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Abstract

A method is presented for calculating unsteady
transonic aerodynamic forces on wings of moderate
to Yarge aspect ratio. The wing is represented
by equivaient profiles derived from measured
pressures and an inverse subsonic method.
Pressures are calculated on these profiles by
a standard 2-D TSP code, and subsequently cor-
rected for 3-D fiow by means of a correction
matrix based on Doublet-lattice theory. - The
eguations for the correction matrix are derived.
The calculated unsteady results are compared
with measured pressures,

I. Introduction

Standard methods for calculating unsteady
aerodynamic pressures in subsonic flow such as
the Doublet-Lattice (DL) method fail when applied
to wings with well-developed shocks. On the
other hand, more elaborate 3-D codes based on
Finite Difference (FD) or Finite Element (FE)
methods are at present rather expensive to use
in routine work such as flutter validation
procedures. To bridge the gap this paper presents
a method for calculating steady pressures on
& wing of moderate to large aspect ratio in tran-
sonic flow by making maximum use of existing
computing codes and experimental data.

The wing is represented by equivalent profiles
derived by means of an inverse subsonic method
due to Weber (1) using measured steady pressure
data. The procedure is described in Sect 11.

A standard 2-D transonic TSP code {2) is used

to caiculate the pressures on the equivalent
profiles. The pressures are then corrected

for 3-D effects by means of a correction matrix,
which is derived in Sect. I11. The calculated
3-D pressures are compared with measured unsteady
pressures.

Similar methods were developed independently

at NLR (3,4), where the corrections were made
to section coefficients rather than pressures.

11. Cbmputation of equivalent profiles

Steady transonic pressure distributions Cp
calculated by potential methods generally show
a mismatch with measured pressures, especially
in the position and size of the shock, mainly
because of boundary layer effects, and sometimes
because of small uncertainties in the measured
free-steam Mach number and incidence. It is
well known that if the calculated unsteady
pressures are toc show any sembiance to the
measured ones, the calculated steady pressures
must agree with the corresponding measured steady

pressure distribution. This is sometimes

achieved in calculations by raising the trailing .
edge, varying the Mach number, etc. To eliminate
the mismatch between the steady pressures

& more systematic approach is taken here

by using the measured steady pressures themselves
10 derive equivalent profiles by means of

_an inverse subsonic method due to Weber- (1)

for calculating steady pressures. The same
profile is then also used to calculate the
unsteady pressures for the motion phase that
follows the steady calculation phase.

1f the operators for the transonic and

inverse procedures are denoted by T and W

respectively, then the equivalent profile

z{x) should satisfy : -
Cpexp = Tz {

A first approximation to the desired profile
2 is

z, = WCp (1a)

exp
50 that, from Eqg. 1,
zy = WTz

Since the T and W operators are approximately
equivalent, we can set

WT =11 +¢
so that
zy = Wiz = (1 +e)z
=2z 4 2t {2}

is & first approximation to z. The resulting

pressure is
Cp] = Tz]

An estimate for cz can be obtained by
caleculating & new profile z,

z, = prT = WTz]
= {1+ :)21
=zy +¢ (1 +¢ )z
so that
€2 =2, - 27 -ee2 (3)
= -r(z2 - 24 )

where the -unknown term te 2z is taken care
of by the empirical factor r. Substituting



tz into £q.2, we get

2=z, ¢ r(z2 -z ) {4)

for the desired profile. The factor r was
set at -0.6, and seems to work for & wide
range of profiles (5). The calculation of
z{x) thus involves two inverse and one TSP
calculation.

One of the equivalent section profiles of

the wing under consideration, derived by

this method is shown in Fig. 2, together

with the origina) geometrical profile for
comparison, in the form of local profile
slope versus x/c. There is a rough agreement
over most of the chord, with the eguivalent
profile having a slightly higher siope over
the front part, and vice versa. The most
significant deviation occurs at the trailing
edge on the lower surface, where the equivalent
profile shows & noticeable decrease in camber
that can be interpreted as the differential
thickening of the boundary layer there, tending
to lower the circulation and to shift the
shock position forward.

I11I. Derivation of the correction matrix

For linear aerodynamics (small airfoil
thicknesses, small amplitude, subsonic flow)
the DL method relates pressure and downwash
by the relations.

tp = Ay (5)

Cp = Az* o (6)
where the A's are ‘the matrices of the AIC'S

for three- and two-dimensional flows respective-
1y, andxis the non-dimensional compiex downwash.
1f the points of the DL grid are grouped into
strips, the n*n matrix A can be partitioned
into submatrices, each submatrix representing
the influence of any one strip on any other,
with the off-diagonal matrices being non-zero

in general.

A second n*n matrix A with the same partit-
ioning scheme may be construed, which has zero
off-diagonal submatrices, and its diagonal
matrices equal to AZ*, so that the pressure

Cp = Azu (7)

corresponds to the pressure distribution given

by strip theory, which omits the mutual inter-
action terms between sections. The wing pressure
distribution can now be expressed as

Cpg = Ago
_ -1
= Agh, A B (8)
so that
Cp3 = QCp - 19)
with Cp = A& (10)
and Q= A, (1)

The matrix Q in Eq. .9 can be seen ‘to be
a2 multiplicative correction matrix for strip-
theory pressures. An additive correction may
a2lso be derived, by the argument

Cpy = QCp + Cp - Cp
=Cp+ (Q - 1)Cp
or Cp3 = Cp + SCp (12)
where S = Q- 1= AM 11 (13)

Both correction methods will yield results
identical to those of Eg. 5, which are correct
within the assumptions of the Doublet-lLattice
method, as long as strictly subsonic fiows.
are involved.

In this paper the method is extended to
transonic flow by replacing the matrix A, in
Eq. 10 by the transonic operator F, so %hat

Cp = Fla) (14)

The matrix A, in the correction matrix S
Eq. 13 is, howeger, left unchanged, the assumption
being that the correction matrix S depends
mainly on the wing planform, regardless of
the flow type, and less on Mach number and
reduced frequency.

Furthermore, in the case of a swept wing the
behaviour of any shocks on the wing is more
1ikely to depend on the Mach number of the
fiow normal to an effective sweep line, M cos A
rather than on the free-stream Mach number -
M.Therefore all TSP calculations here were
made with the normal Mach number based on the
sweep of the quarter-chord 1ine. Correspondingly
the matrix A, was also based on the normal

Mach number, and the pressure coefficients

were referred to the normal dynamic pressure.

Although the two correction methods are
basically equivalent the additive procedure
was selected for the calculation of (p,. The
reasons -for this choice were mainly due“to
numerical considerations, The additive term
SCp in Eg. 12 is generally smaller than Cp,
and can therefore be calculated on & much coarser
DL-grid than Cp. Furthermore the rows of the
diagonal matrices of S show & much smoother
variation with the streamwise coordinate x
than those of Q.

1V. Alternative formulation of the prbblem

The procedure may also be reformulated as
a correction on the downwash rather than the
pressures, i.e.
Cpy = AZA‘]ZA3 ®
or Cp, = A, 0
with the equivglent downwash given by
&=Ru {15)

{16)



By replacing,-as before, the matrix A, in
Eq. 14 by the transonic operator F, (p, fan
be calculated for transonic flow. Howdver,
this method was not used here, since in general
o exhibits phase lags within a given wing section,
and would involve a modification of the TSP
program, which was not done. Furthermore,
it 1s somewhat difficult to deduce the motion
of an airfoil in the time-domain from its complex
downwash, since a term of the form exp(iw(t-x/U))
of arbitrary amplitude can be added to the
motion without changing the complex downwash.

V. Results and Discussion

The procedures described above were applied
to a half-wing wind tunnel model of a transport
agircraft with supercritical profiles, with
& half-span of 1.1 meters, a full-span aspect
ratio of 8.8, and & quarter-chord sweep-angle
of 28°. To generate unsteady pressures the
entire wing was given a harmonic oscillation
in pitch at 40 Hz about 2 swept axis, corresponding
to & reduced frequency of 0.27 at M = 0.78,
and 0.25 at M = 0.83 based on mean aerodynamic
chord. The wing was braced by cables at the
wing tip to eliminated elastic bending.

Figure 1 shows the wing planform, the location
of the pitch axis, and the location of the
three streamwise sections at which both steady
and unsteady pressures were measured. The
measurements were made in the ONERA S2 wind
tunnel at Modane, France. After putting the
measured steady pressures for & subsonic Mach
number (0.73) through the two-dimensional Weber-TSP
procedure, the resulting equivalent profile
was used to calculate the steady pressures
at the three sections for two higher Mach numbers,
0.78 and 0.83. Figures 3 and &4 show the calculated
pressure distributions for the two Mach numbers
and sections 2 and 3, together with the measured
pressures, the pressure coefficients being
based on the normal dynamic pressure. The
agreement between experiment and calculation
is seen to be good, especially for the lower
Mach number. The shock at the rear of the
top surfaces is somewhat overestimated for
Mach 0.83. This is probably due to the fact
that the inverse Weber procedure does not take
account of the shock-boundary layer interaction.

Figure 5 shows the steady pressures on -section
1 for Mach 0.78 and 0.83, where the agreement
is not as good, the major discrepancies being
on the lower surface, where the engine pod
{at n = 0.35) is likely to constrict the flow.
The agreement for the top surface is as good
as for the other two sections.

To determine the unsteady pressure
distributions, the TSP-calculations were continued
for the equivalent profiles executing a harmonic
pitching motion about the local pitching axis.

The resulting two-dimensional pressures Cp
were then corrected as indicated by Eq. 12

to give the three-dimensional pressure distribution
Cps.

The results of the calculations are shown in
Fig. 6 to 9 as plots of unsteady pressure

coefficients divided by the pitch amplitude
against x/c(y} together with the appropriate
measured pressure coefficients, for the two
outtboard sections, and Mach 0.78 and 0.83.

Inspection shows firstly that the correction
for three-dimensional effects is very small
for this wing and the selected wing sections,
and is within the range of experimental scatter.
This is primarily due to the high aspect
ratio {8.8) of the wing, and the fact that
tip effects become noticeable only beyond 90%

_of the wing span, while the outermost measurement

section 3 is located at 88%. However, the
corrected pressures lie, in general, closer
to the measured ones than the uncorrected ones.

The 3 D corrections probably would have
been more pronounced for & wing with.a lower
aspect ‘ratio; however, measured pressures for
such a wing were not available to the author.

Inspection of Fig. 6 to 9 shows further
that the calculated and measured pressures
in general agree well for the bottom surface
of the wing. There are, however, considerable
discrepancies in the pressures on the top wing
surface. For the lower Mach number (0.78)
these are confined to the suction peak near
the leading -edge, which is overestimated by
the calculation, though it 1is brought down
somewhat by the 3D correction. The pressures
for the rest of the chord are in reasonable
agreement.

The largest discrepancies occur on the top
surface for the higher Mach number (0.83),
At section 2 (Fig. 8) the peak.due to the
shock on the rear profile agrees reasonably
well in size.  The calculated peak, however,

1ies much further downstream than the measured

one. A look at the corresponding steady pressure
distribution (Fig. 4, top) shows that the cal-
culated values indicate indeed a more rearward
position for the shock, but not as much as
evidenced by the unsteady pressures. An explanation
for this might be that the maximum value of

the shock peak actually lies further downstream, -
but was not captured by the transducers. This

is corroborated by the much smaller discrepancy

in the location of the phase jumps across the
shock, which are often a more reliable indicator -
of shock locations.

Much the same can be said about the second
peak at about 15% of chord (Fig. 8 and 9, top)
due to the small fluctuation in the steady
pressures ahead of the shock (Fig. 4). The
calculated steady pressures model the measured
ones rather well, as far as location is concerned,
but the calculated unsteady peaks 1ie upstream
of the measured ones. The leading edge suction
peak is, however, reproduced quite well by
the calculation.

Part of the explanation for the observed
discrepancies, besides & possible failure to
capture shock peaks, is that the experimental
pitch amplitude was rather small (0.25 deg)
because of power limitations, and that the
ensuing small unsteady pressures could be rather
sensitive to wind tunnel turbulence or small
surface irregularities.



Conclusion

A method has been described which makes

maximum use of transonic calculation methods

for planar flow, subsonic methods for three-
dimensional flow, and measured steady pressures
to calculate transonic unsteady flow around

& wing of moderate to high aspect ratio. Using
measured steady pressures to develop equivalent
profiles eliminates the need for estimating

the steady induced angle of attack along the

wing span, and some steady boundary layer effects.

Agreement with measurement is, is general,
quite good for the lower Mach number investigated,
but only moderate for the higher Mach number
of 0.83. This was felt to be due, in some
part, to the small pitch amplitude of the wing
during measurement.

The 30 corrections for unsteady flow were
rather smail for the high-aspect-ratio wing
and the reduced frequency investigated. To
test the applicability of the 3D correction,
a wing of a lower aspect ratio should be
investigated as a next step.
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Fig.1 Location of pressure tap
sections on model wing
Half -span: 1.1m
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