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Abstract

The problem of determining airplane aerodynamic
model equations and estimating the associated
parameters from flight data taken at high angles
of attack is addressed. Two representations of
the aerodynamic function based on the polynomial
and spline representations are given. Then the
technique of building an adequate model using a
stepwise regression is presented with examples
demonstrating the construction of the model and
various approaches to model verification.

I. Introduction

As documented in numerous papers and reports,
the estimation of stability and control parameters
from flight data has become a standard procedure
for airplanes in flight conditions where the aero-
dynamic characteristics can be described in linear
terms. Only recently the estimation of airplane
parameters has been extended into pre- and post-
stall flight regimes(1),(2),(3). At high angles
of attack the aerodynamic forces and moments could
very well be nonlinear in the airplane response
and input variables. This introduces a problem
of determining how complex the aerodynamic model
equations should be. If too many parameters are
sought from a limited amount of data, a reduced
accuracy in evaluated parameters can be expected
or an attempt to identify all parameters might fail.
The inaccurate estimates are also obtained if an
incomplete model is postulated. Therefore, before
the set of parameters can be estimated an adequate
model structure must be determined.

The present paper addresses the problem of
determining a model structure and estimating the
associated parameters from flight data taken at
high angles of attack. Following this introduction,
the form of the aerodynamic model equations is
introduced. The relative merits of polynomial
versus spline representation of the aerodynamic
function are discussed. The section is completed
with a definition of a two dimensional spline for
application to the lateral motion of an airplane.
The next section presents the stepwise regression
technique and its practical application to flight
data. The technique of data partitioning is
presented and a discussion of the elements that
constitute an adequate model is given. The fourth
section contains two examples, involving longitu-
dinal and lateral models, in which the techniques
presented in previous sections are applied to
flight data. A section of concluding remarks

completes the paper.

II. Aerodynamic Model Equations

When an airplane is treated as a rigid body,
then the general form of equations of motion is
very well known. The only problem may be in form-
ulating adequate expressions for aerodynamic
forces and moments acting upon the airplane. The
mathematical form of aerodynamic model equations
was first introduced in 1911 by Bryan(4) -and it
has been commonly applied since. The aerodynamic
model equations can be expressed as

y(£) =8 + 8 x () + ... + 0 t) (1)

n- 1Xn-1

In this equation y(t) represents the resultant
coefficient of aerodynamic force or moment (the-

dependent variable), 61 to en_1 are the aerodynamic

parameters (stability and control derivatives), 60

is the value of any particular coefficient corre-
sponding to the initial steady-state (trim)

conditions, and X, to Xp-, are the airplane

response and control variables and their combina-
tions (the independent variables).

The polynomial representation of aerodynamic
forces and moments given by eq. (1) results from the
Taylor series expansion of these quantities around
the values of independent variables at trim condi-
tions. As shown in(z), the polynomial represen-
tation is a good approximation of an aerodynamic
model when determined from small amplitude flight
maneuvers around the initial trim values. However,
the polynomial representation may be inadequate
for approximating some aerodynamic nonlinearities
commonly encountered in large amplitude and high
angle-of-attack, a, maneuvers. In these maneuvers
the behavior of aerodynamic functions in one region
of o may be totally unrelated to their behavior in
another region. Due to the differentiable nature
of polynomials, a high order polynomial could be
required to represent such behavior. Unfortunately
the increase in the number of terms in the poly-
nomials often leads to large covariances on the
estimated coefficients and poor prediction
properties for the model.

To avoid these disadvantages spline functions
can be used for approximating aerodynamic force
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and moment. Splines do not suffer the handicaps
of polynomials because they are nonzerc only on
preselected intervals and because the low order
terms may approximate various nonlinearities
quite well. A polynomial spline of degree m
with continuous derivatives up to degree m-1
approximating a function f(x), x ¢ [a,b], can be
defined as
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The form based on spline functions can be
written as
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Eqns. (5) indicate that Cz(a) is approximated by

a "broken line" function (the first-degree spline)
whereas the remaining two functions are approxi-
mated by '"'staircase functions" (the zero-degree
splines). It can be seen by comparing equations
(4) and (5) with equation (3) that the spline
representation used preserves the concept of
stability and control derivatives while providing
a representation of the aerodynamic function (CZ
in this example) over an extended range of a.

Splines in the single variable o seem to be
sufficient for the approximation of all longitud-
inal coefficients, i.e. the longitudinal and
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vertical force coefficient CX and CZ’ and pitching
moment coefficient Cm’ even if the aerodynamic

coupling (for example due to sideslip angle B) may
be present. In the general lateral case, however,
the spline in two variables o and B must be con-
sidered in approximating the lateral force
coefficient Cy, and rolling and yawing moment

coefficients Cl and Cn' The yawing moment coeffi-

cient Cn(a, B, p, r, § 6r) taken as an example

a’
can be expressed as

C =C (a,B)s _o _n + C_ (a)pb/2V + C_ (a)rb/2V
n n 6a—6r~0 np n,
p=r=0
+ Cné (a)éa + Cnd (a)sr (6)
a r

where p and r are the rolling and yawing velocity,
and 5a and ar are the aileron and rudder deflection.

To introduce a spline in two variables a rec-
tangle a < x < b, ¢ <y <d in the (x,y) plane is
defined. ~Then the two ranges [a,b] and [c¢,d] are
subdivided by sets of knots Xy and Yi» where

a < X, < X X < b and ¢ < Y <Yy eee

5 "
< yl < d. The points (xi,yi) partition the
rectangle into rectangular panels. The resulting
two dimensional spline for the whole rectangle of
degree m for x and n for y with continuous
derivatives up to degree m-1 and n-1 can be
formulated as

n n r. s k m
SunXsy) = I I C. xy + I P(y)(x-x;),
r=0 s=0 i=1
L n ko2 m n
+ Q. (X)(y-y.), + L LD, . (x-x,) (y-y.)  (7)
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where Pi(y) and Qj(x) are polynomials of degrees

n and m respectively.

Using eq.(7) for x=o and y=8, and m=0 and n=1,
the function Cn(a,B) will be approximated as
k
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The remaining functions in (6) are then approxi-
mated by splines in o. Regardless of the form of
spline approximation, the general expression for
the aerodynamic force and moment coefficients
remain the same as indicated by eq. (1) which means
that y(t) is a linear function of aerodynamic
parameters.

o]
j ( O‘i)+ (8

), *

8 - BJ)‘F(G -

IIXI., Model Structure Determination

and Parameter Estimation

As indicated in the previous chapter, the
general form of the aerodynamic model equations is
given by eq. (1) for both types of approximation
mentioned. When these equations are postulated,
the determination of significant terms among the
candidates variables (determination of model
structure) and estimation of corresponding para-
meters (coefficients) can follow. The dependent



variables y(t) are obtained from the measured
linear and angular accelerations, angular rates
and airspeed. The independent variables x(t) are
obtained from the measurement of airplane response
variables and control surface deflections (B, o,
P, 4, T, (Sa: 66, 61.)'

When a sequence of N observations on both y

and x has been made at times s Ty, eees tN, and

the measured data denoted by y(i) and x(i), i=1,2,
..., N, then these data can be related by the
following set of N linear equations (regression
equations)

y(i) = eo + elxl(i) oo+ en~1 Xn-l(i)

+e(i) 9)

Because eq. (1) is only an approximation of the
actual aerodynamic relations, the right-hand side
of equation (9) includes an additional term e(i),
often referred to as the equation error. For N>n
and the given form of eq. (1), the unknown para-
meters can be estimated from the measurement by
the method of least squares.

If the model structure is not known, a_step-
wise regression technique described in (2) ana 3
can be applied. The stepwise regression is a
procedure which inserts independent variables into
the regression model, one at a time. The order of
insertion is determined by the partial correlation
coefficient which is a measure of the importance
of variables not yet in the regression equation.

At every step of the regression, the variables
incorporated into the model in previous stages and
a new variable entering the model are reexamined
using a statistical criterion. This provides a
judgment on the contribution made by each variable.
The process of selecting and checking variables
continues until no more variables will be admitted
to the equation and no more are rejected. The
complete computing scheme for the stepwise regres-
sion can be found in

An adequate model is considered as one which
sufficiently fits the data, facilitates the
successful estimation of unknown parameters, and
has good prediction capabilities. Experience with
many test runs showed that the model based only on
the statistical significance of individual para-
meters in the regression equation can include too
many terms thus degrading its prediction capa-
bility. It is, therefore, recommended in (2) that
several quantities be examined as possible criteria
for selection of an adequate model.

The regression analysis for model structure
determination and parameter estimation provides
an opportunity to use subsets of measured data
rather then the whole data set. These subsets can
be obtained by partitioning the data as a function
of one variable, e.g. a. The partitioned data in
o can give a better resolution of the structure
as a function of a, see (6) and (2), This
approach, however, must be used with care. For
some aerodynamic coefficients, especially the
longitudinal and vertical force, the partitioning
of the data into small intervals may introduce
limited variation of independent variables within
these intervals and thus a degradation in the
accuracy of estimated parameters.

The last step in model structure determination
and parameter estimation is model verification.
The parameter estimates must have realistic values
and should be compared with wind tunnel results
and theoretical predictions. Whenever possible
the least squares estimates should be compared
with the estimates using different techniques,
e.g. the maximum likelihood estimation method
presented in (7) and (8), Finally, the model
should be a good predictor within the region of
its assumed validity.

IV, Examples

In the following examples the technique for
model structure determination and parameter
estimation was applied to measured data of a
single-engine, low-wing research airplane. This
airplane had undergone certain wing leading edge
modifications which allowed the airplane to be
trimmed at angles of attack up to approximately
24 degrees. The data were available in the form
of input and response time histories sampled at
.05 sec. The measured data included basically
two different sets of maneuvers. For the first
set small amplitude longitudinal and lateral
maneuvers were excited by control surface deflec-
tions at different trimmed conditions within the
range 4 < o < 24 degrees. From these maneuvers
local models of aerodynamic coefficients were
determined. The second set of data consisted of
large amplitude longitudinal, and combined longitu-
dinal and lateral maneuvers with the o variation
between 0 and 30 degrees for each maneuver. The
large amplitude maneuvers were analyzed for
determining an extended model, i.e. a model valid
over an extended range of o. The combined
maneuvers were intended for determining global
model which would be valid within the whole
flight envelope.

In Figure 1 some of the results obtained from
small amplitude maneuvers are presented. In this
figure only the parameters corresponding to the
linear terms in eq.(3) are plotted against the
a-values corresponding to the trimmed conditions.
The resulting relationships may be considered as
an extended model for CZ over the range of o from

4 to 24 degrees. This approach of finding an
extended model is time consuming and may be
limited by the ability of an airplane to maintain
steady-state regimes around and beyond the stall.
Therefore in the second approach of obtaining an
extended model, a large amplitude longitudinal
maneuver was analyzed using the spline represen-
tation of the aerodynamic force and moment
coefficients. The spline terms in the approxima-
tion of CZ expressed by eq.(4) and (5) are

presented in Figure 1 for comparison with the
previous results. The 17 knots for splines were

postulated as a, = 6 deg., a, = 7 degey sues
@, = 22 deg.
The zero-degree spline for the function CZ (a)
q
represents rather coarse approximation. In the

next step this spline was therefore replaced by

the second-degree spline. The new approximation is
also plotted in Figure 1 as a dotted line. The
refinement in CZ (o) approximation did not change

q

the remaining splines significantly. In Figure 2
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the spline term of the Cz(a) function is compared
with the measurement of this relationship

in the quasi-steady flight represented by a slow
deceleration-acceleration maneuver. The quasi-
steady measurement resulted in a double-value
function Cz(a) for o between 14 to 22 degrees

depending on increasing or decreasing values of
a. This phenomenon can be caused by the aerody-
namic hysteresis. Because of the relatively
small differences in both branches of the Cz(a)

curve, the hysteresis was not modeled in eq.(4).

The development of an adequate model by the
stepwise regression is demonstrated in Figure 3
in which the measured values of the coefficient
CZ(a, q, 6e) are plotted aginst a for a large

amplitude longitudinal maneuver. In Figure 3a,
the line represents the model with one term in
addition to the constant CZ o Since o was

>

selected as that term, the model at this point is

c,=¢C + C, a. With this two-term-model
yA Z,0 Za

accounted for, the next most important term

selected by the algorithm is (o - a7)+ with

coefficient A,.. This model is represented by the
broken line in Figure 3b. Figure 3c reflects the
model after the entry of the next most important
term (o - ae): qc/2V with its coefficient B.

Even if the agreement between the results from
small amplitude maneuvers and large amplitude
maneuver are very good, the resulting model is
further verified by simulating the airplane
longitudinal responses, using the extended model
approximated by splines and the elevator deflec-
tion time history from a selected maneuver. In
Figure 4 the time histories of input and response
variables are presented and the response variables
V, a, and q are compared with those predicted by
the model. The comparison reveals the good pre-
diction capabilities of the model determined.

The lateral parameters C, = 3C£/a(pb/2V),

C_. and C_ = 3C_/3(xrb/2V) from twenty small
ng n n

amplitude maneuvers are plotted against o in
Figure 5. The three parameters selected exhibit
different degrees of accuracy of their estimates.

The estimates of Cz are very consistent, whereas

the values of the remaining two parameters are
scattered. The inaccuracy in Cn and Cn can be
B b

caused by a nonlinear variation of Cn with B and
Cn with o, and/or by a small excitation of the

B
airplane yawing motion. Also in Figure 5, the
parameters from small amplitude maneuvers are
compared with those obtained from three large
amplitude combined maneuvers excited over differ-
ent range of a. The agreement between the para-
mater values of Cz is very good thus confirming
the high accuracy of these estimates. The agree-
ment in other two parameters is much worse due
to the reasons mentioned above.

For obtaining more accurate estimates of lateral

parameters, the measurements from twelve large

amplitude maneuvers were joined together into one
set of data, The resulting ensemble of about
13,000 data points was then partitioned into 22
subsets according to the values of o. The model-
ing of the lateral parameters was conducted on one
degree subspaces of the 0 to 30 degree a-space.

As an example, the model for Cn was postulated as

5
Cn(a=&, B, p, r, 8_,8)=C_ 8+ I C

atx g i=1 "gi
(B-Bi)+ + Cn pb/2V + Cn rb/2V + Cn Ga
P T §
a
+ Cn Gr (10)
§
T
where
(B‘Bi)"' = 0; ]S[ < Bl
= B-Bi, B z_Si
= B+8is B i ‘Bi

and where a denotes the midpoint of an a-interval.
The knots of the spline in B were selected at 4, 8,
12, 16 and 20 degrees.

The estimates of the three parameters from
partitioned data are presented in Figure 6. The
new estimates of Cn and Cn are more consistent

B8 P
than those from individual maneuvers and are
closer to the results from small amplitude
maneuvers. The nonlinear variation of Cn(s) for

o = a and remaining lateral variables equal to
zero is demonstrated in Figure 7 for four different
values of a.

As with the longitudinal case, the final step
of the verification process is in the predictive
abilities of the model. The lateral equations of
motion with the aerodynamic model estimated from
the combined large maneuvers for a = 22.5 deg
were integrated using the initial conditions and
control time histories from a flight trimmed at
o = 20 deg. The control input for this maneuver
consisted of a doublet in aileron followed by a
doublet in rudder. The predicted time histories
are plotted against the actual flight data in
Figure 8.

V. Concluding Remarks

It has been shown that the original general
form of the aerodynamic force and moment coeffi-
cients as presented by Bryan to describe the
forces and moments associated with small depar-
tures from trimmed flight have a much more global
applicability. To estimate a model at high
angles of attack, two representations of the
Bryan form were given. In the first form, several
non-linear polynomial terms are added to the
linear model. In the second, the aerodynamic
coefficients are represented by splines with knots
in angle of attack (longitudinal), and angle of
attack and sideslip angle (lateral). The tech-
nique of building an adequate model using a
stepwise regression was presented with examples
demonstrating the construction of the model and
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various approaches to model verification. It is VI. References
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