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Abstract:

The Dornier full potential and Euler methods
in combination with a general mesh generation code
are used to calculate trans- and supersonic flows
around wings, wing-body combinations and bluff bod-
ies. A short description of the two flow solvers
and of the grid generation program will be given.
More detailed information is included in the com~
parison between our Euler method in blocked and un-
blocked form and the very recent combination of
both forms with a multigrid technique. Results will
be shown for wings, wing-body combinations, flows
with embedded vortices and flows around a bluff
body such as a car.

Introduction

Successful computational algorithms for the
transonic full potential equation and the Euler
equations have been evolved to solve three-dimen-—
sional problems [1-4]. A very efficient algorithm
is the finite volume approach for both the full
potential as well as for the Euler equations, be-
cause the boundary conditions can be easily imple-—
mented. Furthermore, the finite volume methods
combined with contour conformal meshes allow the
treatment of complex geometries and are, in connec-
tion with block-structure grids and flow solvers,
applicable to nearly all three dimensional flow
problems.

Mesh Generation

The contour conformal meshes used for both the
full potential as well as for the Euler methods
are generated by solving a set of suitable chosen
partial differential equations [5,7]. Depending on
the complexity of the problem, either a Single-
Block (SBG) [6,7] or a Multi-Block (MBG) grid is
used [7,8]. In both cases the same equations are
solved. In the case of the SBG this is done for the
whole grid domain at once. According to the com-—
plex geometry the MBG methods divides the whole
mesh in several well chosen sub domains, which can
be defined arbitrarily to produce surface fitted
grids that follow the natural lines of the confi-
guration. In both cases, the surfaces of the con-
figuration and a one-dimensional perimeter discre-
tization along the block perimeters has to be
established first. This provides boundary condi-
tions for a subsequent two~dimensional grid genera-
tion, producing grids covering the block surfaces,
body parts excluded. Once having resolved all sur-
faces, the 3-D grid interior is obtained by solv-
ing a set of Poisson equations of the form

> - > >

U +U +U =P (u,v,w)
XX vy 22
with the computational coordinates ﬁ = (u,v,w) and
the source terms P = (P,Q,R) to control the in-
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terior grid spacings [5]. Some examples of grids
constructed in this manner will be shown below, in
the discussion of the results.

Flow Methods

The Dornier FPE method is a full conservative
finite volume method with a SLOR-scheme that was
only applicable to SBG-type meshes until now. In
the last years very fast iteration procedures for
solving the 3~D full potential equation, such as
ADI [9,10] or multigrid techniques [11,12] have
been developed. This makes these methods still at-—
tractive today, although they are not exactly cor-—
rect when shocks occur in the flow field. Combined
with a threedimensional integral boundary layer
method [13], our method is able to account for vis-
cous effects.

The Euler equations give an exact description
of inviscid transonic flow, Our time dependent fi-
nite volume Euler method uses a three or four stage
Runge Kutta scheme [14], which turns out to give,
combined with a multi level grid techmique, very
fast convergence even for very fine meshes. Because
the Euler methods require more variables to be
stored, in core a mesh size of about 97x17x17 is
the maximum possible using a | million word compu-
ter. For this reason we developed a Multi Block
Version (MBV) of our code, which divides the flow
field into a number of blocks and the flow variab-
les are stored on disk files. Since this procedure
allows each block to be solved separately, the
overall mesh size can be increased to a grid size
giving realistic resolution for 3-D flow problems.
One restriction for blocked codes is the rate be-
tween I/0- and CPU-time. We have spent a lot of
work on this problem, rewriting our code while
interchanging the block- and Runge Kutta loop,
using asynchronous Read- and Write statements and
using special file distribution on special disk
devices. One further step was the development of
a so—called Dynamically Blocked Version (DBV).
While the Fixed Blocked Version (FBV) keeps the
block structure constant through all meshes of a
multi-level grid technique, the DBV-code is able to
change this structure during computation. The DBV-
version really keeps the subgrids unblocked with
all variables in core, up to the finest grid where
blocking really is only necessary. The actual di-
mensions of the maximum unblocked grid depends the-
refore on the storage which is available. The di-
mensions can be easily changed by input. With all
these improvements the rate between I1/0 and CPU
time could be kept between .2, for a normal three
level grid technique using the DBV, and .3, for the
FBV using 18 blocks.

Very recently convergence and computing time
of the code has been further improved by using a
multigrid scheme like that proposed by Jameson
[15]. This multigrid technique has already been
combined with our FBV as well as our DBV-Euler



codes. First results and comparisons of the con-
vergence behaviour for unblocked-, blocked single-
grid and unblocked~ and blocked-multigrid calcula~
tions in terms of the averaged dp/dt, and the num-—
ber of supersonic points or the drag coefficient
are given in the figures 1.-3..

The well-known ONERA M6 Wing has been chosen
to demonstrate the efficiency of the new Euler
Multigrid Fixed Blocked (EMG FBV) and Dynamically
Blocked (EMG DBV) version of our Euler code. Com-
pared are blocked results with and without and un-
blocked with and without using the multigrid tech-—
nique. The mesh size was 97x17x17. These dimensions
allow a maximum of 3 multigrid levels, even when
the mesh is blocked once in one or more directions.
Figure la. compares the averaged dp/dt reduction
for a 4 and 3 stage Runge Kutta scheme for the un-
blocked case with and without using the multigrid
technique. Obvious is the improvement of the mul-
tigrid scheme, where the 3 stage scheme seems to
be the more efficient one. Figure Ib. shows quite
clearly that the result using multigrid needs only
about 100 time steps to reach a converged solution.
Figure 2. compares unblocked and blocked results
with and without multigrid. Figure 2a. shows the
error reduction and development of the supersonic
zone for different block numbers using multigrid,
while figure 2b. shows the same comparison without
multigrid. With larger block-numbers the waviness
of the curves seems to increase. For the normal
scheme the overall convergence is nearly the same,
while for the multigrid cases the reduction as well
as the final error level seems to increase with
the number of blocks. The increase after about
150 time steps for all multigrid cases has been
observed previously and is caused by a nonoptimal
solution scheme. As figure 2c., and d shows, this
can be corrected with a 3 stage scheme using well
chosen coefficients and filter terms. Nevertheless
figure 2a. shows that the final solution is reached
after about 100 cycles; without multigrid 500
cycles seem still too few, as the non-zero slopes
at the end of the curves indicate. Unfortunately
for the 4-block case one block boundary hits
exactly the wing tip section. This may be an expla-—
nation for the greater differences in the error
plots as well as for the loss of supersonic points
compared with the two other cases. The block boun-
daries have to be choosen quite carefully. Also for
the blocked multigrid cases the flow values and
intermediate properties at the boundaries are not
transferred from one block to the neighbouring one
but are interpolated from the higher level values
to minimize the I/0-work. If one omits this, a
further acceleration may be possible.

Figure 3. shows results from our FBV-Euler
code for a case with a rather coarse grid around
an ellipsoid. For test purposes these calculations
were carried out in a total mesh of 33x17x17
points, being divided into 18 blocks. Therefore
the minimum blocksize was 17x5x5, allowing only
2 multigrid levels. Compared are the 3 stage Runge
Kutta scheme with and without multigrid and the
4 stage scheme without multigrid technique. Both
the convergence behaviour (Figure 3a.) and the
development of the drag (Figure 3b.) shows the
great advantage of the new multigrid method. Al-
though only 2 multigrid levels and such an extre-
mely high block-npumber were used,the final results
were achieved in less than 100 time steps. Again
the 3-stage scheme turns out to be the more effi-
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cient one. Figure 3c., shows the calculated pressure
distribution compared with the analytical solution.
The agreement for such a coarse grid is rather
good, although some problems seem to rise at the
block boundaries.

Results

Results for both the full potential and the
Fuler methods compared with other methods and expe-
riments will be shown below. The first example
shows differences between Euler and FPE computa-
tions using the same grid. The second example shows
that in some cases it is necessary to perform "real
body" calculations to get realistic answers. The
last examples show Euler results with embedded
vortices, such as leading edge vortex flow and
vortices emanating from sharp corners.

Transport type aircraft

For a transport type aircraft the differences
between FPE and Euler method are shown in the fig-
ures 5. to 7., while figure 4. shows the body and
wing surface grid for a total mesh size of 161x33x
33. The calculations were actually performed in a
mesh being half as large.

The pressure distributions in figure 5. show
quite clearly some differences. According to the
total pressure loss across the strong shock, which
can be accounted for only by the Euler method, we
obtained different stream angles at the trailing
edge for both methods, resulting in a different
trailing edge pressure. This is comparable with a
different angle of attack and of course affects
the whole pressure distribution on the lower as
well as on the upper surface. The Euler method
also seems to resolve a sharper shock, while using
the same grid. The load distribution in the span-
wise direction reflects these pressure differences
as shown in figure 6. Lastly, figure 7. shows the
comparison of the center line pressure of the body
calculated by the FPE and experimental data.

Fighter type aircraft

For a fighter aircraft, whose surface grid can
be seen in figure 8., many computations have been
performed. Figure 9a.shows the results for two cal~
culations with infinite cylindrical bodies compared
to a wing alone case. In the case of the small fu-
selage it resulted in a similar displacement effect
and in the case of the large body it was attempted
to simulate the real channel geometry between the
lower side of the wing and the engine cowl. The
computed differences are rather small and especi-
ally the cp-values in the region of the channel
still show great differences with the measurements.

The inclusion of the real body shape as shown
in figure 9b, improved the theoretical results
greatly. The lower side pressure distribution now
shows good agreement with the data and the upper
side values have also improved. Quite obvious are
the differences between the wing alone and the
"real body' results.



Flows with vortices

As in [16], the time-dependent Euler methods
are able to produce flows with embedded vorticies,
although they do not account for viscous effects.
There are two explanations for this. First, ac-
cording to Croco, vorticity is produced by en-
tropy changes like those occurring across a
shock with variable strength. If such a curved
shock is detected some time during the iteration
cycle, the produced vorticity will be conserved
even though the steady state solution shows no
supersonic region at all. The second explanation
is that the numerical scheme itself produces a
numerical viscosity which also introduces vorti-
city. Both mixed together enables the Euler me-
thods to calculate cases with embedded vorticies,
forced by flows around sharp corners, where very
high mach numbers even at low subsonic free stream
conditions can be encountered.

One well-known phenomena in aircraft aerody-
namics is the so-called leading edge vortex of
slender wings with sharp leading edges even at
relatively low angles of attack. This vortex con-
sists of a free shear layer, which emerges from
the leading edge and rolls up above the wing form-
ing one concentrated vortex.

Figure 10. shows the representation of the
Boeing Arrow wing configuration in our 3-D calcu-
lation. This configuration was tested for a wide
range of different flow conditions. The results for
one subsonic case is given in figure 11.-14, Fi~
gure ll. shows the wing pressure distribution with
the maximum negative cp just below the vortex
axis. Figure 12, gives a comparison between calcu-
lated and measured pressure values at several cross-—
flow planes. This figure as well as figure 13.,
which compares the lift coefficients shows good
agreement with measurements. The curve between
@ = 16° and o = 35° is not a computed one, but we
know from other theories that this point lies in
the region of vortex breakdown. Even flow details,
such as the trailing edge vortex [17] and the be-
haviour of the total pressure loss [18], which are
compared in [19], seem to be predicted quite well.
Figure l4a.,b. shows the velocity distribution and
the corresponding vorticity field at several cross-
flow planes.

Another example for leading edge vortex flow
is the Dillner delta wing. Figure 15, shows the
wing surface grid with about 3000 points on the
contour, while using a total number of about
200,000 points. All results shown below are com-~
puted in a mesh being twice as large with about
4000 points on the surface. This calculation was
done in an AGARD working group for 3-D Euler me-
thods.

Figure 16. shows the comparison between com-
putation and experiment for M_ = .7, o = 15° and
figure 17. for M_ = 1.5, a = 15°. Figure 18. shows
the calculated velocity field compared with expe-~
rimental data. In all figures the agreement is
quite good. Unfortunately no other experimental
data for comparison is available for this wing.
Flow measurements for such interesting cases are
rather seldom.

That a vortex can not only be caused by a
sharp leading edge may be shown by the next example,
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a stand-off missile with a rectangular body sec-
tion having relatively sharp cormers (Figure 19.).
Analysing the final result of the calculated 1lift
coefficients for three mach numbers and two angles
of incidence (Figure 20.) we found good agreement
between the Euler results and the experimental
data for the lower angle, while for the higher one
it is still satisfactory. Also plotted are results
for a panel method, which shows great differences
at o = 6 and an unacceptable discrepancy at

a = 127, Figure 2la. shows schematically where
these differences come from. The flow around the
sharp corner of the body generates a vortex, which
rolls up beside the body as the calculated velocity
field for one cross—flow plane shows (Figure 21b.).
This vortex can not be accounted for in the panel
method. Figure 22. shows that in this case the ve-
locities on the body surface are only influenced
by the relatively weak down-wash of the wing. In
the Euler result the vortex induced velocities are
much greater and even cause the velocity vectors
to change from a positive to a negative angle be=-
hind the wing.

Finally I would like to show the flow around
a quite different configuration, and not at all
a transonic case. It is the example of a VW prin-
ciple car and it shows that the FBV version of our
code can be widely used for a variety of flow
problems. Figure 23. shows the car embedded in the
whole grid system. the thicker lines match the
block boundaries. The overall block number was 13
and even for this high block structure the ratio
between I/0- and CPU~time could be kept below .3.
Figure 24. shows the calculated isobars on the sur-—
face, while figure 25. shows the computed velocity
field with a small vortex at the lower back part.
At last figure 26 shows the convergence history of
the averaged error and the drag coefficient.

Conclusion

The examples show that in some cases it is
necessary to account for 'real body" effects and
to solve the Euler equations instead of the FPE to
get the correct inviscid solution for transonic
flows. Only the Euler methods are able to account
for vorticies in the flow field, which may emerge
from sharp corners. So the Euler methods, in their
different block structured versions, are applicable
to a wide range of flow problems and allow real 3-D
calculations with a nearly unrestricted number of
grid points within an acceptable amount of comput-~
ing time. Even for cases with 18 blocks the rate
between 1/0- and CDU-time could be kept below .3
with an IBM 3083. For a CRAY | computer this rate
lies at about .75. The comparisons of the different
versions show that the convergence behaviour of all
can be reduced drastically by using the well known
multigrid technique, which for a blocked flow field
could be further improved as mentioned above.
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Figure 25
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Figure 26
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