ICAS-84-1.5.2

A KINEMATIC APPROACH TO UNSTEADY

VISCOUS FLOWS

U. Nehring
Bunsenstr. 10
Goettingen
F.R.G.

Abstract

4 system of non-linear differential equa-
tions describingquite general flow phenomena
is presented and discussed from a kinematic
point of view. Reducing the dynamic variables
to one scalar pressure function and a velocity
vector this approach is based on a concept of
viscosity diverging from the usual definition.
It does not proceed on local shear stresses
but on the assumption that fluid friction
depends on irreversible processes within the
flow field. The equations admit discontinuities
in shear velocity as well as compressibility
effects. In the limit of incompressibility
agreement with the EULER-equations is obtained.
The numerical solution by an explicite finite
difference method results in the simulation
of unsteady flow fields and energy distribu-
tions. For example the flow over a step within
an insulated system, around a wing profile
with a flap and a circular cylinder has been
investigated.

I. Introduction

This theoretical study of unsteady viscous
flows is based on model equations, presented
by the author in [1]. By means of these equa~-
tions, complex fluid motions such as vortex
formation and separation in a wake were simu-
lated numerically in rather good qualitative
agreement with visual and experimental evalua-
tions. Characteristic of this approach is a
concept of viscosity diverging from the
classical one. Accordingly, shear viscosity as
the relation between the tensors of stress and
strain loses its principal significance, being
restricted to boundary layer calculations from
a more pragmatic point of view. Viscosity in
this sense is less understood as a property
of substance but as an irreversible phenomenon
of the flow field in its entirety.

In a formular manner. the model equations
can be derived from the Navier-Stokes-equa~
tions and the energy-equation such that two
requirements are met : on the one hand the
number of the scalar variables 'pressure,
density and temperature' must be reduced to
only one by means of a barotropic approxima-
tion, and on the other hand the shear viscosity
term 1AV is neglected unlike the bulk visco-
sity Cgrad div v. Though this second assump-
tion has been proposed by VON NEUMANN-RICETMYER
in 1950 (see ROACHE [2] ) in connection with
artificial viscosity , it has to be considered
unusual at least. Bulk viscosity is said to be
small in general, vanishing altogether in
incompressible and monoatomic fluids. There is,
however, some uncertainty about the realistic
contribution of bulk viscosity, because periods
of relaxation and integrals of collision are
difficult to measure. As known from the litera-
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ture, the bulk viscosity coefficient can take
high values well enough. Particularly if high
frequencies are involved - such as in the case
of sound waves - the bulk viscosity coefficient
can exceed considerably that of shear viscosity
- see LANDAU-LIFSCHITZ [3]. Rapid changes in
the variables of state by compression and
dilatation effect disturbances of the thermo-
dynamic equilibrium so that innermolecular
processes take place resulting in energy dissi-
pation. Nevertheless it is unsatisfactory to
substantiate the influence of bulk viscosity
based on conventional theory, for high tempe-~
ratures, MACH-numbers or frequencies are
unalterable,

It is possible that better arguments for
this approach result from an extreme point of
view, which questions the necessity of the
fundamental shear stress model at all. That is
why this is called a kinematic approach. If
shear stresses - and congequently forces in
general - and mass are banished from the basic
equations of motion, the dynamic variables may
reduce to kinematic quantities such as a velo-
city vector and one scalar variable represen-
ting internal energy per mass or heat or a
'pressure function'. Moreover this approach
satisfies the demand of irreversibility to
avoid thermodynamic equations of state strictly
valid only for equilibrium. An inconsistency
with the conservation of mass is not seen; the
equation of continuity can be ensured - only
with the restriction that it be a necessary
but insufficient condition of motion. Details
of this interpretation will be discussed after
the model equations have been presented and
illustrated by examples showing an amazing
simplicity and universality.

II. The concept of viscosity

In fluid mechanics the concept of visco-
sity is closely associated with the existence
of shear stresses. In view of this essential
fact the well-proved NEWTON-STOKES hypothesis
of a linear relation between the shear stress
components and the gradients of the velocity
components is of secondary importance. The
existence of shear stresses, effective on an
element of volume 'large enough to contain
many molecules but small enough to be used as
an element of integration' (see TRUESDELL/
TOUPIN [4] and their criticism) is an axiom.
Nevertheless it is not quite clear whether the
shear stresses are the 'cause' of friction in
a fundamental sense. Even PRANDTL, father of
the boundary layer theory using the concept
of shear stresses, reduces turbulent and ftrue’
friction ultimately to the transport of
momentum by molecular motion [5]. LAGALLY [6]
goes beyond this. For him shear stress in a
boundary layer is a 'consequence' of friction.
He says : 'The assumption that vortices occur



in the boundary layer due to friction against
the wall surface leads to a mathematical dis-
crepancy. On the contrary, it must be assumed
that a vortex layer present at the wall causes
friction, which, in order that the assumption
be in agreement with the actual physical
phenomena, cannot be regarded as negligible.'
Accordingly it is a question of cause and
effect. Does the friction by shear stresses
imply vortex layers or does a vortex layer
produce shear stresses ?

Perhaps an indication of the founding
mechanism may result from the theory of
'fractals', originating from MANDELBROT [7].
In this sense 'roughness' of a wall should be
a quality in principle, according to which
smooth surfaces of solid bodies are fictional -
produced ultimately by length scale averaging.
The physical reality behind this would be the
'fractal' - microscopic or macroscopic -
structure of matter responsible for the forma~
tion of vortices in front of or behind obstac-
les, whatever order of magnitude. Of course,
the reference to the idea of 'fractals' is
inconclusive. Perhaps disturbances inherent to
real flows will have similar effects on boun-
dary layers.

After all strain and rotation phenomena
could be considered from this point of view as
a product of normal stresses and body shapes
only, while shear stresses inside a fluid seem
to reduce to a more or less 'useful model!'.
These reflections suggest that bulk viscosity
be thought of as the essential quantity
representing the effect of normal stresses in
compressible fluids.

A kinematic view goes beyond this, elimina-
ting the concept of stress altogether and re-
taining pure geometric relations between
velocity components and internal energy.
Possibly the main advantage will be to recog-
nise discontinuities in shear velocities, be-
cause a tear-off of the flow behind an edge
for example does not result automatically in
infinite shear stresses as 1 2 du/dy would
necessitate. This would explain the high inner
mobility and instability of fluids leading to
problems in defining steady state conditions.
In contrast to the damping nature of the
LAPLACE-operator, the vector-operator'grad div'
is destabilising. A more physical interpreta-
tion of bulk viscosity would lead to questions
of relaxation, dissipation or other irreversille
dynamic processes.

III. A formular approach

Equations of motion

The unsteady Navier-Stokes equations for a
compressible medium subject to friction,
ignoring volume forces and using the summation
convention, are :

1 = shear viscosity, = bulk viscosity

Separation into shear viscosity and bulk visco-
sity is not dealt with in a uniform manner. In
the present paper, the term 'bulk viscosity'
ig limited to terms with the second viscosity
coefficient ¢ , i.e. in equation (1) to

ov,
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This term is also defined as 'pressure visco-
sity', while 'bulk viscosity' then includes
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Equation (1) is made nondimensional in the
conventional manner using a characteristic
length and the incident flow quantities. In
general, the viscosity coefficients are not
field constants. The reference quantity can,
for example, be U, so that withl =y 7*
(* = nondimensionaf) only Reu appears or
L = t* is used as well as U= U* so that
Rer also appears as a second Reyﬁolds number.
Thus, considered from the nondimensional point
of view, the shear viscosity term in (1) is of
order 1/Re, while bulk viscosity is of order

1/Re; or Zgz/(uoﬁeu ).

According to the assumption that remote
from thermodynamic equilibrium - at high
Reynolds numbers ~ the ratio of the instant
flow viscosities { /u_ >> 1, shear viscosity
can be neglected in a first approximation.
Equation (1) then reduces in nondimensional
form to :

Energy egquation

Neglecting the terms associated with §h§ar
viscosity, only the gquadratic term ¢ (div v)
of the dissipation function remains in the
energy equation. The shortened energy egquation
is then, in dimensional form :

EEENE R

M (1

with internal energy u, temperature T,

pressure p and heat conductivity A .

An equation for T or p then follows if an ideal
gas is assumed. The following then apply

p=RpPT

and du = cv daT .

Using the PRANDTL number formed from the
specific heat ey

4

Pr =y cv/>\o

the ECKERT number

2
Ec = U /cv T,



and the gas constant R, the nondimensional

equation for temperature, for example, is
found to be :
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In conjunction with the continuity equa-
tion, the ideal gas law and the equation of
motion, there is a closed system of equations
for the variables V, p,p and T, provided a
functional connection or another relationship
is known for the bulk viscosity.

IV. Model eguations

Assuming an ideal gas and making the
further assumption of barotropy, i.e. P =0 (p)
and gradp <<grad p , the momentum and energy
equations can be reduced to four variables -
the velocity V and a pressure function ¢(T,t).

Using the kinematic coefficients
c

A
a A=-—
an: p
which can now be considered as material con-
stants, equations (1) and (2) give :

v C]

av

dc

(3)

0 graddivv - grad ¢

(4)

~ ~2
%%=€divgrad¢ -¢divv+ 0O (divv)

where ¢ = A/R. (the nondimensional proportio-
nality factork ~ 1 is omitted here in oxrder to
make the arrangement of the equations clear)

Furthey reduction of equation (4) occurs
if (div V)€ is neglected since it is small in
a higher order compared with div V. After com-
bination of the term ¢ div Vv with the convec-
tive term +V-grad¢ , the following is obtained

e divv = eAd

(5)

i.e. a relationship which can be understood as
the conservation equation for the quantity ¢ ,
extended by a diffusion term.

The energy equation (5) can be obtained as
well by proceeding from a generalized Fourier
equation for a moving medium. It reads

ar

= v
a5 alT +

cp

(6)

with temperature T, temperature coefficient a,
specific heat c, density o and inner sources
of heat g, . Setting these sources per mass
proportional to -¢.div ¥V produces (5). In this
way no further assumptions like that of ideal
gas are needed.

2
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It should be noted that equation (5) has a
form complementary to that of the equation of
motion (3). This becomes clear if the system
of equations is reduced to an arrangement
showing the essentials - taking no account of
dimensional correctness, parameters and mate-~
rial property quantities. The arrangement in-
dicates a feedback between gradients and sour-
ces. Using the further simplification of

$ div v » div Vv, it becomes :

a¢

T div (grad ¢ - v)

v L~
e grad (divv - ¢)

The expressions in parentheses contain, on the
one hand, the vector field composed of the
acceleration and velocity fields and, on the
other, the scalar field consisting of the
potential from the acceleration and source
strengths of the velocity field. The physical
interpretation is that the space/time changes
in the potential and velocity fields are equal
to the mources and gradients of the 'true'
fields, which are determined by the potentials
and state of movement.

The complete system of equations is now :

d¢

dt=edivgrad¢-¢div€r

(*)

g—‘t’: 8 grad div v - grad ¢

with the material properties £ ,0 1o be de-
termined by experiment.

The continuity equation is not required in
this model. It can, however, be used to inte-
grate the density over the velocity field,
thus ensuring the conservation of mass.

The boundary conditions, which are dealt
with in more detail below comprise the assump-
tion of insulated walls with 3¢/on = 0 (n
direction normal to surfaces) and the no-slip
condition ¥,= 0, which can be satisfied by
virtue of the second-order terms.

The numerical method used is very simple.
The model differential equations (*) are appro-
ximated with reference to the spacial coordi-
nates in a central finite difference method
(second order) for the first and second deriva-
tives. The development with time occurs
explicitly in a single-step finite difference
method (first order). The step widths in space
and time are selected such that the Courant-
Friedrich-Levy condition is satisfied.
A dependence of the computed results on the
step widths has not been found.



V. Reduction of scalar variables

The approximation of barotropy was used in
[1] to reduce the number of scalar variables
to only one. Instead of pressure, density and
temperature coupled by an equation of state, a
‘pressure function' equivalent p/p was intro-
duced. The reason for this simplification
might be physical. Quantities of state like
temperature are strictly defined only for
thermodynamic equilibrium. To define them for
irreversible processes like fluid motion is
doubtful. Thus GOLDSTEIN [8] points out that
the physical meaning of thermodynamic pressure
p in the general relation

p,. =0

Lo~ 2 L~
i3 5 (-p+Z divv - 3 Hdivv) +u eij

' (1)

13 = components of the rate-of-strain tensor

is not clear. Except for thermodynamic equi-
librium, p is not identified with an average
normal pressure pjj/3 or something similar.
For this reason GOLDSTEIN proposes to neglect
(7) and to favor the internal energy or heat
as the primary variable independent from
thermodynamic equilibrium contirary to the
various modes of energy, i.e. translational,
rotational and vibrational energy.

With the introduction of internal energy
or the equivalent pressure function ¢ here,
reversibility is however not banished totally
from dynamics. GOLDSTEIN himself emphazises :
'We want, if we can, to use the usual equili-
briun reversible thermodynamics'. This is not
quite clear. To use equations of state for
non-equilibrium is contradictory. Nevertheless
GOLDSTEIN defines by means of density p and an
equation of state hypothetic 'pressures' and
'temperatures', conceding that the physical
meaning of these calculated quantities is
questionable at least.

This inconsistency in principle can be
avoided only if the basic system of the equa-
tions of motion do not contain equations of
state at all. Consequently this leads to only
one scalar variable in non-equilibrium.

VI. Boundary conditions

Solid walls

For reasons of simplification only the
velocity component u in x-direction may be con-
sidered. Then the second order derivative

2
3 u

oy
replaced comparatively by the bulk viscosity

B (3uy . 3 (du
tern 8y<8x> B 5;(73;)
The latter term is obviously dependent on the
shape of solid surfaces. In parallel flow alcong

characterising shear viscosity shall be

9
plane walls,'g;(éE

X Ju
ay)approx1mates 0, even if 3y

will not be small at the wall because of the
no-slip condition wu(wall) = 0 .

Thus, as confirmed by calculations, the actual
choice of the tangential wall condition is
rather insignificant. As the x-derivative
vanishes in such parallel flows along surfaces,
a more or less slip-flow is obtained in any

32\1

oxdy

will be evident, if edges, nooks or other
uneven contours exist. At these exposed regions
even a slight compressibility of a fluid will
have consequences - retarding the flow near
walls and stimulating vortex formation. In

this sense shear viscosity could be regarded

as a time-space-averaged microscopic bulk
viscosity.

case. On the contrary an effect of

Free boundaries
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Free boundaries characterise open systems
exchanging energy, momentum and mass with their
environment. In numerical experiments these
boundary conditions have to be prescribed
though they are unknown in principle. Moreover,
the assumptions of steady state conditions -
e.g. at the influx and outlet of a simulated
channel - will generally lead to an unrealistic
evolution of the inner flow field. In modern
theory of non-linear systems the sensitivity
to small changes in the initial or boundary
conditions is well known, which is what we
notice here. In numerical experiments the
interaction of the field with the boundaries
is so intense that a steady flow initiated by
free boundary conditions could be produced only
approximately. Either the friction is too weak
resulting in an acceleration of the flow or too
strong with the consequence of rather stable
vortices blocking up the channel or similar
effects. For this reason insulated closed
systems are now taken into consideration, after
initial calculations have been performed with
a global, constant pressure gradient as boun-
dary condition tolerating an acceleration of
the flow.

VII. Insulated systems

The choice of insulated systems has several
advantages. To remove free boundaries is only
one aspect. More important is the fact that a
concept of viscosity, as mentioned above,
characterised by irreversibility requires in-
sulated systems in principle. For computing
purposes it is useful then to proceed from two
fictitious reservoirs separated by a diaphragm
which bursts at time t=0 . For t<0 we have
thermodynamic equilibrium inside the separate
reservoirs. With equations of state valid for
equilibrium, initial values of pressure p,
temperature T and density p can be defined.
The quantities at rest - e.g. of the first
reservoir - are the reference variables.

at rest may be
'kinematic'

The pressure function ¢°
identified now as temperature, -

pressure p /p_ or velocity of sound analogous
to & c(Kp°?p°°) with the ratio of specific
heat « = cp/cv .



if ¢I = (p /o )I is chosen the essential
dimeRsional r@ference quantity related to
reservoir I and L is a characteristic length
of the system, the model equations can be
written in the nondimensional form :

a0 _ & divgrad ¢ - ¢ div v
dt L q)I
0

av _ _ 9 grad div v - grad ¢
dt I
L ¢O

with the relations to the physical quantities,
marked by +

L

e, AT ¢ =50

o]

More reasonable, however, 1s to introduce
a characteristic time T of the system as a
second reference quantity. This time T may be
the period of eigen-oscillations of the closed
system. Then the relations to the dimensional
quantities (+) read :

L~
=5,
T
Moreover this approach corresponds to the view
of friction depending on global parameters of
the flow field system.

VIII. Test calculations

The flow over a step

Initial computational results concerning the
flow over a backward-facing step, investigated
by a great number of scientists (see TROPEA[9])
were reported in [1]. Though qualitatively
satisfying, a quantitative comparison with ex-
periments must fail, because the flow was
accelerating due to a constant global pressure
gradient in the simulated channel. Now the
problem of unknown free boundary conditions

has been discussed resulting in a restriction
to insulated systems. Consequently an insulated
3-dimensional system was simulated numerically.
Figure 1 shows a general view of two reservoirs
with different initial conditions (high-pres-
sure function on the left) connected by a chan-
nel containing a step. At time t=0 an imaginary
diaphragm bursts at the influx of the channel
accelerating the flow to a maximum mean velo-
city (related to the small cross section in-
front of the step).

0f course, the main flow parameter as the
reattachment length and the wall pressure
coefficient behind the step depend on the
instantaneous state of the flow, but concrete,
realistic conditions can be defined now for a
later comparison with experiments starting
from a state of rest.

Figure 2 shows the reattachment length,
made nondimensional by the step height, as a
function of a mean (nondimensional) velocity

simulation

.8 ot 2 -3 .4 .5 .8 .7 .8 .8

Urer
Fig. 2 Reattachment length as a function X,/H
(H=step height) of a ref.velocity Upef
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over a step in a closed system (velocity vectors)
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-
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0

x/H

Fig. 3 c¢ as a function of distance x/H

behind the step
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Fig. 4 Velocity field behind the step
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Fig. 5 Isolines of ¢ (correspond. Fig.4)
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Fig. 6 Velocity field (see Fig.1)
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Fig. 7 Isolines of ¢ (correspond. Fig.6)

-1 4

x/H
Fig. 8 Wall pressure function c¢
{corresponding Fig. 6,7)

at the- influx of the channel. It is seen that
the reattachment length is just increasing
though the mean velocity has already exceeded
its maximum. The interaction of the entire
flow field shows how difficult it is to obtain
approximately steady flow conditions in numeri-
cal experiments as well. In principle theorists
can at best simulate what an experimental
engineer can do in reality - but nothing more.
Therefore free boundary conditions should be
avoided if possible.

Figures 3-5 refer to the above-mentioned
maximum mean velocity where the flow behind
the step is considered to be quasi~steady.
Here the characteristic increase of the coeffi-
cient of wall pressure ¢p can be found, e.g.
as measured by TANI [10].

The cohparative coefficient

°¢ = ( ¢wall - qsref ) Sres

with ¢rer = the mean pressure function at the
channel influx is reproduced in PFigure 3 .
Figure 4 shows the flow simulation of the
section behind the step and Figure 5 the lines
of constant pressure function (called 'iso-
lines' in the following). The closed circular
lines represent the vortex behind the step as
a region of small pressure function.

Figure 6 corresponds to the flow of Figure 1.

FaN
4 6.8 1@ 12 14 15 18 20 22 24 26 20 38 32 3I4 36 38 4D 42 44 45 48

Fig. 9 Shock isolines

x/H
Fig.10 Wall pressure function cé
(corresponding Fig. 9)



Fig. 11 Velocity field simulation

Here an increase of ¢ at the right-hand side
of the flow section is legible from the plot
of isolines (Figure 7) and of coefficient ¢
of the wall pressure function (Figure 8).

If ¢£ at rest is increased by a factor 10,
a strong shock is running into the channel.
Behind the shock front (Figure 9) a splitting
of the shock and fluctuations of 4 at the
wall (Figure 10) are observed.

Airfoil with flap

In comparison to a wing profile measured and
calculated by STEINBACH (DFVLR) on the basis
of potential and boundary layer theory, first
qualitative results are obtained. Figure 11
gives a general view of the profile configura-
tion, computed by equations (*). The time-
independent method of STEINBACH is rather
successful except for the wake behind the
small flap. Here experimental results indicate
reverse flow forming a vortex. Figure 12 shows
the time-averaged coefficient cp measured by
STEINBACH.

By means of the model equations the test
calculations yield an unsteady vortex flow
(with time-independent free boundary conditions)
illustrated by the simulated velocity field
and the isolines of the function ¢ behind the
flap (Pig.13-16). The time-shifted isoline
plots show the drift of the vortices quite
clearly as well as the amerging and fading
away of regions of high and low pressure func-
tions. To a certain degree FPigure 13 agrees
with the measurements of STEINBACH (Fig. 12).

Circular cylinder

The simulation of a starting flow around a
circular cylinder (Figure 17) shall demonstrate
that the mechanism of developing symmetric
vortices may be different from a drifting
single vortex or vortex street. The isolines
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Fig. 12 c, measured by STEINBACH, Re=3.0-106

Fig. 13 ¢-isolines (time-dependent)
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show only one region of low ¢ instead of iwo
(Figure 18). This combination seems to be
unstable.

If the responsible global pressure gra~
dient is very low, a creeping flow without
reverse flow is obtained.

o

Fig. 17 Starting vortices behind a cylinder

i
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Pig. 18 Isolines of ¢ (correspond. Fig.17)

IX, Turbulence

Realising that equations (*) cover in
principle different flow phenomena - from
laminar flow to unsteady vortex separation -
the relevancy of these equations to turbulence
must be sought. Thinking of the universal cha~
racter nonlinear dynamic systems may have,
including steady, periodic and chaotic solu-
tions, we cannot deny a priori this possibi-~
lity. This premise is supported by the evi-
dence of fluctuations of the velocity vector
in critical zones like mixing layers, if a
reference velocity exceeds a threshold value
(Figure 19). Of course, it is a problem to
separate physical from numerical effects here.
As calculations have shown, there is a sudden
increase in numerical instability reaching
critical conditions. But the calculations
seem to confirm as well, that minimising the
time-step (intensifying the CFL-condition)
does not completely prevent the development of
fluctuations. Obviously there is a correlation
between the decrease of vortices and the in-
crease of fluctuations in vortex vicinity.

Another argument results from the charac-



Fig. 19 Flow over a step with developing (turbulent ?) fluctuations in the mixing zone (flow

just reflected at the right border)

¢ maximum
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Fig. 20 Length of flow reattachment Xr/H as a

function of a nondimensional reference
velocity U,

teristic dependence of the reattachment length
behind a step on the mean flow velocity, as
shown in Figure 20, that originates from [1].
Compared to measurements the range of velocity
is however rather small because of the accele-
rating flow conditions in that calculation.

An interesting aspect results from Figures
1% £./18 which show the isolines of the pres-
sure function. Remarkably, a fluctuation or
breaking off of the isolines is noted in the
regions of transition between closed igolines
and those ending on solid walls. On the other
hand the space between these neighbouring iso-
lines is rather large, characterising a low
gradient of ¢ . This seems to be a region of
instability where branching of the field
solutions may occur. Possibly the ‘critical
mixing zones correspond to zones of developing
turbulence.

Qutlook

This theoretical study results lastly in
an elimination of concepts connected with ‘an
element of fluid of finite volume': the assump-
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tion of local thermodynamic equilibrium, of
causal shear stresses and of forces consequent-
ly. Mass appears as a fluid parameter only,
hidden in the coefficients of substancee ,0 .
For this reason this theory is a kinematic one,
describing a fluid field by purely geometric
relations between the internal heat (pressure
function) and the velocity. Within the limit

of incompressibility, agreement with the EULER-
equations is reached. 'Viscosity' is understood
as an irreversible phenomenon of the flow field
in its entirety, enforcing the consideration

of insulated systems. Equivalently the basic
equations are dissipative.

A more general form of equations (*) can be
obtained if the coefficients of substancec,0
are factored out. Writing

£ = a[Lz/t] -srel

0= a[Lz/t] ) Qrel

with Erel’ @r 1 nondimensional, a of the
dimensién fength )2/time
the relations of material

b= €rel ¢
wo= Orel M
can be separated. The dimensional quantity 'a‘'
should be an appropriate constant of nature,
analogous to the velocity of light ¢ normaly
introduced into the Maxwell equations.
Here a quantity of the proper order of magni-
tude and physical meaning would be

h/me =~ 1.15 cmz/sec

( n = Planck's constant/2m; me = mass of elec-
tron ).

On a molecular level friction would then be
considered an exchange of energy quantums by
interaction between shell electrons. Following
this reasoning equations (*) read :

DD py-paive
e

;?— grad div w - grad ¢
e
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