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Abstract

A fundamental analysis of subsonic canard configura-
tions illustrates some of the problems associated with such
designs and difficulties encountered in their optimization.
A general solution for minimum induced drag as a fune-
tion of span ratio, vertical gap, and relative surface lifts is
presented. Stability and trim requirements, together with
the system geometry then determine the total induced drag
and practical conclusions follow when structural weight and
stalling speed constraints are added. Required chord and
twist distributions are determined, illustrating the prob-
lems associated with multiple design points. Unlike con-
ventional configurations, the canards’ geometric variables
associated with optimal solutions to each of the above prob-
lems vary widely, showing great sensitivity to constraints
and off-design operation.

1. Introduction

A recent resurgence of interest in canard configurations
for subsonic aircraft is evidenced by the appearance of a
variety of such designs in general aviation, business aircraft,
and some proposed commuters and has led to a need for
practical, preliminary design tools. The great variation in
these designs contrasts sharply with the relative standard-
ization of aft-tail configurations and suggests that some
aspects of their design may be less well-understood. Much
of the literature dealing with subsonic canard configurations -
has focussed on methods for predicting the aerodynamic

characteristics of a particular geometry. A variety of papers!—3

has addressed the question of minimum induced drag, with
and without trim and root bending moment constraints,
but with a number of additional constraints imposed to
simplify the analysis. Although such studies are useful,
conclusions regarding “optimal” configurations are valid in
a very restricted sense. For canard / wing combinations,
to a greater extent than for conventional designs, optimal
solutions show great sensitivity to the choice of goal func-
tion and imposed constraints. Because of this sensitivity,
optimal solutions to the more restricted problems (e.g. min-
imum induced drag with fixed span) differ significantly from
those which result from an integrated approach including
total drag, weight, and stalling speed considerations.

Beginning with a general analysis of the minimum in-
duced drag of two non-coplanar lifting surfaces which yields
a simple relation between total induced drag and the system
geometry, the effects of various constraints are illustrated
as stability and trim constraints are imposed, followed by
structural weight and stalling speed requirements. The
analysis applies equally well to canard and conventional
configurations and demonstrates important differences in
relative performance.

II. Minimum Induced Drag

The problem of computing the induced drag of two
non—coplanar lifting surfaces is discussed in a number of
previous papers utilizing three basic techniques: confor-
mal mappings?, vortex lattice methods?, and variations of
Prandtl’s biplane equation®®~%. Although vortex lattice
and a variety of panelling methods provide accurate results
for a given configuration, in the context of preliminary
design optimization with large numbers of design variables,
even mildly computation-intensive codes are wholly un-
satisfactory. A large gap exists between these refined methods
and the biplane equation of Prandtl® which is also widely
used because of its simplicity:
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The limited number of variables and algebraic form
of equation (1) (where ¢ is a function of span and vertical
gap ratios only) make it particularly useful. Many recent
analyses of trimmed drag for conventional and canard de-
signs and of optimum center of gravity position and tail
load have been based on this equation and reflect the utility
of such a simple approach.

The key assumption underlying equation (1) is that
each surface is elliptically loaded. However, when operating
in the downwash field of a highly-loaded canard, the wing's
lift distribution tends to be shifted outboard because of the
downwash directly behind, and upwash outboard, of the
canard. The wing, of course could be twisted to produce
an elliptic load distribution in spite of this non-uniform
downwash field, but, despite some confusion in the litera-
ture, the idealized individually—elliptic load distribution is
often far from ideal. This is easily demonstrated in the
case when the two surfaces are coplanar. Prandtl pointed
out that, in this case, Munk’s stagger theorem!® permitted
superposition of the individual loadings so that the system
could be treated as a single wing for the purposes of induced
drag calculation. The minimum induced drag is achieved
when the total loading is elliptical over the larger span;
and the wing’s lift distribution is decreased inboard and
increased outboard of the canard. This loading is in the
same sense that the lift distribution of an untwisted wing
is shifted when operating in the canard’s downwash field
and the loading change probably accounts for the overes-
timation of canard drag by equation (1) when compared
with experiments!l.
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Because of the limitation of equation (1) to elliptically
loaded wings, several attempts have been made to general-
ize the expression to include more realistic distributions.
The induced drag of systems with certain non-elliptic dis-
tributions of lift on one or both surfaces is computed in ref-
erences 7 and 12. Some recent work? has also examined the
induced drag of systems with one elliptically-loaded surface
and one optimally loaded surface.

Rather than specify the shape of the surface lift dis-
tributions a priori, however, one can calculate those which
minimize the total induced drag. This may be done by
expanding the lift distributions in Fourier series,
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and solving for the coefficients which produce minimum
drag. (Appendix I details the procedure by which the op-
timum distributions are computed.) Figure 1 shows that
for some configurations, the shape of the optimal wing lift
distribution may, indeed, differ greatly from elliptical. If
the load carried by the smaller span is small, or if the ver-
tical separation or span ratio is large the distributions again
approach the isolated elliptic result.
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The induced drag produced by this optimally loaded
system may be written:
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where the constants oy, oy, and o; are functions only of
span ratio, 7%, and dimensionless vertical gap, Z%

The ratio of the minimum induced drag of this system

to that of a single wing of the same span as the larger span,
carrying the same total lift (span efficiency) is:
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Unlike equation (1) in which the three terms consist of
two self-induced drag terms and an interference term, all
three terms of equation (3) contain both self-induced and
interference effects. oy and o; are plotted vs. span ratio,

b% in figure 2. oy, is not included as it is essentially 1.0

over a wide range of span and gap ratios (o, varies slightly
in cases with large span ratios and small gaps but even in
an extreme case with k = .05 and & = 1.0, oo, = .980). It
should also be noted that oy¢ = o, Prandtl’s interference
factor in equation (1), while o; differs greatly from 1.0 in
the case of small span and gap ratios.
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So, equation (3) is similar to equation (1) differing prim-
arily in the coefficient oy in the last term. This reflects the
fact that the momentum imparted to a small mass of air
by the canard may be redistributed by the wing over a
larger mass of air. Thus, when A = 0 the wing is capable of
redistributing the momentum over its entire span so that
the minimum induced drag (regardless of canard load) is
just that which would be produced by an single elliptically
loaded wing carrying the same total lift. This explains
the interesting result that for certain cases the interference
terms are beneficial and the induced drag is actually lower
than if the two wings were infinitely far apart. Equation
(1), to the contrary, suggests that induced drag always
decreases with larger vertical gap whenever L is positive.

Since ¢; = 1 when the wing is elliptically loaded, the
minimum induced drag given by equation (3) may differ
significantly from that given by equation (1). If, for ex-
ample, & = 04, L = 3, and b = .4, equation (3) gives
u = 885, while if the surfaces were elliptically loaded u =

.802. Differences become larger for smaller gaps and larger
span loading ratios, % Thus, although equation (3) may

be used for estimating the induced drag of conventional,
aft-tail configurations, it is especially useful for canard
configurations which, because of stability and trim con-

straints, generally require larger values of %
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Figure 2 illustrates the rapid variation of o; for small
vertical gaps. This decrease in o; reflects the substan-
tial reduction in induced drag compared with the ellipti-
cally loaded case. Because of this sensitivity, however, the
theoretical result that w,; = 1 and is independent of L
when no vertical gap is present, is not achievable in prac-
tical cases where h does not vanish completely.

In figure 3, the variation of induced drag factor, u ,
with span ratio is shown for various values of tail / wing
lift ratio, L == L% Even for this small value of vertical gap,
(h = .05) the value of u differs substantially from 1.0 when
the smaller span is required to carry a significant portion
of the total load. Although the induced drag of a system
with no vertical gap and elliptic loading on each surface
is symmetric in L%ﬁ (that is, the total drag is determined
by the magnitude of tail lift and is the same for positively
and negatively loaded tails), when the loading is chosen

to minimize induced drag this is no longer the case and
“down-loaded” tails incur a larger penalty.
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IL Minimum Trimmed Induced Drag

The requirements of stability and trim determine the
lift ratio for a given configuration and have a strong impact
on the induced drag of canard configurations. The condi-
tion for trim is:

fof — Lyxr + quCmeacf + qSrcrCmger =0

with z; and z, the distances from the center of gravity
to to forward and rear surfaces’ aerodynamic centers. For
the purposes of this general discussion the effect of section
camber and individual surface Cp,,,. is omitted so that:
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center of gravity to lie ahead of the neutral point by a
distance A (in units of the wing-tail separation, z; + 2, =
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The ratio of lift curve slopes is influenced by inter-
ference effects; the canard reduces the wing’s lift curve slope
and the wing's trailing vortex system and bound vortex
generally increase the canard’s effectiveness. These interac-
tions are most easily taken into account by applying Hayes’
reverse flow theorem {cf. Ref.13). With this theorem it
is possible to compute the effect of the canard’s induced
velocities on the wing’s lift curve slope by evaluating the
effect of the wing’s downwash on the canard in reversed
flow. The latter is much more easily accomplished, several
approximate methods being readily available.

The ratio of lift curve slopes is thus determined by
the surfaces’ horizontal and vertical separation, spans, and
areas. However, the ratio is principally determined by
horizontal gap, span ratio, and area ratio. (In this paper
we have assumed, for the purposes of computing lift curve
slope ratio, that AR, = 10 and horizontal gap = 4 wing
chords.)

With these assumptions then, the lift ratio may be
computed from equation {5) and substituted into equation
(3) to obtain the minimum trimmed induced drag shown in
figures 4 and 5.
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A stability margin, A, of .08 was chosen in this analysis.
While this would correspond to a rather high stability level
for the lifting system alone, destabilizing effects of the rest
of the airframe make this static margin only moderate. The
effect of section camber changes the results of this analysis
in the same sense so that calculated tail loads are most rep-
resentative of those which would be obtained at mid to aft
center of gravity positions. Furthermore, although equation
(3) applies to surfaces with or without sweep, the Cp,q. as-
sociated with a swept, twisted wing modifies the results of
figures 4 and 5 slightly. The remaining discussion in this

paper is, therefore, strictly applicable only to unswept sur-
faces.

From these figures it is apparent that although the
Prandt] biplane equation overestimates the total induced
drag, even the minimum induced drag solution leads to very
low values of span efficiency, u, if the canard span is not
large. By contrast, the minimum induced drag of aft-tail
designs is rather insensitive to tail span over a wide range
of tail sizes. So, although reducing the vertical gap reduces
the induced drag in some cases, these are cases in which
the span efficiency is very low. Thus, the induced drag of
certain canard designs in figure 4 (A == .05) is lower than the
corresponding configuration with a larger vertical gap (k ==
.10) in figure.5, but only for designs with « < .8. Similarly,
the penalty in induced drag associated with “down-loaded”
aft-tail configurations may be reduced by decreasing the
vertical gap.

Among the conclusions apparent from these figures are:

1) To obtain values of u comparable to that of conven-

tional designs, the canard span ratio must be large — .5 or
greater.

2) In terms of induced drag with fixed span, canard
span ratio should be large and, except for the highest span
ratios, canard area ratio should be small. .

3) Biplane / tandem designs lead to largest values of u
for fixed span with u = 1.2 to 1.3 when large vertical gaps
are available.

IV. Minimum Induced Drag with Fixed Weight

Despite their advantage in span efficiency, tandem con-
figurations comprise a decidedly small minority
of modern aircraft. That advantage, of course, 15 offset by
structural weight — while a system with a small tail has
higher induced drag than a tandem of the same span, for
the same weight the wing span can be made sufficiently
greater in the small-tailed system to overcome its lower u.
To make a practical comparison between the induced drags
of these, and any other lifting systems, one must fix not the
span of the wing, but rather the weight of the system.

To proceed with this comparison, we need a method for
calculating the relative structural weight of lifting systems.
A multitude of factors have some bearing upon this calcula-
tion; however, only a few of these have a strong influence
and a first analysis should isolate these primary factors for
exclusive study. The major factors affecting the weight of
a surface are its span, area, and total lift, its planform, and

its lift distribution, (For the same total lift, a wing having
relatively high tip loading, as is required for optimum span
efficiency in a canard configuration, will be heavier than
one having low tip loading.) All of these effects can be cap-
tured by modeling the lifting surface as a cantilever beam,
in which the bending loads are carried by the spar caps.

If one applies this model to a wing having constant
thickness—to-chord ratio and bending stress across the span,
one finds that the weight per unit span can be written as:
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where 1(—3{)1‘5 is the local chord (which, for each surface in
the lifting system, is normalized by the total area and the
surface span). The terms account roughly for the weight
associated with the skin and spar, respectively. To find the
weight of a lifting system, one must integrate this formula
across the two spans. The skin term simply integrates to
psS. The spar term is most easily treated by decomposition
into harmonics. Thus, the spar weight can be written as
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where Y%L M,,..(9), for example, is the moment due to the
mth harmonic of the wing lift.

It is convenient to non-dimensionalize this expression
by introducing as a ‘reference wing’, a single surface having
elliptical loading and planform, and carrying the same total
lift. The weight relative to this surface may be written as

3
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S,by, and W are now relative quantities. We have replaced
wy and we by fp and fe, which are the ‘spar’ and ‘skin’
weight fractions of the reference wing. (Note that f; =
1— f;.) The B coefficients are the integrals in the formula
for spar weight, scaled so that By = 1 for an elliptical
surface.

This weight formula obviously excludes many elements
of a complete structural analysis, but it does satisfy our re-
quirement Tor an index which realistically accounts for the
most powerful effects. Let us now apply it to finding the
minimum induced drag of a lifting system of fixed weight.
Consider the choice of lift distributions. Although in some
cases the lift distributions in the critical loading condi-
tion may differ from those for minimum induced drag, in
systems having fixed twist distributions they will be ap-
proximately the same, since both conditions occur at high
€. We will return to this point in section VI in regard to
off-design performance.

Since minimum induced drag is achived with maximum
b2u, not maximum v, the lift distributions calculated in the
preceeding section do not produce minimum induced drag
with fixed weight. By carrying more lift inboard than is
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optimal for span efficiency, one can reduce the integrated
bending moments, and so make the span larger for a given
weight. Thus we must solve for minimum system drag with
a weight constraint as a distinet problem. This problem is
very much in the spirit of those treated by R.T. Jones!® 16
and Prandt]'* on minimum drag of a wing with fixed bend-
ing moment. Here we will present a solution which extends
these analyses in two respects: First, it involves a weight
model which is sensitive to variations in section thickness
{through variations in chord) as well as to the moment dis-
tribution. Second, it applies to a system of two interfering
surfaces, rather than an isolated monoplane.

Appendix IT gives the details of the analysis. It turns
out that, with the weight and area of the system fixed, the
solution is independent of the weight fractions f; and fs.
Hence it depends only upon the tail span ratio, area ratio,
lift ratio, and vertical gap, and (through the B coefficients)
upon the planforms of the two surfaces. The first four of
these parameters entered into the trimmed drag calcula-
tions of the preceeding section, but the planforms are new
unknowns. Naturally, we want to choose the optimum
planforms which for any surface, is that which maximizes
span for a fixed weight (or, equivalently, minimizes weight
for a fixed span). By differentiating with respect to chord in
our formula for weight per unit span, one finds that chords
proportional to the square root of the bending moment at
each point satisfy the optimality condition. {Actually, if
the surface area is fixed one has to modify the analysis, but
the basic result is the same.)

Unfortunately, this planform always produces a section
C) distribution which increases monotonically toward the
tip, since the bending moment always decreases from root
to tip more quickly than does the lift. In fact the C; be-
comes infinite at the tip, and very large over the outboard
part of the surface — a situation which is obviously im-
practical. Spanwise pressure gradients, parasite drag, and
ultimately stall preclude large variations in C; across the
span. One is forced to make C; over the outboard part of
a wing less than the average particularly to avoid tip stall.
The natural way to accomodate this constraint is to place
an upper bound on C; which one can vary across the span.
Not surprisingly, when one imposes such a constraint, the
optimum chord becomes

_l& kA /M(y))
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(qubound

with k scaled to give the correct surface area.

In the calculations here, we have imposed a C; bound
which varies linearly across the span, from 0.9 of the sur-
face C; at the tip to 1.2 at the root. Figure 6 shows the
maximum b%u which can be obtained, relative to the refer-
ence wing, within this constraint. The vertical gap is 0.05
and the stability margin 0.08; thus this figure is directly
comparable to figure 3, which shows the results obtained
with fixed span rather than fixed weight. The most ob-
vious difference between the two is the shift in the optima
from tandems to small tails and canards as anticipated.
Also apparent is the increased sensitivity to the choice of
tail area. Both canard and aft-tailed designs exhibit this
sensitivity but for somewhat different reasons. In the case
of aft tailed systems, the wing lift fraction is relatively in-

sensitive to wing area. Consequently, decreasing the wing
area simply reduces the size of the structure carrying the
load, and to maintain a fixed weight the lift distribution
must be shifted inboard or the span reduced - either way,
b2y suffers. When the area of the wing in a canard sys-
tem is decreased, on the other hand, its lift drops more
or less proportionately. However, the wing lift distribution
required for optimum efficiency becomes increasingly tip-
heavy, so again the choice is between reducing the wing
span and making the efficiency sub-optimal. This conflict
between the high wing tip loading required for maximum
u, and the low tip loading required for maximum span, is
an inherent disadvantage of canard configurations, and for
this reason their drag relative to aft-tailed systems is higher
with fixed weight than with fixed span.
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As the vertical gap increases, the wing tip loading re-
quired for maximum u is reduced, and this conflict is al-
leviated. The relative position of canard systems therefore
improves, as one can appreciate by comparing figure 8 and
7. The improvement is larger than the fixed span analysis
would lead one to anticipate - in fact, for some systems u
decreases with increasing gap. The fixed weight analysis, on
the other hand, indicates that for minimum induced drag
the gap of canard systems should be as large as possible.
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It might be surprising that some of the systems plotted
in figures 6 and 7 have values of b2u greater than 1 — i.e.
better than the reference monoplane. This does not mean
that some two surface systems have inherently lower drag
than a single wing, since we are comparing systems with
optimum lift and planform to a wing with elliptical lift and
planform. It does, however, indicate the advantages which
the optimization offers. These will become more apparent if
we compare systems designed for maximum b%u with those
designed for maximum u. Our sample aft-tailed system
has a fairly high aspect ratio tail (span ratio 0.4 and area
ratio 0.2). Our sample canard is larger, with span and area
ratios of 0.6. The gap is 0.1 in both cases. Figure 5 showed
the maximum u lift distributions for these configurations;
figure 8 shows those for maximum b%u. Note that the
spans on each plot are scaled so that all of the systems

would have the same weight. The most obviously different
distributions are those over the wings in the canard systems.
This difference is reflected in their relative span and span
efficiency. The system designed for maximum b%u has a
span which is 25% greater than that of the maximum u
system, while its u is lower by 15%. Its net advantage in
induced drag is about 26%. The difference between the
maximum b%y and maximum u systems with aft tails is
not quite so large but still substantial - the maximum b%u
configuration has a span greater by 9%, and u lower by 6%,
50 11% lower drag overall. The sample canard system has
53% more drag than the aft-tailed version with maximum
u lift distributions, and 30% higher drag when designed for
maximum b%u,

Figures @ and10show the planforms of these systems
Each surface has the same characteristic shape — over the
outboard section, the chord is set by the ¢; bound, and
the contour follows the lift distribution. The area which
is left over after the C) constraint has been satisfied is
concentrated at the root, where the chord varies with the

square root of the bending moment. Although most manufac-

turing engineers would undoubtedly be unconvinced that
these planforms — particularly of the wing in the canard
configuration —are optimal, these ‘ideal’ shapes serve as
useful approximations to those which might be practically
employed. The drag reduction offered by maximum b2u
design, compared to the more familiar maximum v« design
is substantial, and advantages of the order indicated here
are within practical reach.
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V. Minimum Drag with Stalling Speed Constraint

o
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Previous sections have dealt primarily with the in-
duced drag of lifting systems and have mentioned parasite
drag only in passing. Although parasite drag variations
with section lift coefficient influence the configuration op-
timization to some extent, total wetted area directly affects
aircraft drag. Fixing the total area, just as fixing the span,
is therefore not a rational constraint in an integrated design
optimization. Recognizing that not all aircraft are con-
strained by stalling speed requirements (closely related to
landing field length constraints), we nevertheless compare
aircraft with constant values of ¢y, .S since, in practice,
the minimum lifting surface area is often determined by
such a requirement.

Trimmed Maximum Lift Coeflicient

Equation (8) reveals that the lift coefficient of the for-
ward surface exceeds that of the aft surface except in cases
with very low aspect ratio forward surfaces or very small
stability margins. Thus, for configurations with the high
aspect ratio canards suggested by the results of the pre-
vious section, a large difference between wing and canard
Cp, exists. (In some of the successful general aviation canard
designs the canard is required to achieve nearly twice the
Cy, of the wing.)
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Since it is necessary that the forward surface stall at
CLmag 10 order that the aircraft exhibit stable behavior at
stall, the maximum trimmed lift coefficient (based on total
area) is:

Sr

St
CLAmas = CLfmwgt; + CLT_S:; (9)

Figure 10 illustrates the variation of CIL Amaqz With tail span
and area ratio. In this figure, the abscissa is the ratio of
airplane Cp,, ., to the maximum lift coefficient of a section
with flap, Ciyy,,. We have assumed that all of the smaller
span and 60% of the larger span’s area contains flaps which
are capable of increasing the maximum section C; over that
of an unflapped section, Cy,, so that ¢, = 6C) t1qp This
restriction on flapped area is made to accommodate ailerons
and 60% is a typical value for conventional aircraft. Cf Amaz
‘was computed using equations (5) and (9) with the restric-
tion that the aft surface lift coefficient, Cy,, not exceed

Clrmaz 20d with:

Stlap Stlap
Cmeaa; = Olﬂap Stot + Clu(l - Stot
. s
With the chosen values of 2[!2 a4 T—C’“ OLy _ g4
w Iftap’ Ciflap

A number of interesting results appear in figure 11.
The peaks in the curves of Cp,,,, vs. b occur at small
canard aspect ratios for which the wing and canard achieve
CLmar Simultaneously. For more reasonable canard aspect
ratios, the airplane Cp,,,. is constrained by the maximum
Cp, of the canard and in many cases high lift devices on the
wing do not increase the aircraft Cy,,,,. (The part of each
curve to the right of the tick mark in figurell indicates the
region in which wing flaps are superfluous.)
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The results for canards summarized in figure 11 are
in nearly direct opposition to the induced drag with fixed
span results of figures 4 and 5. For high span efficiency,
small canards with large span ratios are preferred while
large canards with relatively low span ratios lead to high
Clmar The situation for aft tails is more compatible, with

small tails leading to high « and high Cy,,,,. This again il-
lustrates the inadequacies associated with optimal solutions
to the various design sub-problems, especially in the case
of canard designs.

Total Drag with Fixed Weight and Stalling Speed

The large variations in aircraft Cp,,,, over the design
space covered by these figures leads to differences in total
area among aircraft with a specified stalling speed. Changes
in total area strongly affect both parasite drag and the span
which may achived with a given structural weight. While
the relation between total area and aircraft performance
depends on the particular aircraft mission the major effects
of the stalling speed constraint are illustrated in a com-
parison of maximum lift-to-drag ratios.

As developed in Appendix II, the ratio of optimum
spans of two wings with given structural weight but different
areas is:

1/3

b=SWU+£U—$)
fo

and if the total drag may be written:

2
D =qSCD0+

gmbZe

then the maximum L/D scales according to:

L/D

maz

— 57181 4 Fo (1 — gyp13
Ty

Similarly then, the ratio of the trimmed system L/D,, as to
an elliptically-loaded monoplane with Cy,,q, = Cifqp is:

— Clmaz 1/
lelap

L/D

mazx

(H}%U—swﬁvﬁZ

A plot of this parameter (figure 12} reveals a rather
broad envelope of near-optimal canard designs. The definite

RELATIVE MAXIMUM L/D
systems with equol weight and stall speed
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ordering in terms of area ratio is absent in this plot with
area ratios of .4 to .8 producing similar L/D,,,, values if the
span ratio is properly chosen. Aft-tail designs, on the other
hand, preserve the form of the previous figures, reflecting
the less competitive demands associated with induced drag,
structural weight, and stalling speed.

-VI. Off-Design Performance

The lift and chord distributions which minimize in-
duced drag generally require some twisting of the wing. If
the distribution of twist is chosen to minimize drag at some
design (7}, the lift distribution, and thus the span efficiency,
will change with Cy. Similarly, changes in center of gravity
position produce changes in L and u.

In general, the section lift near the tip of an untwisted
wing is larger than desired for ‘minimum drag with fixed
weight. The amount of washout required to obtain the lift
distributions derived in the previous sections is proportional
to Cp and is a function of aspect ratio, sweep, streamwise
gap, and the other parameters affecting the optimal lift
distribution. With a streamwise gap of 4 wing chords, a Cf,
of 1.0, and wing aspect ratios of 8 and 12 for the aft-tail and
canard designs respectively, the wing of the conventional
configuration of figure 10 would require about 6° of washout,
while that of the canard design requires nearly 11° to obtain
the desired distribution. The smaller spans require only
about 3° of twist.

When these twist distributions and tail lift fractions
are specified the variation in span efficiency with Cj, and

Ly ; .
I, may be written:
11 ACY AC? AL AL AL AC
=k "tk +k +k e
u w | CL ¥cy STtot  Ltet Ligt CL

where AC and AE%} are the deviations from the nominal
values and wuy is the span efficiency with the design lift

distributions. Conveniently, AL%; and the stability mar-
gin, A, are equivalent variables; changing A changes ArL{f,?
by the same amount. Figures 13 and 14 illustrate this
function for the two systems, in the form of contours of
Aufug. Note that 1.0 on the ACL/CL scale, corresponds
to ¢ = oo, while —co corresponds to Cp = 0. The span
efficiency is greater than the nominal at higher Cy’s since
the effectiveness of the twist is reduced in this region, and
the lift on each surface is shifted outboard. If the ecriti-
cal loading condition with respect to structural strength
occurred at a higher ¢ than the nominal value the bend-
ing moments would be larger than those used in the weight
calculation. Thus, the nominal C;, must be at least as high
as that for critical loading. Since this generally occurs at
or near Cymax, most flying will be in the negative range of
aci/cy.

In this range, the canard system is somewhat more sen-
sitive to off-design operation than the aft-tailed configuration.
Moreover, while the sensitivity of aft-tailed systems varies
only slightly with vertical gap, that of canard systems changes
quite markedly. If the gap is halved, for example, the sen-

sitivity to ACL/Cy, increases by about 50% although the

reduced sensitivity to %Lf provides some compensation. On
112

the other hand, reducing the canard’s span and area reduces
the sensitivity to Cy, deviations, but increases the sensitivity
to tail lift variations. Both types of system are affected
quite strongly by sweep, which tends to increase the tip
loading and the required washout.

By accepting higher drag at the design Cj, one can
make both aft-tailed and canard systems less sensitive to
Cp, variations. The span efficiency of systems designed
for maximum u, rather than maximum &%y, varies only
slightly with Cy. In fact, a system designed for maximum u
produces the same drag as a system with the same weight,
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designed for maximum 624 when %%L is roughly —2 to

—3 for both aft-tail or canard configurations. In practice
these correspond to rather low Cp's— certainly less than
0.5 and perhaps as little as 0.25. Of course induced drag
at these Cp’s is such a small fraction of the total that the
difference between the two systems would hardly matter.
At higher Cp’s, however, the performance of the system
with maximum 52« would be substantially better and thus
superior, overall, despite its relatively high sensitivity to
off-design operation.

VII. Conclusions

The analyses presented here are intended to provide
an indication of some of the fundamental considerations
involved in the preliminary design optimization of canard
configurations. In practice, many factors which were neglect-
ed in this paper strongly influence the design. Fuselage
weight differences, flap system cost and complexity, land-
ing gear placement, propulsion system integration, han-
dling qualities criterion, and additional controllability re-
quirements are among the perhaps less fundamental, but
often vitally important aspects of preliminary design which
are more difficult to quantify. The goal of fundamental
analyses such as these, however, is to isolate the most im-
portant factors so that their effects may be seen clearly and
many of the issues discussed here are central to the design
of subsonic canard configurations and to comparisons with
conventional designs.

1) The induced drag analysis of section II provides a
practical means of estimating the minimum induced drag
of canard designs. It reduces simply to Prandtl’s biplane
equation, providing a reasonable bounds for the induced
drag which may be achieved in practice.

2) The stability and trim constraints place severe de-
mands on canard configurations, generally forcing the canard
surface to carry a disproportionate share of the total Iift,
and resulting in low span efficiencies unless the canard span
is large. (Canard designs would benefit from relaxed static
stability requirements to a greater extent than would con-
ventional designs.)

3) The maximum lift coefficient obtainable with canard
configurations is, in some cases, larger than those which
may be obtained with conventional designs but these cases
suffer very large induced drag penalties so that in most
practical cases, little difference in Cy,,,, exists.

4) Although the total induced drag for fixed span may
be reduced in some cases by reducing the vertical gap,
structural weight and off-design considerations suggest that
the vertical gap should be large.

5) Canard configurations exhibit higher sensitivity to
changes in center of gravity position and €y, than aft-tail
designs, illustrating some of the limitations of the minimum
induced drag relation and the utility of twist—changing flaps.

6) The optimization of canard configurations is made
difficult by several factors (e.g. Cpp4, vs. induced drag,

induced drag vs. structural weight), which act in concert
for conventional designs but in direct competition for the

canard case. Thus, compromises are necessary in canard
designs and variations in mission requirements are likely to
produce greater variations in “optimal” geometry for these
unconventional aircraft.
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IX. Nomenclature

—_—

AR aspect ratio, %

3 span

b span ratio, 5%

¢ chord

Cpo zero lift drag coefficient

Cy section lift coefficient

Cla lift curve slope

Cm pitching moment coefficient
D drag

<&

Oswald efficiency factor

f weight fraction

h vertical gap

13 non-dimensional gap, Eif[
lift

L lift ratio, 7

! section lift

M bending moment

q dynamic pressure

u span efficiency

w weight

w weight per unit span

A stability margin

# structural weight constant

4 interference factor

X nondimensional chord

Subscripts

ac aerodynamic center

b spar cap component

f forward surface

flap value for flapped section

r rear surface

s surface skin component

¢ tail (or smaller span)

u value for unflapped section

w

wing (or larger span)

Appendix I
Minimum Induced Drag of Wing / Tail Systems

The induced drag of two interfering surfaces in incom-
pressible flow may be written:

D; = / €wly(y)dy + / exlfy)dy + / ewtli(y)dy  (1A)

wing tazl tal

with ¢,, the downwash angle produced at the wing (larger
span) by the wing’s trailing vortex system and ¢;, the down-
wash angle at the tail due to the tail's loading. e is
the downwash angle produced by the wing’s trailing vor-
ticity over the tail’s projection infinitely far downstream
(Trefftz plane). Munk’s stagger theorem permits the inter-
ference drag to be written as a single term and also as-
sures that equation (1A) is applicable to canard or aft-tail
configurations.

When the wing and tail lift distributions are expanded
as in equation 2 where 8, and 4; are the spanwise angle
variables:

== b_wcosow = "2_‘0030,

2
the integrations of equation (1A) yield:

L2 2 1 2
2ZmAmw + *EZ"A,”
qrby 3

D; =

+§Z 3 AntAmu Trnn(5, ) (1B)
where Tyny is the Trefftz plane downwash integral associated
with the third term of equation (1A) over the n* harmonic
of the wing lift and m'® harmonic of the tail’s lift distribu-
tion. (Space does not permit a detailed discussion of the
evaluation of Ty, but some discussion may be found in the
listed references.)

Since the coefficients A, 1 and Ay are specified by:

-IT = Awi
Ly
1~

we define a vector of unknown harmonic coefficients:
A= [Auws, Aws, - Awpg, At3, Ars, - AtN]T

so that equation (1B} becomes:

Ly® | L 2L,LTy
qﬂDi = ﬁ -+ ﬁ + —btb—w
w t (10)
T ! 2Lw ! 2Lt ]
+ANT'A+ =T + 7T")
where: 3 :
. M:. J'/-b i=3,5 ... N
T & J---=----eea= g
. 1% 50 i=385 ... M
i : N2
and:

bT,' = [0,0,..0, Tis, Tis, .. Tin]¥

BT = [T31, Ts1, - T1, 0,0, ...0] T

The first three terms of equation (1C) include the effects
of the first harmonics and are therefore just the terms in
equation 1 of section II. The minimum induced drag is
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obtained by setting the gradient of the additional term to
0:

L,
VD; = oT'A+ TJ”iTw' + L T,,,') =0
or:
-1, L L
A= —[T'} 1(_1}0‘Tw'+ tTwl)
Defining:
Tw" — _[TI]—ITwI
Tt” — _[TI]—'ITtI
we obtain:
Lw n Lt
A= v "
T T," + LT
And substitution into (1C) produces:
Lu? L2 2Lyl
D, = 2. = w
s by? wt be? * beby ot (1D)

with:

1
owe =Tuu + 3T/ T + ST/T"

In practice 5 to 9 harmonics are sufficient to represent the
required lift distributions for most cases. In extreme cases
with low span and gap ratios M = 21 and N == 5 produce
reasonable accurate solutions.

Appendix II.
Minimum Induced Drag with Fixed Weight

The expression for the weight of a two-surface system
relative to that of a reference monoplane given in section
IV is:

W= f, fb

Z:Amewm + b ZAtnBtn (QA)

When this weight is held constant (along with total area,
planform shape—through B, tail lift fraction, and total lift)
the variables to be determined include the span and the
amplitudes of the lift distributions’ higher harmonics.

If the span is specified and free variables written in
vector form as in the preceeding section, the weight con-
straint becomes:

— = ~—_——~3‘ = Auw1But + 5 Ay By + ATB (2B)

T
= [Buw3, Bus, - Buap, B Bes, B Bs, ..., B Ben]
When the weight constaint is appended to the expression

for induced drag with a Lagrange multiplier and we include

_only terms dependent on A, the quantity to be minimized
is:

2Ly, 2L,

1
De=—_ATTI4 il U
o t7 =T + T Ty (20)
setting VD' = 0:
L L b2y
— ot Lty W Y
O—TA+LTw+LTt+ 5 B (2D)
If we introduce:
AA=-[T"'B
then:
Loy Lipy  buv
e P Wi w7
A= PT+ FT + =AA (2E)

Where T,," and Ty" are defined in appendix L

Substitution into equation 2B eliminates » from 2E.
Now if b,* denotes the span at which the solution for
minimum induced drag with fixed span satisfies the weight
constraint then:

b B AA
A Lwg LtT"_,_(b__’”w{_L"_ ) (2F)
Lv Tt BTAA

substituting this expression into the expression (1C} for
induced drag provides an explicit relationship between drag
and span with fixed weight:

L2 (—‘i:; “E:;)Z

L, LE 2yl I*
vt - BTA

— Oy + —=0¢ o
bw2 bt2 btbw

(26)

qnD; =

Although this function, in many cases, has a minimum
with respect to b, with b, somewhat larger than bw*, in
some cases the function decreases monotonically with b,,.
Inspection of equation 2G also shows that D; approaches
zero as span becomes infinitely large. Part of this unusual
behavior reflects a limitation of the weight model which is
valid only for Lift distributions for which the local bending
moment does not change sign over the span of the surface.
However, cases which exhibit monotonic behavior with by,
would indeed offer lower drag for a fixed weight with nega-
tively loaded tips (provided that one could maintain this
load distribution in the critical flight condition). In such
cases, the optimum span is taken, for the purposes of this
analysis, as that span at which the tip loading becomes
negative.

Both the true minimum with respect to span and the
transition from positive to negative tip loading occur at

characteristic values of —£5. Thus for any value of g the
[ K

optimum span is given by the relation:

I B
L= = f(LL},
by 8 bwsopt ( _)

So if fs, S, or W are varied, the optimum span scales as:
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