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Abstract

A computational method is presented for solving
numerically the three dimensional Euler equations
for transonic flow around practical aircraft
forebodies. The Euler solver is pseudo-time
dependent, split and cast in finite volume form.
Shock waves are captured crisply without the

need for additional smoothing by means of an
operator-switching facility which more accurately
reflects the direction of propagation of signals.

The method is illustrated by examples of computed
external, axisymmetric flows and some, simulated,
realistic aircraft forebodies. The computational
meshes employed in the three dimensional cases
are essentially of cylindrical polar, flow
conforming, type and relatively coarse. Closer
attention to the mesh generation is expected to
refine the results presented here. The method

is versatile, robust, and holds promise for
treating complex three dimensional geometries
within economically viable run times.

Introduction

Computational aerodynamics has become a powerful
tool in the armoury of aerodynamicists. The

last fifteen years has seen a rapid advancement

in computer technology, paced by an almost

equally rapid improvement in numerical algorithms
applied to fluid flows. The early transonic

flow solvers of Magnus and Yoshiharal and Murman
and Cole? have been the basis for successively
more refined algorithms, particularly those based
on the full potential equation and currently

used in many design offices. Recently, these
codes have been applied, using the multi-block
approach, to near complete aircraft configurations,
including engines and stores. A particular
feature is the solving of the flow field-equations
in physical space on Cartesian grids, thus
circumventing the difficult problem of mesh
generation. The work of Rehyner3 and Boppe4
exemplify this approach. Full-potential codes
have the advantage that they are economical to

run and, when combined with an appropriate
optimisation code, can be put to work to sort
through a range of possible designs, or to explain
how configuration changes will affect the features
of the flowfield.
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However, whilst potential methods have demon-—
strated a capability for predicting transonic
flows with shocks of moderate strength, the
approximations made in ignoring entropy changes
and vorticity production cannot reasonably be
expected to yield acceptable accuracy when the
flight Mach number is in the low supersonic range
typically encountered in design studies of
proposed fighter aircraft. Also, there is some
evidence” of non-unique solutions arising from
solving the full-potential equation. Accordingly,
one is led to the conclusions that we must solve
the more exact Euler equations to provide an
accurate description of the inviscid transonic
flow past realistic configurations.

Although Euler solvers should, in principle,
furnish more accurate predictions of the features
of inviscid flows, they are not without deficien-
cies. Probably the most serious problem areas
are those which relate respectively to the
accurate resolution of captured shock profiles,
without oscillations, and the minimising of
spurious entropy production. These negative
features have been the stimulus for much recent
algorithm research and development. There have
been those workers®=9 who have concentrated

their efforts on the development and refinement
of existing methods, and those who have researched
new ones. In the latter category are the
impressive flux-splitting methods of Roelo’ll,
Osherl? and othersl3,14 which have successfully
been applied to very strong shock waves and

blast waves. Methods in the former category
have, in contrast, tended to be applied to
aeronautical fluid flows where shock waves are
not as severe, but, perhaps, geometrically more
complex. This tends to suggest that one should
view the available methods in a heirarchal

light, with the computationally inexpensive

full potential methods at a lower level than the
very expensive but high-precision flux-difference
splitting methods. One would then choose the
most appropriate algorithm for the problem to be
solved.

Our approach is based upon algorithm development,
and so lies somewhere in the middle of the

above heirarchy. It uses the finite volume
concept, split operators and a switching process
which implements the spatially-symmetric,
explicit, MacCormack method in subsonic regions
of the flowfield and switches to a scheme
incorporating spatial bias in supersonic regions.
Captured shock profiles are crisp and well
defined. The method does not drop to first-
order accuracy in the vicinity of shock waves,

as do other methods, nor does it require substan-
tial doses of added smoothing.




In the following sections of this paper the
differential and integral formulations of the
equations of motion are reviewed, the numerical
discretisation procedure is outlined and a range
of computed results are presented, relating to
axisymmetric external flows and some realistic
aircraft forebodies. The axisymmetric flow
results serve to illustrate a direct comparison
between the MacCormack split algorithm and the
operator-switching approach. We conclude with
some remarks on mesh generation with reference to
likely future applications of our method.

Differential and Integral Formulation

The finite volume method uses a general system
of non—orthogonal co—ordinates which conform to
the body contour. The curvilinear system with
contravariant co-ordinates x% and covariant base
vectors g, is introduced, the intersections of
the respective co~ordinate surfaces constituting
a network of mesh cells. Intrinsically related
are the contravariant field vectors gM = grad xT
and related to the base vectors by §§.§2= 8¢ .
Between these co-ordinates and a rectangular
Cartesian system Zy, with unit based vectors ay,
there exists the functional relationship.

% = x* (2),25,29)5 % = 1,2,3, (1)

The Euler equations when written in strong
conservation form with respect to this curvilinear
system are

3 (8D + 3 (BB =0 (2)
or 1
(g, + (g F),, =0

where T
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the Jacobian /é = 3(21,22,23)/8(x1,x2,x3) and we
note for later convenience that the flow velocity
can be.written as g = u“gy = wya,, where a, are
the unit Cartesian b?se vectors.

FIG. 1

Formation of finite
volume cell by
intersectionsof

surfaces x* = const.

Equation (2) can be rewritten in the form
(/g0),, + V.t =0 (3

where V,t = V(l§_§1+2£§& +%g§3). Then by apply-

ing Gauss' theorem (3) may be cast in integral
form
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which emphasises the amenability of the equations
to splitting with respect to the co—ordinate
directions x* with which 5" are associated.
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where Vg is the volume of the computational cell
and the term /Elgl is the contravariant, outward-
pointing, surface normal for the surface xt =
constant, hereafter denoted by §Q.

Thus, finite volume computations can be performed
with the more easily constructed flux tensor
H(U), comprising variablesreferenced only to the
Cartesian frame. The area vector S% 'splits' the
tensor appropriately into components associated
with each curvilinear direction. The evaluation
of the area vectors and the volumes of the
computational cells is easily accomplished using
simple vector relationsl3,l

Numerical Procedure

The integral equations(4) are solved using a
factored sequence of locally one-dimensional
operators in the manner described by Strang ’.

Split Operators

Equation (2) can be split into three LOD differen-
tial operators as

L

RJ;JU +

Use E,y = 0 (no summation in ) (6)



where each split operator contains curvilinear These disadvantages do not apply to the

spatial flux derivatives in one co-ordinate MacCormack scheme alone but would apply equally
direction only. If we now let At be the time to any second-order accurate and spatially-
step, n the time level and %g be the flux across symmetric difference operator.
cell surface x? = constant, the MacCormack,
fractional step, predictor—corrector difference Various remedies have been proposed by researchers,
operator Ll(At)is ranging from the rigorous to the palliative. The
L flux-difference splitting and associated
: n+l n A En approacheslO-14 geek rigorously to match the
predictor YgU =Ygl - At (—) (7a) ppIo - . & A
F— — Ay spatial differencing to the direction of propaga-
tion of signals. They have been applied success-
+1 n n+l LF;n+l fully in one and two-dimensions to capture very
corrector VgU" & = J(/gU +/gU" ~At(A+ = ¥ :
forrector Ve 2 (vel 8- (__E_) ) (7b) strong shock waves and blast waves, but they tend
Ax to be rather computationally expensive. Other
approaches drop to a first-order scheme in the
Here the overbars indicate predicted values and vieinity of shock wavesl8, add a dose of . 19
b, b_ are respectively forward and backward artificial dissipation to attenuate28sci11atlons s
two point differences. or employ a 'filter' to remove them
In finite volume form the operator Ll(At) is then, There are two disadvantages associated with added
o n a 0 smoothing. One is that the exact amount to be
Yo = Ei'k - At (Ei'k §i+lf§._1,ks.“l)) (8a) added will generally be unknown and may be subject
J J =] 2 =1Ly, to numerical experiments. The other is that,
n+1 .| n+l n+l n+l generally, spurious entropy production, arising
t, =03 S L . 0. HH, LS, . . . .
g ik 2 (Hka Hl]k At(§1+13k§1+% gljkgi—%)KSb) particularly near stagnation points, is
exacerbated by smoothing. Some of the negative
where UJ.. = (vol E)i. evaluated at the cell features outlined above. can be seen in Fig. 2,
centre ijk and S§..; are the area vectors which depicts the numerical solution obtained
on opposite faces of the —? cell, corresponding by the MacCormack algorithm for a NACA 0012
to the co—ordinate surface x! = constant. aerofoil at M = 0.85 and « = 00,
15 o T
Scheme (7) is stable if
sz
At = Aty < Tl +a 9 -0 FIG. 2
where a is the speed of sound. TFora given cell .
there will be three values of Atg, one correspond- =
ing to each split, so we must choose either z 062
o 3.0 T
st = min (At)), 2 =1,2,3 (10) &
:2; 3.5
if we are using local time stepping and are g 2.0
interested only in the steady state solution, or
a global minimum time step
. o3 1.9
_ min - >
At = i3k (Atl), 1,2,3 (1) 3
if time-accuracy is required. 1.0 . ;e o
‘0.2 0.9 02 0.& 0.6 5.8 1.0%
Operator-Switching /e z
1.0 +
The MacCormack operator (7) is spatially symmetric
at the end of the corrector step and thus allows :
non-physical upstream propagation of data in @2 \\\\— 1
regions.where the flow is supersonic. This has .
a number of disadvantages.

2
. . s . -0.2 0.9 0.2 0.4 0.6 6.8 1.0 1.2 1.4
1. A numerical boundary condition is required at

a supersonic exit and this must carefully be
implemented, since any erroneous data would
propagate upstream into the flowfield and
corrupt the solutionm.

xC

Our approach involves switching, within any given
split, between the MacCormack scheme and the
upwind scheme of Beam and WarmingZl. The
MacCormack scheme is employed wherever the flow-
field is subsonic and the upwind scheme, which,
as its mame implies, incorporates spatial bias

is implemented in supersonic regions. Both
schemes are explicit and spatially second-order
accurate. The upwind scheme, which is the
counterpart of (7) is

2. Saw-tooth oscillations appear around captured
shock waves, degrading accurate resolution
of the profile.

3. Additional smoothing is required in the region

of stagnation points, sonic lines and around
shock waves.
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predictor /g™t = /gi" - ar (A-tp)P (12a)
2
Ax
+1 n+l e B
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AXZ
A2 . n
- At (T - =), (12b)
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When written in finite volume form, the upwind
counterpart of the Ll(At) operator (8) is

n+l _.n n
S ™ Bige 00 @i 58 03
n+l _, .0 n+l n+l, n+l
Bijie = 2058 By Sy B 508y
n
+ H.,. S.
:13k§1+2 Zﬁl—ljk—l“fgl"ZJk 1+‘)> (13b)
where, as before, Hijk = volijk Eljk

The operators (8) and (13) were used to obtain

the numerical results to be discussed later.
Several points are worthy of note. The operator
L, (At} is applied along rows of the mesh,

Lz(At) along columns and L_(At) circumferentially,
essentially in a sweep from a left—hand boundary
to a right-hand boundary. Focussing on the
predictor step (13a), we see that at any interior
cell located at 1 = I, the first flux term
appearing on the right-hand side is stored with

a reversal of sign for computations at the next
cell located at i = I + 1. The fact that some
computing is thereby avoided is incidental,

the point to be emphasised being that this is a
numerical statement of the conservation principle.
Continuing on this theme, we observe that when
switching within a split between operators (8)

and (13), we require transition operators, applied
at the switch po1nts, to ensure that strict
conservation form is maintained. These operators
are best derived in finite volume form, by writ—
1ng down the two schemes to be connected, at
points either side of a switch-point located at

i = IS. The necessary flux terms to maintain
telescopic cancellation of fluxes through the
switch-point can thereby readily be identified.

A detailed description of the derivation and result-
ing transition operators has been given in

Ref 15, and will not be repeated here. We end
this section with a brief outline of the switch-
ing criteria and smoothing terms used in our method

Switching Criteria and Smoothing Terms

A simple switching criterion which works well on
a flow-conforming (H-type) grid is a test on the
local Mach number, based upon data at the
previous time level. Generally, the best results
are obtained with the sw1tch-p01nts located just
inside the supersonic region. A typical operator
sequence would be

0/s

(A LH(BOLI () . U] SpitL

ijk ~ijk (14)

wherein switching occurs in the Lj split only,
the Ly and L3 splits being of MacCormack type.
Since the upwind operator is stable for time
steps twice as large as the MacCormack operator,
it is possible that the rate of convergence will
be improved if the flowfield is mainly super-—
sonic. However, this will depend upon the
magnitudes of the time steps associated with the
other splits, which will be dictated by mesh
spacings and local flow conditions; the smallest
of the three time steps must be used in sequence
(14) at any particular cell. TFor computations on
a body-conforming (C-type) grid the switching
criterion is generalised, being based on the
sign change of the eigenvalue uf-a.

A smoothing term is added to the right-hand side
of the corrector step of the MacCormack operator,
in the case of the L; split only. No added
dissipation is required in the case of the upwind
operator, or in either of splits L, and Lj.
Consequently, in problems where the flow is
mainly supersonic, with embedded subsonic pockets,
very little added dissipation is employed in the
algorithm. Shock waves are captured crisply,
with no oscillations and without adversely
affecting entrooy production. The smoothing term
is a five-point difference replacement for the
derivative BAU/BX 4; it is switched on and off
conservatively at the switch points as discussed
in Ref 15.

Initial Data and Boundary Conditions

The computations were started impulsively by
setting the variables in each cell to their
respective free stream values. The dependent

and derived variables were normalised as follows.
Let p, p, (wl,wz,W3) and e represent the pressure,
density, Cartesian velocity components and total
energy per unit volume. Let e, (Wl,WZ,W3) and
L denote the density, veloclty components in the
freestream and L a typical body dimension. Then

0 = 0lo, Wy Woswa), (W Wy, wa) /(W W, W)
2, T =B/ ¢ G 12,

ol
1

?/oq

(X,Y,2) = (X,Y,2)/L and € = T

where q2 = (w2+w§

Spec1f1c heats

Wy aw,,wa)

+w§)co and v is the ratio of

Where a flow conforming grid is used there are
four distinct boundary conditions. At the inflow
boundary we set the dependent variablesto their
freestream values. At the outflow boundary,
usually a national five body lengths downstream,
no boundary condition is required if the exit
flow is supersonic. If the exit flow is subsonic,
we assume that spatial gradients are negligible.
We assume that the far field boundary, placed
some ten body-lengths distant, is analogous to a
wind-tunnel wall and impose solid wall boundary
conditions. We also impose this condition at the
configuration surface, where

g =0 (15)

ha
4]
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and derive the required surface static pressure
(see Equation (5)) from the normal momentum
balance for the cell adjacent to the surface.

FIG. 3

Taking the inner product between the surface
normal vector and the momentum equation we have,

2 T8, 3 2 2 )
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which, when taken with (15), reduces
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Written in finite-volume notation,
2
Ax [1 3,2 2.3 3p
P =p. - 5= |puw, ==(8%) - 757 2B
b c s?sjz j o9x J) i73 %3
2191)]
- §.S. ==
i3 ox (18)
where p, is the required surface pressure, p_ is
the ppessure at the centre of the adjacent cgll

and Sj = /é gj; for the same cell.

Results and Discussion

Before we begin a discussion of the axisymmetric
and three dimensional flow cases we illustrate

the validity of the operator-switching algorithm
for the test problem used earlier in Fig. 2.

This is the NACA 0012 aerofoil, at Mach 0.85 and

« = 09, with computations performed on a C-type
grid. The only changes to the above boundary
procedures occur at the farfield boundary where

we invoke as manv boundary conditions as there

are inward pointing characteristics. We also, in
lifting cases, model a compressible vortex in

the outer ring of cells. Fig. 4 shows the surface
C, and entropy distributions for direct comparison
with Fig. 2. A further range of test problems,
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which demonstrate the method's intrinsic validity,
have been computed and reported earlier in Ref.22,

Axisymmetric 'Aircraft Forebody'

Our axisymmetric flow example is a simulated
military aircraft fuselage, in which the upper
meridian line has been rotated about the aircraft
longitudinal axis to generate a body of revolu-
tion, see Fig. 5. The nose cone is conical with
a half angle of 20°. Behind the conical section
the contour BC is faired out, its slope being
zero at C. The section CD, representing the
canopy windshield, is also conical with a half
angle of 30°. The remaining portion of the
canopy, DE, is defined by a quartic polynomial,
smoothly fairing into the semi-infinite after-
body.

The equationsdefining the body contour are
Ypg = 0-365% O<xsgl
Ype = 0-365 G- (x-1)%/12) lsxg7
Yep = 1.46 + 0.577 (x~7) 75xg8
Ypg = 1-46 + 0.577 (1.3%-9.4)

(1.8-0.1x)3 8% x<18.

The body is set at zero angle of attack at an
incident Mach number of 1.40. We anticipate at
least two shock waves will form, one attached

to the nose and another standing upstream of the
canopy, with a subsonic pocket around the wind-
shield. 1In the recompression zone behind the
canopy, characteristics leaving the body surface
may coalesce in the field to form an embedded
shock wave. The numerical results were obtained
by using a two-dimensional form of the method,
with an appropriate correction applied to the
difference operators to reflect the axial-symmetry
of the flow. In this context, it is worthy of
note that the solutions are notadversely affected
by the singularity on the axis, since the method
is cell-centre orientated, rather than node-point
orientated.

We begin with a direct comparison between the
MacCormack and Operator-switching methods.
Naturally we have available distributions of all
dependent variables and certain derived
quantities, namely, static pressure, entropy and
total pressure. Some, however, are notably more
sensitive to perturbations in the solution method-
ology (including the mesh) than others, and here
we focus respectively on the Mach number and
entropy distribution , the latter quantity being
particularly sensitive. Fig. 6 shows the axial
Mach number distribution in the body surface row
of cells. We see that the bow shock is attached
and that the canopy shock is detached, followed
by a substantial subsonic pocket., It is clear
that the operator-switching (0/S) algorithm
everywhere yields a smoother, less oscillatory,
solution compared with the MacCormack algorithm.
Discrepancies are uncompromisingly laid bare

in Fig. 7, depicting the respective entropy
distributions. The 0/S distribution is
evidently less noisy and the expected step rises
more clearly defined. However, in the region of
the canopy windshield (x=8), where the flow is



expanding very rapidly, the 0/S result is rather
noisy. By changing slightly the local mesh
refinement, as shown in Fig. 8, this behaviour
can be erradicated.

Figure 9 depicts the convergence histories of the
two algorithms, based on a field r.m.s. residual.
Of particular note is the fact that both
algorithms converge rapidly following the rigours
of the impulsive start. We observe that a
'softer' starting procedure may therefore yield
tangible benefits, particularly in relation to
entropy spikes and spurious entropy production.
Also, not immediately obvious is the fact that,
for both algorithms, the Ly(At) operator is
driving the solution in each cell. Because

this operator is, in both cases, of MacCormack
type the weaker stability bound of the upwind
scheme is not capitalised upon. It is possible
that by increasing the transverse mesh interval,
adjacent to the body, the Lj(At) operator will
drive the solution and the rate of convergence
will be increased, but this may not be compatible
with the required spatial resolution. Further
discussion of the interconnected role of mesh
spacings, splittings and associated time steps
may be found in Ref.23. Here we merely observe
that by implementing, as a refinement of the
method, local operator sequences as suggested

in Ref. 15 convergence may be improved a little.
However, the rate of convergence observed in the
present case in anyway high, the computations
requiring approximately 45 seconds on a CDC 7600
computer. '

Fig. 10 shows the effect of mesh shearing and
grading. Once again the entropy distributions
(Fig. 10c) show the differences most clearly.

Here the entropy rise behind the shock has been
halved by aligning the transverse coordinate lines
approximately with the bow shock. Although the
differences here are particularly marked we note
that in terms of Mach number they are less obvious
and differences in C_ (not shown) are hardly
discernible. No atgempt was made to achieve
alignment with the canopy shock, the resclution

of which accordingly is not improved. By implem-
enting a simplified form of adaptive grid soft-
ware locally in the near field it appears likely
that highly accurate solutions will obtain.
Further, Fig. 11 shows the effect of changing the
amount of smoothing applied to the L, (At) operator.
This further reduces, by approximate}y 407 the
entropy level behind the bow shock. This, when
combined with shearing of the mesh yields an
entropy rise close to the exact level expected
behind the conical bow shock.

Finally Figs. 12, 13 depict the body surface C
distribution and field isobar contours for later

comparison with the three dimensional results.

Three-~Dimensional Aircraft Forebodies

We begin by presenting some results which
illustrate the validityof the three dimensional
method. All of the meshes employed in this
section are, essentially, of cylindrical polar,
flow conforming type and relatively coarse.
Remarks concerning improvements to the mesh
generation process, in the light of future
applications of this method, are deferred to
the next section. An application of the
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three-dimensional code to the axisymmetric
forebody of the previous section, at the same
Mach number and zero angle of attack, would be
expected to yield comparable results to those
already presented. Figs. 14, 15 show, respectively
the axial C, distribution along the body surface
row of cells, and an isometric view of the
surface isobar contours. As expected, the
contours are © invariant and the C, distribu-
tion is comparable to that shown earlier in

Fig. 12,

A further example, for which experimental data is
available, relates to Forebody No. 4, taken from
Ref. 24, from which an analytical definition of
the body geometry can be found. The chosen

Mach number is 1.70 and the angle of attack is
=50, At zero angle of attack the flow over the
body is everywhere supersonic and the problem is
amenable to solution by space marching. However
at ==-59, the flow in the marching direction
becomes subsonigsand space marching is no

longer possible””, therefore time-marching must
be employed. Fig. l6a provides a comparison
with data of axial C, distributions on the body
surface as a function of the circumferential
angle ©, summarised in the isobar contours of
Fig. 16b. 1In view of the relative coarseness of
the mesh employed in the computations (60 x 10 x 8)
the agreement is satisfactory.

We now move to more realistic three-dimensional
forebody simulations. Two simulations will be
discussed. The first, shown in Fig. 17, is a
three-dimensional version of the earlier axisym-
metric forebody, in which the canopy is faired-
out through a surface discontinuity in the ©
direction. The body, so comnstructed, is a
realistic hypothetical model of a fighter aircraft
forebody. The canony shock is therefore expected
to vanish in axial distributions over the lower
half of the body. Isometric surface isobar plots,
as shown in Fig. 17b, are supplemented in practice
by field contours, Fig. 17c¢, and cross—-flow
contour maps (not shown). In this case the
incident Mach number is 1.40 and the angle of
attack is 0°,

Finally, the second example relates to a more
complex forebody, having a (5°) dipped elliptical
(rather than conical) nose cone and relatively
flat sides and underside to accommodate canard
foreplanes, and side or chin intakes in a later
study. Here the incident Mach number is 1.40
and the angle of attack is -59. Fig 18 depicts
the forebody contour and computed surface isobar
contours. The computations were performed on a
relatively coarse mesh (57 x 10 x 18) and tests
are underway to obtain further numerical results
as the mesh is refined. The three-dimensional
examples shown required approximately 480 seconds
on a CDC7600 computer.

Mesh Generation

There is clearly scope for refinement of the
simnle mesh generation nrocedure which we have
used to obtain the three-dimensional results.
Probably the biggest deficiency in our meshes

is the rate at which cells grow in size as one
moves into the farfield, particularly if
exponential stretching is employed as it is here.
An improved procedure has been presented recently
by Arlingerz6 A typical mesh, generated for a



section through an aircraft forebody, is shown in
Fig. 19 and compared with the cylindrical polar
variety.

Cylindriecal
Polar

The essential feature is that the co-ordinate
lines are body-fitted in the near-field and 'relax'
into the Cartesian frame in the far-field.

An important constraint which any chosen procedure
should satisfy is that it be readily extendable

to treat more complete aircraft configurations.
The Arlinger procedure would imply the use of an
H-type mesh around the wing, or alternatively, a
mesh-patching arrangement wherein a C~type patch
is placed around the leading-edge of the wing.
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Concluding Remarks

A computational method has been presented for time-
marching solutions of the Euler equations around
realistic aircraft forebodies in transonic flow.
The method is versatile, robust and has good shock
capturing capabilities. We have compared the
presented Operator-Switching method with that of
MacCormack, commenting on the inter—connected role
of time steps, mesh spacings and splittings, and
remarked on anticipated refinements to our simple
mesh generation procedure for future applications
to more complete aircraft configurations.

As was observed in the introduction to this paper,
there is a sense in which the available methods
can be viewed in a heirarchal light, in the sense
of increasing accuracy in the model, algorithm
complexity and computing cost. The relatively
inexpensive potential methods can produce useful
data for quite complex configurations for use in
preliminary design, having in mind their intrinsic
limitations. Whilst the expensive flux-splitting
methods can be used for the accurate resolution

of very strong shock-waves, or for calibrating
other Euler methods. Since they have yet to be
applied to the complex three-dimensional geometries
found in the aeronautical field, there may be

some juxtaposition for superiority amongst Euler
solvers. However, in practice, the designer will
choose the method most suitable for a given
problem. Sometimes a potential method will be
sufficient, other times a flux-splitting method
will be required. We believe Euler solvers of

| the type described here can offer the most viable
lalternative for most aeronautical problems requir-

ing an inviscid solution.

The difficulty with the C-C and 0-0 type meshes
currently widely employed for the study of

isolated wings and wing-fuselage interactions is
the inadequate resolution of the forebody.

It seems likely, therefore, that some form of
mesh patching will be required if H-type treat-

ments of the wing are unsatisfactory. The
extensive research activity in this area may in
the near future clarify the most appropriate
procedure. Ref. 27 is a recent review.
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