the normal unit vector for a panel in a

deformed condition, oriented towards the
air; u is the unit vector of the asympto-
tic speed U; the fluid speed V is given
by -

16) Vv=au+Vdg.

A considerable simplification of the
problem is obtained by supposing that
(15) can be formulated with reference
not to the real one but to the fixed body

configuration, Sg, relevant to Dx =0

This simplification is obtained by
imposing the following condition (/5/),
giving the invariance of the flux of the
vector V¢ : 4

17) n .Vad] (P, +n Py x (P, +
+t:g;)} d€dn=n -Vg|(p +nP) x
x (g2+£ 33)ld5an

1
where the unit vector n corresponds to n

for S; ; in particular, in the panel cen-

troid (£=n=0) (17) becomes

L}

1]
17.a) n - Vg = lfl x P, |/ lfl x

Now we can put



1

8 1]
18) n [Py

x P, [/ }Pl x Pz{

where Dn is very small; from (14) we ob-
tain -

P10 = APy x By v By x PR/ [Py x By

when the vector product P, X p, is disre-

garded.
From (10) and (12.a) we obtain
N
20 p_. = I P q.
i o . °r.
j=1~73 J
where:
4
20.a) p = 3 L A (X ).
Nrj s=1 r+l,s _j s

The velocity of a panel centroid is
given by

N dg.
21 vV, = —_—
) b ; go. dt '
=1 773

so, from egs (15), (17.a), (18) we have

22) n.Vg=(n+Dn) . (Vb -u} =-n.
N dq.
cu+ I (n . P, 253 - DnJ - u qj)
=17 773 ~ N
where
22.a) Dny = (P) x py *+ Py XP)/ |P) %
x Py |-

As for the wake, the following condi-

" tions must be satisfied across the same:

- equality of the normal component of ve-
locity

] - t
23) vi.n =v .n

~

- equality of the pressure coefficient across

the wake
23.a) c’ = ¢
P p
where "+" and "-" are relevant to the up-

] . 1 ]
per (S +) and lower (S ) faces of the wa-

w W

ke, respectively.
In one point of the wake, from the
Bernoulli equation and (23.a) ,we have

9 + -
24y oA Py + Ya V)¢ -¢) =o0

where V

~

indicates the average speed of the

wake:

24.a) V= (v +V)/2

In order to avoid an iterative computa-
tion of the wake shape (Q' in (23) depen~
&ing on the actual configuration}), as is
well known, the following simplification
can be applied: '

V = e. = unit vector of the x, axis.

.a 1 1

- In other words, the direction of the
trailing vorticity does not vary with ti-
me and is very close to that of the asymp-
totic speed U and, therefore, the wake is

substituted ;y a fixed surface, S:, made
of straight lines originating along the
trailing edge in the reference configura-
tion {(Dx £ 0) and going downstream to in-
finite. ) )

With reference to fig. 4, boundary con
ditions on the substitutive wake are

25) (VI -v) -n =0

~ -~

+ -

= (g =@ ) —_
't Q.

0 C%mgt'c O

25.a) (4" - &)

Taking into account the effects of
compressibility, we now consider a new set

of coordinates (x, y, z) by putting

26) (x, vy, 2} = (xl/B,x,z,x 3)



where B = (l—Mz)i

We denote with N the unit vector in
X, Y, 2 space corresponding to n and
with 3/3 N the directional derivative in

the direction of N; we have

1—n2
27y 22 - qawtnhta L gg - (—i?
oN 1 - 2 2
1-M™'n
1
M2nl E Y]
where: nl=? - %l and E = (ejl—nl 3)/ l?l -
ol

In the small perturbation theory for
the compressibility effect we can disre-
gard the second term in the r.h.s. of (27};
we may also put

28) l—Mzni = 1;

s0, egn {(27) becomes, simply:

2?) @/ aN=n - Vg.

For the vélocity potential in

P0 = (35' Yo! zo) relevant to t = t° in

the (x, y, 2z) space, we get by means of

the generalized Kirchhoff formula (/5/,
/6/),
30) 4 ﬂE(PO) @ (Po,to) = - é n -
. as(p) + 3{1/R)
Vel TRt g 8l T dse)-
) 1 3T

s el e 'R Tan SSE)

where : S is the closed surface in the
{x, y, 2z) space corresponding to

O - gO O .
s sp* 33+ + 80

face S

R = PPO is the distance between the points

P and PO:
'o= - M iM{x - X + R Bz t -
£ o=t [M¢ ) 17 o
-0 (PO"P);

T=M[M(x_ -%)+R]/B:

E(PO) =0, 1, 3 according to whether point

PO is external, internal or on the boun-

dary, S, of the field; for the second in-
tegral in the r.h.s. of (30), the Cauchy
principal value must be considered; the
total surface S is composed of the surfa-

ces Sb' S ,+ 85 _ which correspond to So,
w w

89, S9_ in the reference configuration.

When P_ is positioned on the body sur

L' ean (30) becomes the eguation

which solves the problem.

An approximate numerical solution of
(30) is obtained by taking the following
steps:

i) substituting the body surface S with a
polyhedron made of quadrilateral panels,
SK’ as indicated above;

ii) for each panel SK' the values of

n. Vel ., $ | g1 and 3¢/ 3t are

t'
assumed to be constant and assessed in
the panel centroid.

Now, eqn {30) is approximated by a
system of algebraical equations, where the
influence coefficients are

.2 1
Bp(Py) = 27 /s g 98(P)
X
- 1 # 1 23R
31) CK(PO) = > s R2 TN ds(p)
B 1 ar 1 as(p)
DlB)) = = 575 /s 3N R



The following (/57/) is an approxima-

te evaluation of DK(PO):

X 2
D R .

K(Po) M BK(PO) § (Po) ?1/8 +
+ M POPK CK(PO)/B where PK is the con-
troid of the Sk panel; the coefficients

CK(PO) and (for flat panels) BK(PO) can

be evaluated in a closed from (/7/,/8/).

We shall now consider the unsteady
part of the aerodynamic field and we sup-
pose the motion to be harmonic; by put-
ting

32) g, = aj exp(i w t) (w indicates the
3 circular fre-
guency)

w
-
€
L
(™
€
o]
o
!
=
o
3
-

(o8}
U1
=]
<
A8
it
&

and the problem can be reduced to the so-
lution of the following algebraical set
of equations:

>< ¢j(PK) > =

= <BH'K>< ?j(pK)>,

~

This is a linear system where ¢j(PK)

are the unknown guantities; each non-homo-
geneous term is given by a linear combina-

tion of the wvalues Wj(Pk) assumed in the

centroids PK; the symbols in (36) indica-

te the following gquantities:

36.a) BH,K = BK(PH) EH,K where
36.b) EHK = exp (- 1w O(PH, PK))
36.¢) AH,K = WH,K + GH’K - CK(PH) 4+
1w DplP) By
where 6H K is the Kronecker del-
1
ta and
= L C P +
36.4) WH.K L 6K,I(L) [ L( H)
T DL(PH)] B, L, 1)
where
36.e) FL,I = exp (- 1w B(x(PL) - x(PI))

The index L is relevant to a panel
in the wake;the index I(L) (£fig.5) is rele
vant to the body panel at the trailing edge
in the same longitudinal row of panels and
the same face (upper or lower) of the panel
"L"; H and K are the indexes of the body

panels.

Any longitudinal row of panels in the
wake is truncated at a downstream distance
of about 5 mean chords from the trailing
edge.

Now, as is well known , the Bernoulli
theorem in isentropic unsteady conditions
is

37) 24 + n -

1
+ =
3t ~ vé 2

Vg - Vg + h= hw

where h is the enthalpy (per unit mass di-

vided by |U |2)and h_ is the enthalpy re-

levant to undisturbed fluid.
Let ¢ = ¢° be the solution in the re-

ference condition (DPx =0); putting



@ = ¢o + ¢d' we suppose that V¢d is so

small that

. 2
37.a) iv¢o{ + 2 V¢o . V¢a +

+ 9yl

N 2
| V81T + 2 v - Vé,

and

37.b) ai é

u - W = .
~ 4 ,P v¢o * Y a’

Therefore, by means of {37), (37.a)
and (37.b), we obtain the following li-
near dependance of the enthalpy on ¢d s

3¢d 3¢d
38) h-h_ = - . .
) ) (at ‘axl +v¢o v¢d)
where h_ is the local enthalpy,h,for the

solution ¢o.

. The increment of the pressure coeffi
Cient between reference and actual config

urations can be calculated as

o

39 D = - o2 -
) CP C c 2 (h ho)

o

where, as is well known, the ratio between
the local density relevant to Dx=0 and the
undisturbed fluid density is expressed as
follows

40) p /o =1+ -Egle mi1-v_ -
/w1 -
AN P With Vo= u+ V8

where u  indicates the ratio of specific heat coef
ficients.

In the case of small pressure pertur
bations, such as those we suppose to exist
here, the following simplified expression
is used

41) DC_ = C_~C =
P P P

with C =1 -1V 12.
Py ~0

The calculation of the gradient V¢
permits ns to determine the aerodynamic
forces. We already know the scalar quantity
V¢ - n on the panel centroids; so the de

I 8 3 ¢
rivatives SE and 3 n
of the finite differences method, using
the ¢ values in the centroids of continguos
panels, must be evaluated; the possible
situations are shown in fig. 6.

The generalized forces per unit of dy
namic pressure corresponding to the displa

cements Dx are:

obtained by means

z (-DC n - A_a
L (-D p) ~!K AL g

where ay is the area of the sK body panel

in the reference configuration ; DCp, n,

-~

AH are relevant to the centroid of the pa-
nel SK"
Fig. 7 shows the flow chart of the

computer program prepared on the basis of
the aforementioned theory.

It must be noted that, by changing
the frequency, a set of aerodynamic matri
ces is obtained at any given value of M,
without repeating the calculation of the

values of the coefficients BK' CK’ DK

given by (31). i

The generalized forces have been com-
puted for the harmonic oscillations of
the body because the program is used for
the assessment of critical flutter condi-
tions.

In order to check the reliability of
the aerodynamic program, typical test ca-
ses were considered; some of the results
obtained are to be found in the following
figures: figs. 8 show a comparison between
the results of the computer program and tho
se in /9/,relevant to a wing in bending
vibration; figs. 9 and 10 refer to test
cases in /10/; figs. 9, in particular, con
cern a swept wing with a small amplitude
vibrating full span aileran and figs.10
show similar results obtained with a par-
tial aileron. ’

The results obtained are in satisfac-
tory accordance with the experimental and
theretical results, even though a relati-
vely small number of panels was used.

Now, the description of a mode in an
actual structure is generally obtained in
terms of the nodal displacements of a mesh,
which is designed to solve the elastodyna-




mic problem; in order to translate this
mode into nodal displacements of an aero
dynamic mesh, a suitable interpolation
program has been set up.

The general flow-chart of this pro-
gram is given in fig. 11, from which the
procedure to obtain the position of any
node of the aerodynamic mesh on the basis
of the elastic or rigid displacements of
the structural mesh, can be easily dedu-
ced.

IV. Interpolation of aerodynamid coeffi-
cients

The aerodynamic matrices [A(k,M) ],

together with their derivatives with re-
spect to k {as (8.d4) indicates}), must
be known for every iteration of the flut-
ter solution procedure adopted in the pre
sent paper, in correspondance to the va-
lues of k and M for which the iterations
are carried out.

The values of k depend on the solu-

tions (ap = Ad + i aAk) of (8.a) relevant
to all the prefixed speeds of interest
(Vi = Vi-l + AV) .

As far as M is concerned, a costant’
value of the Mach number is maintained in the
flutter analysis at constant altitude;
this is only a reference value for the
computation of the aerodynamic forces.

In the variable altitude flutter
analysis, a set of M (typically 0.1; 0.3;
0,5; 0,7) is planned for which the aerody
namic matrices are calculated by means of
the relevant computer program, mentioned
above; a range of speeds corresponds to
any of these values of M relevant to the
prefixed altitude range (0-11.000 m) when
the already mentioned ISA is used to re-
late the air density to the speed of
sound.

As fig. 12 shows, these ranges of
speeds relevant to the values of M used do
not intersect and, therefore. certain new
other aerodynamic matrices relevant to
intermediate values of M must be provided
to cover the complete range of speed, V.

In conclusion, in order to avoid ha-
ving to calculate the aerodynamic matri-
ces and their derivatives 3 [Ak,M)] /3 M

by means of the relevant time consuming
computer program, certain interpolation
procedures, a), between the matrices

[atk,, My ] ana [A(ki, Mj+l)] and, b),

between [A(ki, Mj)] and [A(ki+l, Mj)]

- damping (i.e.
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must be provided.
The elements of [A(k,M)] show a smooth

dependence on k and M; so, a limited num-
ber of aerodynamic computations may be car
ried out and, besides, simple interpola-
tion algorithms may be used.

In the present paper, the a) interpo-
lations are carried out by means of cubic
splines and the 'b) interpolations may be
obtained by using cubic splines or a Pa-
d& approximation.

A cubic spline function, S, is a set
of piecewise cubic polynomials, -defined
as

X0 X=X,
42) 8{X) = N B, + —¢ Biyl *
X, .= X=X
i+l 3 i 3
(0¥, =B ) + (——)7 (¥,
- Bi+l) i=1,2 .... N

over any interval (Xi' Xi+l) of the range

of the variable X,where N+1 is the number
of the equispaced abscissas of X (that is
of M in the a) interpolations and of k in
the b) interpolations); .

= X, .-X. are equal intervals in the ran
i+l 1 -

ge of interest of X;
Yi is the known value of the function Y(X),

corresponding to the value Xi' Bi are pro

perly defined terms (/11/)/

As for the choice of N, a compromise
is necessary in order to avoid the two
apposite disadvantages of,on one side, nu-
merical instability for too great values
of N (e.g. N > 40 must be avoided accor-
ding to /11/) and, on the other hand,of a
very rough approximation for small values
of N.

As is well known, the Pade approxima
tion provides an evaluation of the aerody
namic matrices [A(p,M)] in presence of

p=d + iw, d # o) for

M = M =constant,starting from their value
relevant to the harmonic motion.

The Pad® expression of [A(p,ﬁ)] is



~

43 [aem]=[a ]+ [a6]p +

where [a_ 0], [a 0], [a,00], [p, (0]

are real unknown matrices and rj are real

scalars, which can be either assigned "a
priori" or considered as unknown.

In the present paper, as a conseguen-
ce of some computations carried out by
the present authors and in accordance

with what other.authors have = done, four

[Dj] matrices were considered (1=4), the

scalars rj were fixed so as to avoid ha-

ving a non~linear system; furthermore, in

order to cover all the important aerody-
namic time lap effects relevant to each
of the terms p/(p + rj), these constants

rj are assigned in the range of the redu-

ced frequencies k..

The unknown matrices [Ao(ﬁ)] B
[Al(ﬁ)] » [a,t07 ana [Dj M7, 3=1,2,3,4,

are assessed by means of the least square
method on the basis of m = 10 aerodynamic

matrices [A(pj, E)], corresponding to the

harmonic motion pj i kj; so, being

[A(pj, ﬁ)] complex matrices, 2m 20 equa
tions are involved.

Good results have been obtained whe-
re the constants rl, rz, r3, r4 are assi-

and

gned so as to be equispaced and r 4

1
to the minimum
of k..

J

Figs. 13, 14, 15, 16 show examples of
the application of cubic splines and Padé
approximation to the interpolation of so-
me aerodynamic coefficients vs. the redu
ced frequency.

are equal, respectively,
and to the maximum value
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V. Applications

In this paragraph, two examples of ap
plication of the flutter solution computer
program are described.

The first example, fig. 17, is well
known to students of aerocelasticity; it
is the clamped unswept wing examined in
/12/, in which two artificial modes (ben-
ding and torque) are considered and the
aerodynamic coefficients are assessed by
the strip-theory at sea-level (z=0)} and
at the constant value M=0 (independently
of the critical flutter speed).

These two last conditions (z=0, M=0)
have been maintained 1in order to compare
the results which were obtained with those
reported in the above mentioned reference
/12/, whereas the modes and eigenvalues
were calculated once again, starting from
the bending, torsional and shear stiffness
curves reported in /12/, with the follo-
wing results: the torsion eigenvalue was
the same as that in /12/, but the bending
eigenvalue was lower (11.583 instead of
12.799 rad/sec.).

The aerodynamic generalized forces
were determined in relation to the diffe-.
rent models in fig. 18, corresponding to
84,120,180 and 264 panels and to different
altitudes and Mach numbers;at the referen
ce conditions of sea-level and M=0, the
results obtained (some of which are repar
ted in figs. 19) show that no appreciable
difference exists between 120,180 and 264
panels,so that this last model was no lon
ger investigated since it was very ti-
me-consuming. Fig. 20 shows some of the
analyses performed and the corresponding
flutter speed and pulsation using diffe-
rent interpolation methods, different
panel schematizations and different speed
increments, in the same conditions of sea
level and M=0; the analyses no. 8 and 9
in fig. 20 are relevant to the strip theo-
ry and are given in /12/.

It transpires from fig. 20 that:

i} the results obtained do not depend on
interpolation used(as fig.21 and 22
corresponding,resvectively,to cubic
spline and Padé approximation confirm);

ii)} the present aerocdynamic model is sta-

ble with respect to the number (N)

of
the panels, when N > 120; ’

iii) a rough aerodynamic mesh gives rise
to an unconservative prediction of
the flutter speed (fig.23)

iv) the difference between the flutter
speeds for the models 8 and 9 in
fig. 20 seems to be remarkable with



respect to the stability shown by the
present flutter speed prediction;

v} the difference between the present
flutter prediction and that relevant
to the strip theory is quite remarka-
ble even though the generalized mass

matrices are slightly different.

The generalized aerodynamic forces
corresponding to the present unswept wing
depend on the Mach number according to,
for example, figs. , where the results
are regular in the range M=0+ 0.5, but
considerable variations may exist between
M-0.5 and M=0.7.

The second example is a free vibra-
ting wing with a load suspended by means
of a pylon; the finite element structural
model, fig. , consists of beam elements
and point masses.

The dynamic analysis was carried out
by the MARC program providing rigid symme-
tric and antysimmetric modes but only the
rigid and elastic symmetric modes were con
sidered in the present flutter analysis; -

fig.26 shows a typical symmetric mode.
An example of aerodynamic mesh is

given in fig.26 ; it is a standard mesh
where panels have two parallel sides
along the asymptotic stream,

The evolution of the aeroelastic mo-
des is shown in £fig.27 , which indicates
that the mode becoming critical for flut-
ter is connected to the elastic properties
of the pylon.

VI. Conclusions

A procedure for the solution of
flutter problems has been presented in
which the aerodynamic problem has been
solved by means of a tridimensional unstea-
dy panel method. In order to calculate
rapidly aerodynamic forces at intermediate
Mach numbers and frequencies both cubic
splines and a Padé approximation have been
used as interpolation formulae.

The evolution of computation methods
in aeroelasticity is connected also to the
possibility of obtaining a good compromise
between the need to reduce computation ti-
me and :the need for an accurate prediction

of aerodynamic forces.

The unsteady aerodynamic panel me-
thod presented in this paper shows a re-
markable stability with respect to the re-
finement of the aerodynamic mesh, if a
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minimum number of panels is applied; as

for the present applications, the aerodyna-
mic method was proved to be reliable and
simple.

Different possible methods exist to
solve the flutter equation and different
versions exist o6f the method implemented
in the present paper too (/2/); neverthe-
less, it is opinion of the present authors
that more attention must be devoted to
the solution of the unsteady aerodynamic
problems in order to increase reliability

and diminish time consumption.
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STRUCTURAL SCHEMAT1ZATION
BY MEANS OF A FINITE

ELEMENT MESH ) AERODYNAMIC SCHEMATIZATION

OF THE EXTERNAL SURFACE
THROUGH A PANEL MESH

DETERMINATION OF NATURAL
MODES OF VIBRATION BY
MODAL ANALYSIS WITH A
FINITE ELEMENT METHOD

> l -

INTERPOLATION PROCRAM

INPUTS: QUTPUTS:

~ STRUCTURAL NODES COORDINATES ~ NATURAL MODES DISPLACEMENTS IN
-~ AERODYNAMIC NODES COORDINATES TERMS OF THE DISPLACEMENTS OF
- NATURAL MODES DISPLACEMENTS THE AERODYNAMIC NODES

- CONNECTIVITY OF STRUCTURAL MESH

AFRODYNAMIC PROGRAM
(THE REDUCED FREQUENCY INTERVAL

DETERMINATION OF GENERALTZED 1S BETERMINED BY THE RANGE OF
AERODYNAMIC FORCES ACTING ON NATURAL FREOUENCTES, REFERENCE
THE STRUCTURFE CORRESPONDING LENGTH AND SPEED INTFRVAL RELA
TO NATURAL MODES OF VIBRATION TED TO FLIGTH ENVELOPE.

:

FLUTTER RESOLUTION PROGRAM

INPUTS: OUTPUTS:
~ GENERALIZED AFRODYNAMIC FORCES DAMPING, CIRCULAR FREQUENCY
- GENERALTZED MASSES AND ALROELASTIC MODES

~ GENERALIZED STIFFNESSES
- CFNFRAYTZED DAMPING

~ ALTITUDE INTERVAL

- MACH NUMBER VALUES

Fig.l - Flow-chart of the general computer program.

S
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Fig.2 - p-k method flutter solution procedure.
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EXAMINATION OF NATURAL
MODES ONE AT TIME

IS CHANGED
YES
NO
V=vV+DV
)
WARNING
ESSAGE
MESSA OLD DbV
IS TAKEN AGAIN

DV > DV,
?

j =1,M
DEFINITION OF INITIAL
" VALUES V= V+DV
V=Viins Q;=(0,..,1,..,0)
Ri=w.c/V, L=1, V=V+DV , _wMe
v
AERODYNAMIC FOR
THE REDUCED CES INTERPOLA-
FREQUENCY VALUE TION AS REGARD
KNOWN? k
|
YES f=
CONSTRUCTION OF
MATRIX [ J]
LINEAR SYSTEM
RESOLUTION
I Q=qQ+40Q
' d=d+Ad
kwk+Ak

[ DV =DV/2

THE VELOCITY
INCREMENT DV
IS _DOURLED

THE
ITERATION

NG NUMBER

THE
ONVERGENCE VERY

NO -

WRITE VALUES

OF S(V) AND w(V)

CONVERGENCE
REACHED?

[

Fig.3 - Flow-chart of the present iterative flutter solution procedure.
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Fig.4 - Sketch for the wake symbols

Fig.5 - Correspondence between the trailing edge
and wake panels. ,

A, CORNER EDGE PANEL B, INTERNAL EDGE PANEL C. INTERNAL PANEL

Fig.6 - Possible panel positions on the body.
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START
INPUTS:

a) options; b) indices of the four nodes at the vertices of each panel; ¢) nodal coord.s;d)in
dices of the panel pairs with the common side along the trailing edge and length of wake
panels; ) inputs for the computation of pressure coefficients; f) Mach numbers;g) undisturbed

flow versor{(s) u; h) reduced frequency values (zero for steady state cond.); i)functions Aj

!

Computation, for each panel (K) and each generalized coord.(3), of:
a) characteristic vectors and area ay for the panel in the physical coordinates;

b) the vectors Dnj (k) and (for non-static displacements) the coefficients (n-poy.)
. = J
©) 4;(P)-n(By)ag

k

|

-y

IPradtl-GBauert transformation; computation of the caracteristic vectors for each panel
Computation, for each centroid P, of the body, of: a) the influence coefficients

By (Py), Cx(Py), Dg(Py); b) the delay Ox(Py,Px) for each body panel (K); c) the in-

fluence coefficients Cp(Py), Dy (Py) and the delay GK(PH,PL)+B'[?(PL)-X(PI(L))] for
each panel (L) of the wake.

Computation of the coefficients Ay g and By ¢
ot ) X

[;nversion of the matrix <AHK> 1

YES

NO

computation for the non~
deformed configuration

Computation of: a) potential and pressure coefficient for each panel; >
b) forces and moments

Change the
flow direction

8 the
computation
or static displacement

equired 2

IES

GO TO 1

[

Computation of: Wj ‘K “B‘DPj(Pk) + 1w L-on'f:l 2 for each panel (K) and generalized

coordinate (j).

]
Computation of: a) potential and pressure coefficient as variations from non-deformed
condition for each panel andgeneralized coordinate; b) matrix of generalized forces
¢) total pressure coefficients for given generalized coordinates.

~

OUTPUTS #J

Change frequency

Change Mach number

~ STOP.
Fig.7 ~ Aerodynamic computer program flow-chart.
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READING OF 1NPUT DATA
(AERODYNAMIC POINTS COORD.,
STRUCTURAL NODES COORD.,
CONNECTIVITY)

l

l

|

l

ANALYSIS FOR |
EACH NATURAL MODE |
l

|

!

|

|

|

[ RO O FVES R P U S

i

[READING OF THE DISPLACEMENTS
OF STRUCTURAL NODES FOR
THE EXAMINATED MODE

i

ANALYSIS FOR EACH
AERODYNAMIC POINT

i

DELIMITATION OF A SPACE

PORTION ARCUND THE AER,

POINT BY 3 COUPLES OF
PARALLEL PLANES

SEARCH OF STRUCTURAL
NODES BELONGING TO THE
ABOVE MENTIONED PORTION

SEARCH OF PANELS
HAVING AT LEAST ONE
NODE IN THE AFORESAID
SPACE PORTION

DETERMINATION OF THE
PLANES CONTAINING EACH

OF THE ABOVE PANELS

¥

|
]
]
|
|
|
!
CHECK IF THE AERODYNAMIC ;
I
[
!
§
|

POINT PROJECTION ON THE
ABOVE PLANE FALLS INSIDE
OR OUTSIDE THE CORRESPOND-
ING PANEL AND DETERMINE
THE DISTANCE PLANE-
~AERODYNAMIC PT.

e I —

—— e

PRINT OF THE
DISPLACEMENTS
AVERAGE

IS THE
DIFFERERCE
AMONG THE AVERAGE

AND EACH DISPL.

CALCULUS OF THE AVERAGE
OF THE DISPLACEMENTS

THAN 1 PANEL
AT MINIMUM DISTANC

FROM A.P.
2

NO

CALCULUS ©OF POINT
DISPLACEMENT AND PRINT

t

CALCULUS OF 1SOPARAMETRIC
COORDINATES OF THE ‘MINIMUM
DISTANCE POINT OF THE
PANEL BEING EXAMINED

—_ 1

EXAMINATION OF THE
MINIMUM-DISTANCE PANELS
ONE AT TIME

i

SINGLING OUT OF THE

MINIMUM-DISTANCE PANEL

(OR PANELS) FROM AERODYN.
POINT

Fig. 11 - Flow-chart of the program translating a mode from the structural
mesh to the aerodynamic one.
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Fig.1% - Influence of the aerodynamic mesh refinement on the aerodynamic
forces.
No T ITUDE C )
ANALYSIS ALiiix?L PANELS | INTERPOLATION (m?Zec) ﬁgéglggL SPEESU€§5§ec) (radjiec)

1 0 84 Pade 20 2 412,01 18.517
2 0 84 Spline 20 2 411.80 18.527
3 o 120 Spline 20 2 370.26 { 18.882
4 o] 120 Spline 5 2 371.13 18.867
5 0 120 pPada 20 2 370.27 18.879
6 o] 120 pPada 5 2 371.32 18.861
7 o] 180 Spline 20 2 372.97 18.747
8" o] - - - 2 386.607 18.600
9=" [o! - - - 2 426.832 17.900

" By /12/, strip theory;

““By /12/, strip theory ‘including finite-span eéffects by Reissner's theory.

Fig.20 - Set of the unswept wing flutter analys s at M=0 and z=0.
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Fig.21 - Flutter modes corresponding to 84 aerodynamic panels.
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Fig.24 - Typical behaviour of aero matrix elements vs.the reduced frequency.

Fig.25 -~ Swept wing structural panel mesh;fusolage is simulated by 2
masses at a suitable distance along the airplane axis.
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Fig.28 -~ Flutter diagrams relevant to the swept wing;similar results
results are obtained when the Padé approximation is used.
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