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ABSTRACT

A viscous correction method was developed for
the three-dimensional full-potential transonic
wing analysis code, TWING, The viscous effect in
the near wake region downstream of the trailing
edge was considered in TWING by imposing the Kutta
condition that the rear stagnation point is at the
trailing edge for the 1ifting as well as for the
non-1ifting cases. TWING used a fast iteration
scheme which gave good results for swept, tapered
and twisted wings as long as the shock is
relatively weak. The objective of this study is
to improve the accuracy for moderately-strong
shock situations without substantially {ncreasing
the computational time., The shock/boundary-layer
interaction along the wing surface was considered
by superpositioning a viscous ramp at the foot of
the shock on a boundary-layer displacement
thickness obtained from a conventional integral
boundary-layer method. The effective displacement
thickness was then related to a vertical component
of the surface velocity which was implemented as a
transpirational boundary condition. Viscous
solutions were obtained and compared with inviscid
solutions as well as with experimental data, For
weak shock situations, the viscous correctfon is
not necessary because it took approximately 10%
additional computer time and gave no significant
improvement from the inviscid solutfon. For
moderately-strong shock situations, the viscous
correction improved the accuracy on shoack
position and pressure distribution with 13% and
3% additional computer time for the ONERA M6 wing
and the Wing A, respectively.

I. INTRODUCTION

The cost for development of transonic
aircrafts has been greatly reduced by the
‘extensive use of numerical simulation. Currently,
there are two different approaches in numerical
analysis of transonic flows: The viscous approach
and the inviscid approach. The viscous approach
is physically more appropriate; but numerically it
takes too much computational time for practical
applications. For example, Pulliam and Steger (1)
solved the thin layer equations for transonic flow
about axially symmetric bodies; Steger (2) solved
the Reynolds equations for transonic flow about
airfoils. The required computer time makes it
unpractical to use these methods for analyzing
three-dimensional wings with the current
generation of computers. The inviscid approach,
on the other hand, is physically neglecting the
effect of friction; but numerically it is very
efficient in transonic flow simulations when the
shock wave s relatively weak. For example,
Ballhaus and Goorjian (3) solved the unsteady
small-disturbance equation for airfoils
maneuvering at low frequency unsteady motions;
Holst (4) solved the full-potential equation for
Copyright © 1984 by ICAS and ATAA. All rights reserved.
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airfoils at steady flight. The required
computational time was about two orders of
magnitude less than that of the viscous approach.
However, for moderately~strong shock situations,
inviscid approach encountered dificulties in
determining the actual shock locations.

Several viscous/inviscid interaction methods
have been developed to correct this problem.
Yoshihara and Zonars (5) used a viscous ramp to
simulate the suddenly thickened boundary layer
behind the shock. It resulted in a more realistic
shock position with practically no increase in
computational time, because the viscous-ramp
contour was obtained from a simple empirical
relation. However, the ramp, which was inserted
at the foot of the shock, needed to have a
"precurser" for smooth transition in order to
provide numerical stability. Moreover, the ramp
neglected the viscous effect before the shock.
Boundary-layer calculations for an aerodynamic
body at transonic flight was conducted by many
investigators. Nash and Scruggs (6) solved the
differential boundary layer equations for three-
dimensional wings. It gave good results for the
boundary~layer development before the shock; but
it failed to make any significant improvement for
the shock location, because it was necessary to
modify the adverse pressure gradient after the
shock in order to keep the boundary-layer
assumptions valid. Moreover, the computational
time was too long so that the computational
efficiency of the inviscid approach became
irrelevant. Melnik et. al (7) used the lag-
entrainment method which was developed by Green
et. al (8) by solving the integral boundary-layer
equations together with an "integral"™ turbulent
kinetic energy equation, It allowed the shape
factor to go above the 1imit of separation beyond
which the boundary-layer assumptions are not
valid. Nevertheless, the boundary layer behind the
shock could grow thicker and the location of the
shock was improved from the inviscid solution.
However, the amount of computational time required
was more than three times of the inviscid
solution. Moreover, the lag-entrainment method
required a large number of empirical constants
which were not able to be experimentally varified.
A conventional integral boundary-layer method was
developed by Sasman and Cresi (9) for both
subsonic and supersonic flows. It used a Mager
(10) transformation to consider the density
variations due to the temperature gradient in the
boundary layer and solved the momentum and the
moment-of-momentum equations with a fourth order
Runge-Kutta method. The wall shear stress model
was verified by Tetervin (11). This method was
coded by McNally (12) as BLAYER to include a
laminar boundary layer at the leading edge.
BLAYER, which required less computational time
than both the differential boundary layer method
and the integral lag-entrainment method, gave good



results before the shock. However, BLAYER, which
modified the adverse pressure gradient behind the
shock to avoid flow separation, became inadequate
to Tocate the shock position.

In order to consider the suddenly thickened
boundary layer behind the shock and the
conventional boundary-layer before the shock, Lee
and Van Dalsem (13) used an empirical relation to
combine the contours of the viscous ramp (5) and
the boundary-layer displacement thickness (12) to
develop a viscous correction method for a two-
dimensional, steady, full-potential solution (4),
Lee (14) used the same concept for a viscous
correction method of a two-dimensional, unsteady,
small-disturbance solution (3). The results of
these viscous correction methods not only improved
the accuracy of the inviscid solutions but also
reduced the computational time by reducing the
number of supersonic points in the flowfield
during the iteration process. This study is to
apply the same concept to the three-dimensional
transonic wing analysis using a strip method which
considers the boundary-layer growth along the
streamwise direction but neglects that of the
spanwise direction,

II. TRANSONIC WING ANALYSIS

A transonic wing analysis was conducted by
Holst and Thomas (15}, The code TWING was
developed using an implicit approximate
factorization algorithm to solve the three-
dimensional full-potential equation. Comparing
with the inviscid code FL028 developed by Caughey
and Jameson (16), TWING gave identical results
with one-tenth of the computational time. Since
the viscous effect of shock/boundary-layer
interaction was neglected, it was expected that
the numerical results would deviate from
experimental data for moderately-strong shock
situations. Consequently, a viscous correction
method is needed not only to improve the accuracy
of the inviscid solution but also to maintain its
computational efficiency.

The three-dimensional full-potential equation
written in strong conservation-law form is given
as:

(o2, ), +(m&5-+(wég =0 (1)
where p is the non-dimensionalized density which
can be written as: 1

N 2 2 2y Y - 1

0 L] 'Y—__T"'_T (@X + @y + ®Z )]

In these equations, the non-dimensionalized
velocity components & _, ¢ and ®_ are
expressed in terms of‘theYfirst Gerivatives of the
velocity potential 1n their respective directions;
Xs y and z are the Cartesian coordinates in the
streamwise, spanwise and vertical directions,
respectively; and vy is the specific heat ratio.
The characteristic quantities for non-
dimensionalization are the stagnation density,

p.s the critical speed of sound, a*, and the
chord length, c.

(2)

Equations (1) and (2) are transformed from the
physical domain, x, y, and z, to the computational
domain, £s41, and ¢, by using a general
independent-variable transformation, they become:

169

(pU/J)g + (oV/J)nA+ (pW/J)C =0 (3)

1

o=1[1- H (Uo, + Vo + l»kb(:)]Y -1 (4)
where the contravariant velocities are:

U= AT@E + A4®n + A5®C

vV = A4®£ + A2®n + A6®; (5)
W= A5®£ + A6¢n + A3®C
the coefficient matrix of the contravariant
velocity may be written as:

Ay = vE A, = n?

Ay = v? Ag = Verin (6)
Ag = Vgevg Ag = Vnevg

The transformation between the physical domain and
the computational domain {s shown schematically in
Figure 1. The wing surface is the plane of ¢ =
c . The upper and lower vortex sheets in the
waRs region are & = & i and £= €m ?
respectively. The spanwise cross-S&ctions are the
planes of n constant which coincide with the
planes of y = constnat, or

yg =0, J'[; =3 {7)
The spanwise cross—section next to the fuselage
can be considered as the plane of symmetry,n =
n_. « The spanwise cross~section beyond the wing
t?ﬁ? ﬂ>11t » is assumed to be an extension of
the wing w1%R zero thickness. The Jacobian of
transformation can be written as:

= - 8
J=(gz, (8)

nggx)”y

= ]/(ngg' zgx(;)yn
A body~fitted grid may then be generated, at each
spanwise cross-section, from the solutfon of the
following two Lapace equations:

é:X)( * EZZ =0

(9)

Y4 0

bxx T &
A grid of 89 x 25 x 18 is used in this study. A
typical three-dimensional grid is shown in Figure
2. It is noted that an O-grid in the £ -direction
is used for maximum effectiveness at a minimum
number of grid points. Detailed discussions on
the grid generation, the spatial differencing, the
alternating directional implicit procedure and the
approximate factorization scheme were given by
Holst and Thomas (15), The solution is obtained
when the residual of Equation (3) is within an
accpetable tolerance. To consider the viscous
effect, this study uses the same general approach
with a modified boundary condition along the wing
surface as well as along the vortex sheets
downstream of the trailing edge.

YISCOUS EFEECT

The three~dimensionality of the wing, due to
swept-back, tapering and twist, was considered by
the inviscid solution which provided the boundary

III.



FREESTREAM
SIDEWALL BOUNDARY

WING EXTENSION

OUTER BOUNDARY

SYMMETRY PLANE
BOUNDARY

VORTEX SHEET

a X FREESTREAM
OUTER BOUNDARY SIDEWALL BOUNDARY
{€ = $emin) n = Npmax!

n

LOWER VORTEX SHEET

|
(& = £max! “
|
!
|
4 V- L —
SYMMETRY x -
PLANE > ’
BOUNDARY WING EXTENSION
(1 = Nmin) £ = S max)
SHEET
WING SURFACE § L(J;YER V;)RTEX
&= gmax) mn
b)
Figure 1. Coordinate ‘Transformation
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condition at the freestream for the boundary-iayer
solution. Using a strip method which considers
only the viscous effect along the streamwise
direction, a two-dimensional boundary tayer was
calculated at each cross-section of the wing

span. The same principle used by Lee and Van
Dalsem (13) for viscous correction about airfoils
may then be used for three-dimensional wings by
superpositioning a viscous ramp at the foot of

the shock on a turbulent boundary layer.

A. Boundary Layer

Near the leading edge, there is a laminar
boundary=-layer region, which is followed by a
transition region and a turbulent region. In
transonic flow, the laminar and transition regions
are very small, and their effect on aerodynamic
performances are insignificant., A simple approach
proposed by Cohen and Roshotko (17) was used to
provide the initial condition for the turbulent
boundary layer. Assuming that transition occurs
instantaneously at a very short distance
downstream of the leading edge, the integral

method of Sasman and Cresi (9) was used for
computing the turbulent boundary layer. The
time-averaged continuity and momentum euquations
for a two-dimensional, steady, compressible,
turbulent boundary layer can be expressed as:

(pu)S + (DW)n =0 (10)
ou(u)*ow(u), = = (p)g* (Tl (1)

In these equations, u and w are the time-averaged
velocity components in the streamwise, s, and its
normal, n, directions, respectively, and 7 is the
shear stress. Using the Mager transformation (10)
to consider the temperature variation for tran-
sonic” flow in the boundary layer, the transformed
coordinates are:

) SS<TO\)<TE)(y+])/[2(Y-])] {12)
S = n €
oN71 /Yy
1
A_ Te}?‘ n
n —(TO—> ‘-O%Odn (13)

where the subscripts e and o denote the edge of

the boundary layer and the stagnation. condition,

respectively. The reference temperature T is

given as a function of the Prandtl number, Pr,

= 0.5 3~ + 0.22 Pr ° + (0.5 - 0.22 Pr °)(s%)
)

—|— ¥

0 o}

where the subscript w denotes the wall condition,

The shape factor, H, and the momentum thickness, .

B, are related to the transformed shape ,factor, Hj
and the transformed momentum thickness, 6, as:

W Y-l 290y =12
h=T [ - Y= mln s o= mg (15)

Figure 2.

Perspective View of the Wing Grid



o - E;QJ(Y #1020y - D1 g (16)
e

. §*

with H=g (17)
where M is the Mach number. The boundary-layer
displacement thickness, § ¥, is related to the
transformed displacement thickness, § ¥, by the
relation of:

~ ~ T 3y - : _
5*=(6+§*)<T_0>(Y /Ry -1)]

e

AT
- 9(T_o)(\( + 1)/ - 1)) (18)

e

For an adiabatic flow, the transformed
displacement thickness and momentum thickness
becomes:

~ $ G ~
§* -.f {1 - % )dn (19)
Q lij
T
8 =j = (1 - ;' Ydn (20)
o U U
e e

where § is the boundary layer.thickness in the
transformed coordinates, and U is the transformed
velocity component in the s direction with

U= ul3)
e
The transformed velocity profile in the boundary

layer also obeys the power law:

U (i)(“i - e (22)
Ue §

where the adiabatic shape factor, ﬁi’ is-defined
as:

1O} i

(21)

Ho o= O (23)
1

@ o>

The transformed momentum integral equation can be
written as:

~ A q) T .
B8 fp+dy
ds U ds T !
e ¢}
(T0)0.268 - 1.268 Twz
= e T— ~
Te 0 R (24)

The transformed moment-of-momentum equation then
becomes:

dH du_ . .
= - e S, + T)Z(H. - 1)
ds U0 ds ! L
e
AZ ~ ,\2 ~
T HS + 4H, - 1 HE -1 H.T
1+ () +—— s (|
0 (H1+])(H1+3) 0 e peUe

) (25)

0

[e20 Inlps

~ 1
T T
- (H'i + ]) Wj El d(
W

The shear stress at the wall, 1, is expressed
through an empirical relation given by Tetervin
(11) as:

ny fU6\ -0.268 [T \1.268 4 ¢ 10
© = 0.123 p U2 (_E_) (_g) o -1.561H,
W e e 3 T

where v is the kinematic viscosity at temperature
T. The two ordinary differential equations,
equations (24) and (25), can be solved
simultaneously-using the fourth order Runge-Kutta
method. The boundary layer displacement
thickness, § ¥, can then be obtained from equation
(18). This method gives good results as long as
there is no flow separation., However, when shock
wave and boundary layer interact, strong adverse
pressure gradient occurs. In order to locate the
shock position adequately with a minimum amount of
computational time, the concept of viscous ramp
(5) was adopted for the region behind the shock.

Viscous/Inviscid Interaction at a given
spanwise Cross—section

Figure 3.

B. VYiscous Ramp

An empirical formula, which simulates the
suddenTy thickened boundary layer behind the
shock, was developed by Lee and Van Dalsem (13)
for transonic flow about airfoils. The same
concept can be used for transonic wings at each
spanwise cross-section. The thickness of the
ramp » S*R, {s expressed as a function of s:

* .- for s<s

© ] (27)
Blemaxg T-expls - sl/cByp s3s gy

where B, is a constant. (B, = 0.1 has been

used for~all cases.)} The term © represents

the maximum deflectfon angle fol®%n attached shock
at a given upstream Mach number which is determin-
ed by the inviscid solution. The subscript sh
denotes the location of the shock in the
streamwise direction at each spanwise
cross~section, Figure 3 shows the method of
superposition at each spanwise cross-section. The
effective displacement thickness, 0% __, was
obtained by the relation: eff

*
* S. for - s<s

eff = (6* ) 6*) R
+ 8p /2. for S
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Using the suggestion of Lighthill (18), a
vertical component of the surface velocity, w_,
can be obtained from the effective disp]acemeXt
thickness as follows:

= (puS* )S/O

" eff

y (29)
where the subscript s denotes the first derivative
in the streamwise direction along the surface., It
is noted that the computational time for s * is
much larger than that for §*,, while the

variation for §* is 1nsignif$cant during each
successive iteration as Tong as the residual of
Equation (3) {is within an order of magnitude of
the acceptable tolerance. In order to minimize the
computational time without sacrificing the
computational accuracy, S*_ was calculated at
every iteration while §¥* was calculated only once
when the residual of Equation (3) is less than or
equal to ten times of the acceptable value at each
spanwise cross-section, Detailed discussions on
computational time versus computational accuracy
was given by Lee (14) for viscous corrections of
unsteady transonic airfoil analysis.

To begin the iteration process, the flow is
assumed to be inviscid. TWING calculates the
contravariant velocity and the density
distributions of the flowfield., Using these
values as the boundary condition for the viscous
effect, the effective displacement thickness,
5*e g2 can be obtained., The values of the
ver€1ca1 component of the surface velocity, w
may then be calculated and implemented as the
boundary condition for the next iteration.
BOUNDARY D

Iv. N

Along the wing surface, ¢ = Cmax® 25 well as
along the vortex sheets, £= ¢ qn @nd E£= & o e
the viscous effect can be ana?yzed as fol10W%:

A. Along the Wing Surface

The gradient of the velocity potential at ¢=

C can be expressed as:

max

Vo w

ws v {30)
where the subscript ws denotes the wing surface.
Since the contravariant velocity component in

the ¢ -direction can also be written as:

W=Vig-Ve {31)
with w_ and ¢ in the opposite direction at ¢ =

C max’ he boundary condition along the wing
sliFface then becomes:

W =-1/va

ws (32)

To evaluate the boundary condition for the
contravariant velocity components in the £ and n
directions, it is necessary to separate the
spanwise cross-section of symmetry, n = Nnin’

from the other spanwise cross-sections, M min

< N« ntip'

1. n=n

min

The cross-section next to the fuselage, or the
cross-section of symmetry, has no velocity
component in the n-direction:
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0 (33)

v

WS
Substituting equations (32} and (33) into equation
(5), the components of ¢, and QCcan be related
to @gand w, along the surface as:

o, Psherhgh) othe Ry v (30)
n
Aoh3 - Aghe
) (A4A6-A2A5) ©€ -Az/ﬂg'wv
®c = (35)
A2A3 - A6A6
The contravariant ve1ocify component in the
g -direction becomes:
U = (A4 Ehghche - Ahghy - AzAsAs) s
WS p A, - AA £
273 66
, Pl - ARy
v (36)
A2A3 - A6A6
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Figure 4. Pressure Coefficient, Wing C, n = 30%
2. n>n

At any other . spanwise cross-section along the
surface, only equation (32) fs valid. The
component of &, will have to be expressed as a
function of@e %qand W, as follows:

A5®g+ A6©n+ /Kg W, (37)

A3



The boundary conditions for the contravariant
velocity components in the & and n directions
become:

A AA A
8
U, - (A=, + (s =D - S OY
A A Ay
A A A A A
65 6 6
Vs (A - By 4 (p - BBy L B,
WS 4 A3 £ 2 /-\3 n /}g v (39)

It is noted that the boundary conditions of all
the contravariant velocity components are
identical to those of the inviscid flow, if the
normal component of the surface velocity, w ., is
zero. In other words, the boundary layer may be
considered as a contributor of a small-disturbance
velocity-potential. Equation (37) may also be
written as:

37a
[ z ( )

is the inviscid velocity-potnetial and o7

where o ;
{s the small-disturbance velocity-potential with
- W
9, = - — (37b)
R v

Consequently the small-disturbance contravariant
velocity components along the wing surface
become:

- A5
U = e — Y (38b)
WS SR v
A3
Vo= —fé W
WS =V (39b)
3
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-

W == /K, w

WS 3 (32b)

The same concept can also be applied along the
vortex sheets in the wake region.
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B. In fthe Wake Region

Considering the vortex sheets downstream of
the trailing edge as an extension of the wing
surface, TWING assumed that the Kutta condition
was satisfied at the trailing edge. Introducing
the strength of circu]at1on at each spanwise
cross- section, s the rear stagnation point
was held at the trg111ng edge for the 1ifting case
as well as for the non-1ifting case., Detailed
discussion of the circulation algorithum was given
by Holst and Thomas (15). The physical
significance is that the viscous effect of the
lifting case in the wake region is included in the
inviscid solution of TWING. Consequently, the
effect of the boundary Tayer for the 1ifting case
can be considered the same way as that for the
non-1ifting case.

For the non-11fting case, the effective
boundary layer thickness,§ * _., along the
vortex sheet can also be asstmed as an extension
of the surface boundary-layer thickness which
diminishes rapidly as it enters into the wake
region., The structure of the O-grid requires the
upper and the lower vortex sheets be analyzed
separately. The surface velocity normal to the
the upper vortex sheet, w , is in the same
direction as the contravariant velocity in the
£=direction, Using the same idea for equation
(37b), the small-disturbance velgcity-potential
along the upper vortex sheet, (¢E)uvs’ can be
written as:
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(9,) gy = —

g/ uvs (40)
o

The surface velocity normal to the lower vortex

sheet, w_, is in the opposite direction as the

contravarant velocity in the £ ~direction, or

1<

((bE)LVS = - (41)

&)
[u—

Using the analogies of equations (38b), (39b), and
(32b), the small-disturbance contravariant
velocity components along the vortex sheets

become:

-

_+
U= = /Al W, (42)
A
+ 4
V2 = = —y (43)
VS \/_A—-'_ v
- A
W= + _ji W (44}
VS JET VY

1

where the subscript vs designates vortex sheets
with the positive sign for the upper and the
negative sign for the Tower vortex sheets,
respectively. It {is noted that the imposed Kutta
condition at the trailing edge considers the
viscous effect of the 1ifting case. Consequently,
the values of w_ in the wake has no significant
influence to th¥ pressure coefficient on the wing
surface. In order to provide a smooth transition
from the wing surface to the vortex sheets, the
value of w_ was assumed to decrease by 25% at
each grid point from the trailing edge, T =

z » to the outer boundary , T=2¢ » along
& vortex sheets. min
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Including the small disturbance term in each
contravariant velocity components as the boundary
condition, the viscous effect can then be
considered during the iteration process.

v, ND_D N

The objective of this study is not only to
improve the computational accuracy but also to
maintain the computational efficiency. An AMDAHL
470 computer was used, The computations were made
in two steps. The first step was to genetrate the
grid which was used for both inviscid and viscous
computations. The second step was to solve for
the density and the velocity potential in the
flowfield with the inviscid and the viscous
boundary conditions. The comparison of
computational time was given for the second step

only.

Several wings were studied from reiative]y
weak shock to moderately-strong shock situations:

A. Weak Shock Stiuations

The experimental data of Hinson and Burges!'
(19) Wing C of high~sweep (AL = 457) and
high-taper (TR = 0.3) with a %wist of 8 degrees
and 2.6 aspect ratfo was calculated for M, = 0,818
and o= 4,952, Figure 4 shows the a comparison
between the inviscid and the viscous solutions
with the experimental data of Hinson and Burges
(19) and Keener (20) for the span station of 30%.
The deviation between the two sets of experimental
data is much more significant than the difference
between the inviscid and viscous solutions.,
Moreover the inviscid solution took 16,66 minutes
for 82 iterations while the viscous solution took
18.26 minutes for the same number of {terations.
Comparisons of the inviscid solution whith
experimental data at other span stations were
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discussed by Holst et al. (21). For weak shock
situations, the inviscid solution gives accurate
results, viscous correction is not necessary.

M

B. k

1. ONERA M6 Wing

The experimental data of Schmitt and Charpin
(22) for the ONERA M6 Wing with leading edge sweep
of 307, taper ratio of 0.56 and aspect ratio of
3.8 was computed for M, = 0.84 and o = 3.06.
Figures 5, 6, 7, and 8 show the results of the
inviscid and visous solutions in comparison with
the experimental data at span stations of 20%,
44%, 65%, and 90%, respectively. Interacting with
the boundary layer, the shock waves moved toward
the leading edge by approximately 6% of the chord
length at the span stations closer to the fuselage
as shown in Figures 5 and 6; while the shock waves
moved toward the leading edge by about 10% of the
chord length at the span stations closer to the
wing tip as shown in Figures 7 and 8. The viscous
solution gave better agreement with the
experimental data for both shock positions and
pressure distributions, The viscous solution took
58 iterations with 23.73 minutes of computer time
while the inviscid solution took 52 iterations
with 20.93 minutes of computer time. The increase
in computational time was about 13%.

2. Wing A

The experimental data of Hinson and Burges

(19) for Wing A with leading edge sweep of 27°,
taper ratio of 0.4, aspect ratio of 8.0 and 4.8°
twist between root and tip was computed for M, =
0.80 and o = 1,60, Figures 9, 10, 11, 12, and 13
show the results of the inviscid and viscous
solutions in comparison with the experimental data
at My = 0.80 and a = 2,94 for span stations 15%,
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30%, 50%, 70%, and 95%, respectively. A
moderately-strong shock wave as well as a
significant after loading occured at every span
station. Again the viscous solution gave better
agreement with the experimental data for both
shock positions and pressure distributions. It
took 93 iterations with 20.93 minutes to converge
to the viscous solution and 99 {terations with
20.29 minutes to converge to the inviscid
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solution. Consideration of the viscous effect
reduced the number of supersonic points in the
flowfield, thus reduced the number of iterations
for the converged solution. The net increase in
computational time was 3%.
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VI, CONCLUSIONS

Full-potential solution is the most economical

method for transonic wing analysis, TWING is yet
the most efficient code for this purpose.
Depending upon the shock strength, the following
conclusions are reached:

T.

8'

For Weak Shock Situations:

Solutions of TWING, which imposed the
Kutta condition at the trailing edge, gave
good correlation with experimental data at a
reasonable amount of computer time. Viscous
correction is not necessary.

For Moderately~Strong Shock Situations:

Viscous correction is needed to improve
the shock position and the pressure
distribution. However, the increase in
computer time does not have to be
substantial., The present study indicated that
a 13.5% and a 3% increases in computer time
were needed for the ONERA M6 Wing and the Wing
A, respectively.
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