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Abstract

A computational method is presented for the solu-
tion of the three-dimensional Euler equations for
supersonic flow about realistic aircraft configu-
rations. Utilizing a space-marching technique with
an explicit scheme the solution is advanced between
planes normal to the free stream direction. A key
feature of the method is the very versatile grid
generated in each cross section plane. Fuselages of
widely different shape, with or without inlets,

a fin, etc., can be treated. The number of wings
can be from 0 to 2 without any restrictions on
plan form.

Computational results for a realistic aircraft
configuration with canard and delta wing illus-
trates the capability of the code.

1. Introduction

A rather large variety of methods exists today for
the computation of steady three-dimensional super-
sonic flows. Codes based on linear theoryf{l) or on
variants improved by higher-order corrections (2)
are often used in preliminary aerodynamic analysis.
For more detailed studies, however, nonlinear
methods have to be applied. Thus, codes have been
developed _that solve the full nonlinear potential
equation(3) also for complex aircraft configura-
tions (4), Although methods of this type can be
improved through the use of entropy correction
techniques to yield quite accurate §esults even
for cases with strong shock waves (° , the basic
limitation of potential methods to zero vorticity
flows makes a continued development of methods
based on the Euler equations important.

Among the existing codes for the steady Euler egua—
tions those applying shock fitting technique (5/6)
vield solutions with highly resolved shock waves
for flows around simple configurations. For complex
geometries, however, a shock capturing formulation
is probably the best basis for a robust and versa-
tile three-dimensional Fuler code. Most methods of
this type(7=9) have been applied to rather genera-
lized configurations, largely due to the problem

of grid generation for complex shapes.

The present work reflects an effort to develop a
code based on the steady Euler equations applica-
ble to detailed real aircraft configurations. An
explicit space-marching algorithm was chosen be-
cause that was considered the simplest way to cope
with the different constellations of boundary con-
ditions appearing during the marching process over
a complex geometry. Because the marching step size
in an explicit scheme is linked to the grid cell
dimensions in the cross section planes through a
stability condition, the characteristic cell dimen-
sion in any cross section plane was chosen to
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exceed a prescribed minimum value. The grid was
also made to adapt to wing and body contours in all
the marching planes to facilitate the treatment of
the boundary conditions.

Based on these ideas codes have been developed for
wings (10) and for bodies(11) that demonstrate the
feasibility of the approach. This work has now been
generalized to wing-body~fin combpinations of arbi-
trary shapes. Because the flow is required to be
supersonic in the marching direction everywhere in
the flow field, too blunt nose or leading edge
shapes relative the grid mesh size are excluded.

The code, denoted SUMA, works for real aircraft
fuselages with canopy, inlets, fin, etc. The number
of wings can be from 0 to 2, with no restrictions
on plan form or location. For instance, overlapping
wings can be dealt with.

The steady Euler equations are solved using a shock-
capturing finite volume formulation. The solution
is advanced between planes normal to the free stream
direction applying an explicit marching algorithm.

The key feature of the method is the very versatile
grid generated in each cross section plane. The
transfinite interpolation technique applied in the
grid generation is described and illustrated by a
number of representative grids around a realistic
aircraft configuration of canard-wing type.

Computational results are presented for a wind tun-
nel tested simple configuration as well as for the
detailed aircraft configuration.

2. Mathematical Formulation

The steady BEuler eguations in conservative form
written in Cartesian coordinates are

oF 3G oH _
wx oyt 0 (N

where F, G and H are the fluxes in the three coor-
dinate directions,
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Here u, v and w represent the three velocity compo-
nents and p and o denote the pressure and density.

In steady flow the energy conservation equation is
integrated to
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where v is the ratio of specific heats and H repre~
sents the total enthalpy which is constant in the
whole field for uniform upstream flow.



Provided u is greater than the local speed of sound
c
a hyperbolic system in the x direction, and the
solution can thus be obtained by a marching proce-
dure in that direction.

3. Finite Volume Scheme

The integral form of the steady Buler equations
can be written as

g[ [F,G,H] - dS = 0 (4)

afn

for a closed volume with boundary s and dS as
surface area vector differential. The three-dimen-
sional grid cells used in the finite volume formu-
lation of the Euler equations are formed by the
cross section grids in two consecutive marching
planes. The grid cells thus have parallell end
faces normal to the x direction, and denoting the
area of these by " and s'+! with superscript n
indicating the x level, a semi-discretized version
of Eq. (4) is

gtlgntl _ gngn ][ [F,G,H] - d8

aq!
where 3@' denotes the four side faces of the cell.
An explicit scheme based on Eg. (5) has to be of
multi-step type. A two-step scheme of MacCormack
type 1s presently used in SUMA, but others, like
symmetric multi-step schemes, might as well be an
alternative. The MacCormack scheme can be written

(5)
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where T is the flux tensor [F,G,H] and the side
face flux terms PyT and poT are defined as follows
for a cell with indices i and j in the cross sec-
tion plane directions:

P,T=0Q, + R

1 + +
(7)
PT = Q_ + R_
with
Q = Tipq,375 ¥ Ty 55
=T, .S . + T, .S .
Q. i, "+i i-1,3 s-1 (8)
Ry = T3 54178 * Ty ,575
R =T, .S .+ T, . .S .
- i3 S+J i,3-1 73

Here S;j denotes the side face area vector point-
ing in the direction of increasing i and S_; isthe
opposite side face area vector pointing towards
decreasing 1, with analogous notation for S, and
S.:, see Fig. 1. Bach surface area vector is com-
pu%ed as 0.5 times the vector cross product of the
two diagonal vectors. The flux tensor T is evalut-
ed at the node points located at the mid points of
the cell end faces as indicated in Fig. 1. In Eq.
(7) the + and - subscripts can be shifted between
the Q terms as well as between the R terms yield-

(Yyp/p)% , the five equations (1)-(3) constitute
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Computational cell

Fig. 1

ing 4 variants of the scheme.

An artificial viscosity term is included as an op-
tion in the scheme by modifying Eq. (6d) to
! = 0.5 (D + 7(2)) + D (9)
The viscosity term DF' is of the type used in sev-
eral time-dependent Euler schemes (12) as a means
to damp oscillations in the solution close to shock
waves. It is used in the same function in the pres-
ent code, but is not required for stability or other
reasons. For a cell with cross section plane in-
dices i and j the artificial viscosity term is de-
fined by the expressions

Ay+Az
n+1
2Sij

DF. wAx

(10}

- 2pij + P
+ 2pij +p

Pit1,5
p

i-1,7

v,., =
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with corresponding expressions for dj j+%‘where i
is the constant index. The coefficienf’p’is chosen
between 0 and 1 and Ay and Az are the prescribed

typical grid dimensions in the cross section plane.

In smooth regions the viscosity term is of third
order, while in regions with rapidly varying pres-
sure vji becomes 0(1) and thus the viscosity term
of firs% order if y is chosen 0(1).



4, Stability and boundary conditions

The limitation on the marching step size is ob-
tained from the Courant-Friedrich~Lewy condition
applied locally in two dimensions in each of two
planes for each cell. Those planes are defined by
the velocity vector and the two mean side edge
normals § and t measured in the cross section
planes. Denoting the cell mean width in these two
directions by As and At and the mean slopes in the
% direction of the corresponding cell side faces
by s' and t' as indicated in Fig. 2, the two con-
ditions on the step size A0x can be written
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Fig 2. The end faces of a computational cell

Here vg and v, are the velocity components in the
cross section plane in the § and t directions. The
velocity vector is denoted by g and the two velo-
cities gng and gy are defined by

2 2 2
g =9 -v
ns 4 S

2 2 2
= -V

qnt q £

and ¢_and B represent the local sound speed and
(qz/b -1)% respectively.

In the actual implementation of Eqg. (11) conserva-
tive values of Ax are obtained by adding the abso-
lute values of all terms in the denominators. The
smallest Ax thus obtained from all cells in the
cross section plane is then reduced by a factor
around 0.7 to 0.9 to obtain the next marching step.

The boundary conditions at the body and wing sur-
faces are zero normal flow. This means, that to
evaluate the flux terms of Eg. (8) at a cell face
coinciding with such a boundary only the surface
pressure has to be computed. Because the node point

closest to the surface is located half a cell width
outside, this pressure has to be computed fromsome
relation connecting it with the flow variables at
the node points.

In SUMA a characteristic relation is used along a
bicharacteristic £ pointing downstreams towards
the surface. The general three-dimensional charac-
teristic relation in a plane containing the velo-
city vector may be written

] 1
Lol 20, @y 8 W L (12)
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where §+ and £ are the two bicharacteristics in
the plane, 7 denotes a direction normal to the plane
u' and w' are any two orthogonal velocity compcnents
in the plane with the ngrmal velocity component v'
equal to 0 and B = ((u'%+w'2)/c?-1)%. The two bi-
characteristic directions have the slopes

u'w' + Bcz
u'? - c2

relative to the u' direction.

Along wing surfaces Eqg. (12) is applied locally in
2 dimensions disregarding the normal derivative,
and along the body surface another variant of Eq.
(12) is used that is written in cylindrical coor-
dinates. The latter version is implemented so that
the body surface local transversal curvature also
is taken into consideration. Further details about
the application of body and wing boundary condi-
tions can be found in Ref. 10 and 11.

The solution is computed only on one side of the
vertical symmetry plane. At the outer boundaries
the condition used presently is simply to assume
zero normal gradients in the flow variables. The
grid outer boundaries are chosen under considera-
tion of possible interference effects from disturb-
ances reflected at these boundaries. To minimize
the computational work the outer boundaries actu-
ally used in the marching process are initially
quite close to the apex of the body, and then auto-
matically shifted outwards in order to contain the
disturbed region for all x values until the grid
outer edges are reached.

5. Grid generation

Because the marching step sizes are unknown in ad-
vance the whole three-dimensional grid can not be
generated before the solution process starts. In-
stead, at each marching step a new two-dimensional
grid is computed in the next cross section plane
to be solved.

The grid in each cross section plane adapts to the
wing and body contours and tends to a Cartesian
type grid far away from the body. It is generated
by algebraic technique, essentially based on trans-—
finite interpolation. That means that a grid point
distribution is first computed along the body sec-
tion - symmetry line contour and the outer bound-
aries to control the mesh. Wing surfaces also ef-
fect the mesh, and from the leading and trailing
edges a grid surface is made to leave in the up-
stream and downstream directions. The grid point
distribution along the cross section cut through
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the wing surfaces or their continuations is thus
also computed before the interior grid is generated
and used as boundary conditions for that.

The smooth grid point distribution computed along
the body contour is obtained by applying a prescrib-
ed wanted mesh size along an artificial arc length
around the body. This artificial arc length corres-
ponds to a modified version of the body section-
symmetry line contour, having a normal the slope of
which relative the horizontal direction nowhere
exceeds a prescribed maximum value.

The modification is made so that the resulting
distribution of normals have a monotonicly vary-
ing slope over the upper and lower body parts re-
spectively. This is done because the distribution
of normals is used as a second boundary condition
along the body section ~ symmetry line contour to
control the outgoing grid line slopes. With mono-
tonicly varying slopes, problems, for instance
with intersection of adjacent grid lines outside
concave boundaries, are avoided.

The body sections have to be computed for arbit-
rary fuselage shapes and any angle of attack, so
routines for geometry interpolation in circumferen-
tial and streamwise directions are used first at
each new marching plane to accurately define the
body section contour.

As for the wings, the program is written for 0 to
2 wings that can have any type of plan form, can
lie in the same plane or not, and also can overlap.
The horizontal type coordinate surfaces that con-
tain the wings' leading and trailing edges and
serve as inner boundary conditions in the trans-
finite interpolation procedure are made to gradu-
ally adapt to only body-controlled surfaces away

vq=1
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L V3=

Fig, 3 Boundary conditions used in transfinite
interpolation with f corresponding to y
and z.
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from the wing regions. The grid point distribution
given as boundary condition along these surfaces

is essentially uniform except for a possible mesh
stretching. The wing tips are assumed to have zero
thickness (otherwise they are automatically sharpened)
and a grid line is made to coincide with each of
them.

The generation of the inner grid thus starts out
from the set of boundary conditions illustrated in
Fig. 3 for a case with two wings in differentplanes.
Wing 1 is represented by its coordinate surface
emanating from its leading or trailing edge. The
two wing boundaries divide the total cross section
grid into 3 regions, each region being described

by the two interpolation variables u and v ranging
between 0 and 1 (this definition of u and v only
used in connection with grid generation). The trans-
finite interpolation is made in each of the three
grid regions for the two cross section coordinates
y and z based on the type of boundary conditions
shown in Fig. 3. The following relations are app-
lied, written for a function f instead of y and z:

of
Puf = u10(u) £(0,v) + a11(u) F (0,v)

+ uzo(u) £(1,v) + u21(u) %gv(1,v)

Pvf = 849 (V) £(u,0) + Byg(v) £(u,1) (13)

p_f=

- Puf + PV(I—PU)f

The notation used here is close to that of Ref. 13
with P, and P, denoting the interpolation operators
in the u and v directions and Py, as the final two-
dimensional operator. I stands for the identity
operator, and the letter P indicates that these
operators define projections; thus Puzf = Puf, etc.
The interpolation functions ajg{u), aq1{u), etc
have to satisfy the boundary conditions

@y (0)=1 a'y4(0)=0 agg(M=0 a1 (1)=0
a11(0)=0 a'11(0):1 a11(1)=0 a'11(1)=0
a20(0)=0 a'20(0)=0 a20(1)=1 a'20(1)=0

@y (020 @'y (0=0  ay, (=0 o'y (=1

(14)

810 (0)=1 Bg(1=0

B, (0)=0 By (M =1

3a

where o'q1g stands for , etc,

The internal behaviour of the o and g functions is
in principle free of choice, and the expressions
used in the present program are chosen so that the
body influence on the grid as determined by aig (W),
is halved at a prescribed u value, u,. This is
achieved by the function F(u) used for aqq(u)



F(u) = 0.5 { 1 + cos [m(au + (1—a)ub)] } (15)

where, for a given a, b is determined so that
F(us)=0.5. Eqg.(15) is used for uc »0.5, and for
Ue < 0.5 F(u) is replaced by 1-F(1-u).

The following expressions were used for the inter-
polating functions:

u.’o(u) = F(u)

aqqfu) = (1—u)2 (u-0.5 u2) F(u)

ann (W) = 1 = F(u)

20 (16)
a21(u) =u-1+ Fu) - (x”(u)

B1O(V) = 0.5[T+cos (wv) ]

BZO(V) =1- B-IO(V)

The functions apg and « 4 where obtained from the
requirement that a linearly varying function in u

1.0

oufu)
Biv)
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Fig. 4 Example on interpolation functions
aa), B(v)

should be interpolated identically. In Fig. 4 the
o and g functions are illustrated for a=0,2 and
u.=0.6. The precise choice of interpolation func-
tions is not critical for the resulting grid.
Various modifications of the expressions in (16)
have thus been investigated and, for instance,
810(v) is slightly different in the three regions
in the grid examples shown below.

The actual implementation of the transfinite inter-
polation differs from Egs. (13) due to the intro-
duction of smoothing operators to prevent corners
and kinks in the boundary values to show up in the
flow field. Thus Eq. (13a), which interpolates the
coordinate points in spanwise direction, is written
for a vertical grid line with index i (i = 1 cor-
responds to the body section-symmetry line contour)

i1 i-1 f
(P_E) (uy ,v)= a10(ui)8\17 EO,)+ 0y (08 2 (0,9)
+ E(1,v) + A gy an
0’420(111) ( rv) a21(ui) 30 12
Eg. (13b) is modified to
-1
(Pvf)(u,vj) = BTO(vj) s, fw0) +
(18)
M-]j
Bzo(vj) Su f(u,l)

for a grid line in spanwise direction with index
j, ranging from 1 to M (a specific M for each grid
region). Here 5, angd S are smoothing operators in
the v and u directions respectively, applied onthe
boundary values one more time per each step away
from the boundary as indicated by the powers i-1,
j-1 and M-j. The operator S, computes a smoothed
value fi at point j from the simple 5-point scheme
along a vertical line
Vv

svfj=(1—v)fj + Z'(fj~2 + fj—1 + fj+1 + fj+2)
with v usually chosen between 0 and 0.5. The same
scheme was used for §;.

The grid generating procedure works fast and effi-
ciently for a wide variety of body and wing shapes.
The body can also have air inlets and a fin. In
case of air inlets the stream tube that goes into
the inlet is just made to disappear into the body.
Presently the inlet is assumed to be of pitot type.
Two cross section grids are generated at the inlet
station, adapted to the geometry immediately be-
fore and after the inlet station respectively. The
flow variables are then interpolated from the pre-
to the post-intake grid and the marching procedure
is continued.

To illustrate the present grid generation technique
a number of cross section grids where generated for
a realistic military aircraft configuration shown

in Fig. 5. The contours drawn in the figure consti-

Fig. 5 Geometry indata for realistic aircraft
configuration.

tute the geometry input data used in the computa-
tions. The resulting grids in a number of cross
sections are shown in Fig. 6. The coarse grids in
Fig. 6a show the Cartesian character far away from
the body and also that some stretching normally is
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applied in the horizontal and vertical directions.
The 5 grids that follow represent a mesh used in
an actual flow calculation with results shown be-
low. As seen, the grids adapt to quite different
shapes of wing-body contour. SUMA is presently
written to handle up to 22000 grid cells per cross
section plane which enables very high resolution
of geometry details.
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Fig. 6 Grids in various cross section planes
through realistic aircraft configuration.

6. Computational results

A comparison with experimentally determined pres-
sures on a wing-body model was obtained by comput-—
ing the flow around a double-cone-cylinder body
with a straight rectangular wing(14¥. The wing
section was a 10 % thick double wedge. With a wing
chord of 2.1 and a maximum body radius of 1.5 the
typical grid size was chosen 0.1 and the flow field
was computed for M_ = 2.0 and o = 3.3°. The results,
shown in Fig. 7, agree very well with the experi-
mental data. The spanwise pressure variation is
seen to be quite large, due to disturbances emanat-
ing from the wing root and tip and from the kinks
in the forebody contour.

In Fig. 8 the computed pressure contours are shown
in two cross section planes for the same case. The
expansion regions are clearly seen above and below
the wing in Fig. 8a taken at an x station corres-
ponding to 70.2 % relative chord. The stronger
shock wave below the wing is also noted in this
figure as well as in the next, which shows the
cross section plane at 66.4 % chord behind the
trailing edge. Here also the upper surface trailing
edge shock is seen.

A series of computational results is shown next for
the aircraft configuration of Fig. 5. The grid used
is the same as that examplified in Fig. 6b with
10400 grid cells per cross section plane. The con-
figuration was run at M, = 1.8 and « = 0, and in
Fig. 9 pressure contour plots are presented for a
series of cross section planes.

The bow shock wave is seen at stations 1 and 2, and
in the latter also the canopy shock wave appears.
Station 3 is located just aft of the inlet, the
sloping sides of which generate another shock wave.
Among the flow field features at the later stations
the fairly strong main wing shock wave is seen, as
well as the fin leading edge disturbance at station
6.

The number of grid cells at each cross section
plane engaged in the marching procedure varied from
72 at the nose apex to 10400 , yielding a total of
5.08 . 100 cells. The computing time was 162 CPU
seconds on a CRAY-1, thus illustrating the effec-
tiveness of the marching technique.
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7. Concluding remarks

A computer code (SUMA) has been presented for the
computation of supersonic flow about complex air-
craft configurations. The three-dimensional Euler
equations are solved in a space-marching procedure
using an explicit finite volume scheme on a grid
generated on consecutive cross section planes.
The very versatile grid is a key feature of the
method, enabling its application to complex air-
craft configurations with, for example, inlets
canopy, fin, two wings of arbitrary planform and
location, etc.

A comparison of computed and experimental results
shows very good agreement, and an application on
a complex canard configuration illustrates the
versatility of the method.

Among possible further developments, investiga-
tions on symmetric multi-step operators might be
mentioned, as well as experiments on iterative
processes to deal with local subsonic regions.
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Fig. 7 Computed and measured wing pressures on
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wing-body model at M_ = 2.0, a = 3.3



a) Station 1

Fig. 8 Pressure contours (ac,=0.025) in cross c) Station 3
section planes for wing-body model at
M_ = 2.0, a = 3.3°. Dashed line: Cy=0
g = 10.556 , R = 12.656)
Fig 9. Pressure contours (Acp=0.025) in cross
section planes through complex aircraft
configuration at M, = 1.8, o = 0,
Dashed line: cp=0.
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d) Station 4

g) Station 7
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