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Abstract

We describe two methods to treat vortex sheets
in a Lagrangian manner as a discontinuity, but to
compute the rest of the flow using a fixed Eulerian
grid. This way, we retain advantages of both schemes.
The method is applied to the vortex sheet shed by an
elliptically loaded wing, in the parabolized approxi-
mation. In this approximation, the vorticity is as-
sumed to be normal to a two dimensional cross-stream
computational plane. Thus the sheet is treated as a
line across which the cross-stream velocity is discon-
tinuous. The stream-wise variation of velocity is then
neglected and time evolution of the line in the plane
approximates the cross-stream variation as the sheet
is followed downstream.

The time-dependent problem is solved as follows:
At each time step, the vortex line is first assumed to
be fixed and a potential is computed on a grid such
that the discontinuity across the line is maintained
and Laplace’s equation is satisfied everywhere else.
Then, a velocity is computed along the line by in-
terpolation from the grid. Finally, a forward Euler
integration scheme is used to compute the new po-
sition of the line. The main approximation assumed
1s that the radius of curvatuare of the line is much
larger than the grid cell width.

One method described is analagous to shock fit-
ting and involves fitting the discontinuity. The other,
presented previously, involves spreading the discon-
timity over several grid cells, and is analagous to
shock capturing. A numerical comparison of the two
schemes is given.

1. Introduction

Computational methods, based on the compress-
ible potential flow or Euler equations, are currently
being used to compute three dimensional flows over
wings and wing/body combinations (1. They can ad-
equately account for shocks in the flow and, when cou-
pled with existing boundary layer calculating meth-
ods, can include boundary layer effects [?], at least
when there are no regions with extensive separation.

Besides boundary layers, which exist in relatively
thin regions on surfaces, other important effects result
from vortex sheets in the flow. These are also usu-
ally confined to thin regions. Unlike boundary layers,
their position is not known in advance, but must be
computed along with the flow field. These sheets are

shed from lifting surfaces and, when convected past
other lifting surfaces, can have large effects on the
flow. Examples include wing/canard configuration:
and helicopter rotors. Also, leading edge separation
in delta wings or at strakes, can result in vortex sheets
moving past the same lifting surface that produced
the sheet, also with important effects.

This is especially true in transomic flow with
shock waves, where the vortex sheet can cause large
movements of the shock and large changes in lift and
drag. In addition, even for an isolated wing; proper
treatment of the sheet is necessary to avoid large er-
rors in the computed surface pressures near the wing

tip.

Numerical methods for solving transonic flow
problems, in the inviscid region exterior to bound-
ary layers, usually involve either the Potential Flow
or Euler equations. As usually formulated, the Po-
tential Flow equations can only treat vorticity if con-
centrated in a sheet which coincides with a compu-
tational boundary. This precludes, for example, fol-
lowing the rollup of a trailing edge sheet. The Eu-
ler equations, on the other hand, can treat flow with
vorticity, but concentrated vortex lines to sheets can
spread when convected due to numerical diffusion,
even when moderate amounts of grid compression are
used(®]. Besides this problem, which involves a grid
that must adapt to the flow, Euler equations are ex-
pensive to solve, requiring much more computing time
than Potential Flow equations for the same problem.

In this paper we describe and compare two meth-
ods for incorporating vortex sheets into the Potential
Flow equations. They are conceptually and practi-
cally different than methods used to incorporate vor-
tices into incompressible flow problems (4], and may
have advauntages there too. The basic iteration se-
quence, however, is similar. The vortex sheet is as-
sumed to convect with the flow. At each step, first,
the sheet is taken to be fixed and the flow field is
computed such that the boundary conditions and flow
equations are satisfied. Then, the sheet 1s adjusted to
follow the new flow field. This iteration is usually
required even in the incompressible case, where the
equations are linear and the solution due to the vor-
tex sheet can be added to a solution due to the vortex
sheet can be added to a solution without the sheet.

The two methods both involve treating the sheet
as a velocity discontinuity. Although designed for

-1~




compressible three dimensional problems, both meth-
ods are treated in a quasi-two dimensional incom-
pressible approximation. In this approximation, the
vortex sheet is assumed to roll up slowly as it convects
downstream in incompressible flow. The convection
speed is assumed to be the free-stream velocity and
the vorticity aligned with the free stream. In this
case planes at different downstream positions can be
treated as different time steps in a two-dimensional
time dependent evolution of a line of vorticity where
the vorticity is normal to the plane. This has been a
standard testing-ground for methods capable of treat-
ing three dimensional incompressible flow (3.

Both of our methods involve treating the sheet
as a velocity discontinuity. Also, in both, the ve-
locity outside the sheet is assumed to be irrotational
and derived from a potential, which is solved for on
a fixed (Eulerian) grid. The first method is, to the
author’s knowledge. new. It involves following the
discontinuity and using a local solution in the re-
gion near the sheet, while solving for a potential on
a fixed grid. The second method involves spreading
the vortex sheet over several grid cells using a ve-

locity decomposition method. It has previously been
described (€l

2. Problem Definition

The basic problem consists of solving Laplace’s
equation for a potential. 4. The outer boundary is a
rectangle;
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Reflection symmetry is imposed at the z = 0 bound-
ary and Neumann conditions are used. Dirichlet
conditions are imposed on the other three bound-
aries. These boundaries are too close to be considered
far-field for an accurate solution but their influence
should not effect the stability and iocal behavior of
the solution, which is what is being studied. Embed-
ded in the field is a line z,(s),y,(s), across which ¢
has a given discontinuity I'(s). The other condition
imposed on the line is that the normal derivative of
$. Ind, is continuous. This problem is solved at each
of a sequence of time steps, and the normal veloc-
ity (g5 (s)) and average of the tangential velocities on
each side (g} (s)) are computed. A new position of the
line is then computed using forward Euler integration:

z,(3) = z,(8) + At x iy (8)

v (3) = yo(s) + At x vy (3)

where At is the time step and u,(s) and v,(s)
are the Cartesian components of g2(s) and q?(s).

3. Methods of Solution

3.1 Discrete Method

To compute ¢ a cartesion grid is set up in the
rectangle. The actual potential is smooth except at
the discontinuity. If this is properly treated, as long as
the curvature of the line and the scale over which I'(s)
varies is much greater than the grid spacing, the veloc-
ities should be smooth and grid resolution should be
adequate. Accordingly, ¢ is treated as a smooth func-
tion on either side of the line and continued through
to the other side. The continuation involves adding a
local analytic solution to ¢ which satisfies the bound-
ary conditions on the line. On one side, the solution

18
¢ =¢(zy)

and the continuation of 47 is
¢+ = ¢_ - ¢'L(37zay)'

The local solution has the correct discontinuity
P(s) and zero normal derivative at the line.

The problem, then, involves solving Laplace’s
equation for ¢ using the local solution to join the so-
lution on either side. We use a five-point second-order
accurate difference scheme

(ti;;+1,j —26i; + $£-1,j)
Az

+

(¢~5i,1+1 - 2¢3i,j + Jh‘,j—1)

o =0 (1)

. for the potential with the discontinuity removed. If

the differences in (1) all lie on one side of the line,
then we just have the potentials

Prt = Pr,l

for each &,! in the formula. ¥ a difference is required
across the line, the continuation of ¢ is used for that
point on the other side from the central point in the
formula (2. 7):

bra = braE dF .

where ¢f | is the value of ¢%(s,z,y) at (k,1) and the
choice of sign depends on the direction in which the
line is crossed (see Fig. 1). With this scheme, we can
incorporate ¢f’, into a forcing function and derive a
Poisson equation for the values of ¢ at all the grid
points;

Vibij = pij (2)

where V2 is the five point Laplacian, ¢;; is just the
potential at grid point (4,7) and p;; is either 0 or
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?rﬁfi,j, where (i’,5') denotes the image point corre-
sponding to point %, on the other side of the line.
An ADI solver is used to solve Poisson’s equation.

. The calculation of ¢¥ proceeds as follows: The
line is defined by a set of markers to each of which a
given value of discontinuity is assigned (I';). The grid
cells that these markers lie in are computed sequen-
tially for each marker (adjacent markers lie in differ-
ent cells), ({ =1,2,---1,) and, when the cell changes
the indices of the corners of the cell side that has been
traversed are stored. The local solution, ¢¥, must be
computed at these two points (i,5 ; ¢',5'). For a line
section with constant curvature and linearly varying
potential, ¥ on either side can be taken to be the po-
tential of a point vortex located at the center of curva-
ture with strength proportional to I'(s). This would
involve extrapolating I with constant value along rays
normal to the line, since for a point vortex the poten-
tial is constant along radial lines. An averaging is
introduced at this point which should not effect the
result if the actual radius of curvature and the dis-
continuity vary slowly compared to the grid spacing.
The final formula used for ¢Z is:

=<5 = (S 1077 D)/
{
P=Ys(17s -7 )
4

In this equation, | 3 ; — #; | is the distance between
grid point 4,7 and line marker I, and the sum is over
all { values such that the weighting function

f(Z)=1-2%/a?

is positive. Typically, a is chosen such that the aver-

aging distance, < Z >= 3a/8 is about 1.5 grid spac-

ings: ;

a=2(Az+ Ay)

Once the set {¢} .} is computed and (2) is solved
for {¢:,;}, the velocities along the line can be solved
for. First, a set of velocities are computed at mi-
doints of the grid lines. These velocities are the aver-
ages of the “actual” velocity and the velocity of the
solution that is continued from the other side of the
line. These velocities are needed on the four corners
of a box surrounding each marker point, so that an
area-weighting interpolation scheme can be used to

compute the velocity at the marker:
w = (Azzu;,j + Arouiqg ; + A2t j41

+-A11ﬂu+1d+1>/A

A= (21 - zcj) (yt - yij)

Az = (zt - -'D.',j) (y-’,j+1 - yz)

Agy = (Z;+1,j - zz) (!Il - y-‘i)

Ay = (24+1,j+1 - zt) (y.'+1,j+1 - yl)

A=Ay + Az + Ao + Axp

and similarly for v;. Computation of these corner
velocities can be done if the values of ¢;; and ¢f§-
are known in the cells surrounding that in which the
marker lies (see Fig. 2). This velocity calculation
requires that the local solution, ¢¥, be computed at
more points than is required for calculation of the
potential.

Results are presented in Fig. 3 for a discontinuity
that was elliptic at ¢t = 0.

1‘(0, s) =Toy/1 - (s/35)?

0 < 2(0) < +35
y(0) = —.02

There were 500 markers used initially and a 64 x
128 cell grid. If distance between markers increased
to greater than half of a cell width, new markers wer¢
added. The non-dimensional time step, At x I'y was
.05. In the figure, the (downward) velocity of the ini-
tial first marker was subtracted from the rest to keep
the line in the computational grid. It can be seen
that an instability appears after about ¢t 5 .75. Ini-
tial experiments where the line is still treated as a
zero-width discontinuity but with marker redistribu-
tion and time step changes have not altered the basic
features of the instability of this particular method.

The velocity interpolation method used above re-
quired that ¢~ be computed at grid points up to
two mesh cells from the vortex line. A more com-
pact scheme requiring only those points one mesh ccli
from the line, which are also needed to compute the
right hand side of Poisson’s equation (2) was also im-
plemented. Here, the potentials, ¢t and ¢, were
computed by interpolation at each point where the
vortex line crossed a grid line. These potentials were
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“hrn used to compute tangential derivatives of ¢ and
#~ . Also at these points one-sided interpolations were
used to compute the derivatives of ¢+ and ¢~ along
the grid line that was crossed. These derivatives were
averaged to get average velocities along the vortex
line and along the grid line crossed. Using these two
averages, the average velocity normal to the grid line
crossed was then computed. This was done at each
point that the line crossed a grid line, and the result-
ing velocities were interpolated to each marker along
the line. Results of this scheme are presented in Fig.
4. As to be expected in a more compact scheme, there
wnpears to be less numerical error here and the vor-
vex rollup is considerably tighter. It can also be seen
that the same type of instability appears here that
appeared when the other interpolation scheme was
ased.

3.2 Continuum Method

This method was initially described in Ref. (6).
It involves treating the line as if it were spread over a
listance, 6, equal to several cell widths. The poten-
ital. @, is still defined on a grid, but is now assumed
¢ be continuous. A vortical velocity field ¢* concen-
crated within a distance § of the line is added to V_7'¢;

§=Vé+q (3)

Then the incompressibility requirement is en-
forced by solving Poisson’s equation for ¢:

V.7=0

T

V24 =-V. . (4)

The only requirement on ¢” is that it have the
“errect vorticity to represent the (spread) discontinu-
ity. If ¥ is concentrated near the line, it can be shown
rhat it must have a component normal to the line if it
ts to represent a non-zero total vorticity (see Ref. 6).
We took ¢ to be normal to the line. Then denoting
s the tangential direction and n the normal one. the
vorticity, /

w = aeQn - anqs
= ang

since V¢ does not contribute. In order to represent
he desired discontinuity, we must have

I'(s) =/dn-¢j"(n,s)= /dnq;’,(n,s)

at ea.ch point along the line, where the integral crosses
the line center at point s. As in (3.1), we represented
the line by a set of markers. Then,

@) =CY ol 7- 6 |)g. (5)
1

where the sum is over markers such that the weightin-
function, o, is non-zero, and §; is normal to the lin-
at marker {, with magnitude proportional to I'(s)
As at that point. (As is the marker spacing). The
weighting function, o(Z), had a Gaussian form for
small Z and was zero for Z greater than several celi
widths.

The solution procedure for this method was sin-
lar to the last. At each time step §° was computed
at grid points near the line center using (5). Then.
V - §* was computed and (4) was solved for ¢ on the
grid. After that, (3) was used to compute ¢ at th-
grid points. The velocity was then interpolated at
the marker positions and they were updated using
forward Euler integration.

Results are presented in Fig. (5) for this method
(see Ref. 6). Imitial results for this method in tran-
sonic potential flow are presented in Ref (7). This was
a test of the feasibility of adding a vortical velocity to
a compressible potential flow. There, the compress-
ible full potential equation was solved for steady thre-
dimensional flow. A line vortex convecting past the
wing was embedded in the flow and an added vorti-
cal velocity used to represent its effect (see Fig. 6).
The C, distributions over different span stations of
the wing are presented in Fig. 7 with and without
the convecting vortex line. It can be seen that the
vortexz has a large effect. Subsequently, other uses of
the method for compressible transonic flow have been
presented (8). A full three dimensional transonic code
including wake rollup using this method is presently
being developed.

4. Discussion

Two methods have been presented to compute
the time-dependent roll-up of a vortex sheet in two
dimensions. At each of a sequence of time steps, both
involve the solution of Liaplaces’ equation for a poten-
tial on a grid in a rectangle with Dirichlet conditions
ou three sides and Neumann on the fourth, and with
a given discontinuity along a curve. This solution is
used to compute an average velocity along the curve
and to derive a new position of the curve at the next
time step using forward Euler integration.

The main difference concerns the way the discon-
tinuity is treated: In the first method a local potential
solution is used to link the potentials on either side of
the discontinuity. This local potential defines a veloc-
ity that is irrotational, has the required discontinuity
at the line and has zero normal derivative there. This
method is analogous to shock fitting procedures. Con-
siderable logic was required to treat the discontinuity
with this method.
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In the sccond method, the discontinuity is spread
over several mesh cells so that there is a finite-width
rezion with non-zero vorticity. It is argued that as
long as the spreading is over a region that is small
compared to the other dimensions in the problem,
the large scale features of the solution should not
be altered. This is analogous to shock-capturing, as
pointed out in Ref. (6). The logic required to imple-
ment this method was much simpler than that for the
vrevious one.

Both methods are similar to that of Ref. (9) and
use a similar Poisson equation, velocity, interpolation
and time integration. In Ref. (9) the line is treated as
a set of vortices. Each vortex has associated with it
a discontinuity which runs along a grid Jine and con-
nects it to its image. This results in a large number
of discontinuities, rather than just the original one.
Like our method, that of Ref. (9) can be extended
to treat compressible potential flow with embedded
vortices.

Conclusion

It appears that our treatment of the vortex sheet
as an exact discontinuity leads to grid-dependent ir-
regularities and, eventually instability. Our alterna-
tive method, which involves spreading the disconti-
nuity, or vorticity, resulted in a smooth roll-up. The
similar method of Ref. (9), which also involved some
averaging, also resulted in a fairly smooth roll-up.
In Ref. (10), the line was treated as an exact dis-
continuity. There, a Green’s function approach was
used, rather than a grid and finite difference scheme.
Also, the curve was defined using higher order spline
functions. This approach resulted in smooth roll-up.
Heunce, it appears that an interaction of our grid with
the line or our lower order treatment of the line is the
cause of the problem with the first method presented.
Since the use of the grid for solving for the poten-

tial can have large computational advantages over a.

Green’s function method, work should be continued
to resolve this problem.
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Figure 1. Finite Difference Molecule and
Image Point
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Figure 2. U-Velocity Interpolation




Figure 4a. .152t<.25

©
o
-t
4]
~
L
1.
p-]
2
1"
Figure db. .40S t £ .50
e e e e -
i ~ ;
| 5
P
{ ;
H
' 7
. H }
o
Iy
!
+ i
11
rig. Sa.
I' PPN
:-'”\_.)
= i e
“ I
“ i
< i
™ ) ;
§ _ e e e o
> N
E\-. - ot o Sammmm -




Figure 6b Yortex and Streamline Trajectories
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