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Abstract

This paper presents a finite difference
computation for transonic steady potential
flow around an airfoil. In transonic flow
changes along the direction of the flow
are larger than those transverse to it,
and the perturbation velocity component in
the direction normal to airfoil chord is
assumed to be much smaller than the un-
disturbed flow velocity; thus the
simplified velocity potential equation in
ref. (9) is used in the present paper. But
its premise and derivation are improved in
rigorousness here., The schemes of finite
difference proposed by Murman-Cole are
used by the author. The exact boundary
condition on the surface is applied at the
chord of airfoil and fitted into the
velocity potential difference equations.
The finite difference equations for the
velocity potential are solved by the line-
relaxation method. The convergence can be
significantly improved by chord-wise(x-
axis) line relaxation along the line from
leading edge to far field and y-wise line
relaxation for the remainder of the field.
The method described in the present paper
overcomes some of the difficulties en-
countered in small-perturbation theory and
improves the accuracy of pressure distri-
bution, especially at the nose of the air-
foil. In general, this algorithm is not
more costly than that of small-perturba-
tion theory in terms of storage require-
ments and computer time. Numerical
examples are included and the results
agree fairly well with those in references
(3), (6) and (7).

1. Introduction

The finite difference method for solv-
ing small-perturbation equation was pro-
posed by Murman-Cole(1). Because of
assumption of small-perturbation, the pre-
ssure distributions, especially at the
leading edge and in the neighbourhood of
it are not good enough., The absolute value
of the pressure coefficient on the upper
surface obtained by small-perturbation
theory is too small, especially the small-
perturbation theory does not reflect
adequately the rapid expansion around the
nose. So in some papers, for instance
refs. (4) & (5), the pressure distribution
obtained by small-perturbation computation
is corrected empirically. In these papers,
the absolute value of x~-direction disturb-
ed velocity obtained by small-perturbation
computation is multiplied by M, %/ v P (in
($)&(5),Mn» < 1, two indices p, q were
chosen to obtain the best agreement with
certain exact solutions), and consequently
the absolute value of pressure coefficient
is increased., Ref. {5) showed by numerical
experimentation that a refined mesh could

adequately handle leading edge singularity
. But numerical experimentation may not
always be available. The difficulties of
small-perturbation computation arise from
the singularity at the leading edge. The
difficulties may be avoided by ensuring
that the mesh or grid points of the
numerical calculation do not lie on the
leading edge, or even on points where the
slopes of the airfoil surface are large.
This may lead to the computation of an un-
realistic shape and it is possible that
some results obtained by a certain grid
are satisfactory, while some others are
not.

But small-perturbation finite difference
computation has the merit of being quite
economical in computer time. Ref. (9)
presented a more satisfactory simplified
perturbation potential equation but its
premise and derivation are improved in
rigorousness in the present paper., In
applying the above mentioned equation to
the numerical solution of flow problems,
ref. (2) proposes that the boundary con-
dition at every point on the airfoil
surface can be fitted into the equation
and in this way some of the difficulties
encountered in small perturbation theory
are overcome. But the resulting improve-
ment does not require substantial increase
in computer time, In order to accelerate
convergence, different line relaxation
algorithms are used at different places
of the flow field.

2. The Perturbation Velocity Potential
Equation

In the transonic case, the lateral
extent of the field is large and the
changes along the direction of free stream
flow are of main importance, Typical flow
fields in transonic case are illustrated in
the following figures,

Ma > |

449



At the leading edge and in the neighbourhood
of it the order of magnitude of the pertur-
bation velocity component in the chord di-
rection may be as large as Uw, i.e.‘?&/uml
=1, So we assume that

1) low angle of attack i.e.wmecl,

2) the perturbation velocity component
in the direction normal to the airfoil
chord is much smaller than the undisturbed
flow velocity i.e|v/Un|&1, while the
perturbation velocity component in the
chord wise direction u may not be so,

3) lou/axeulayl 3 Pv/avi~ Puleyl.

The equation of motion for steady zriction-
less f%ow is
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here u, ,ugz,us are the velocity components
in x, y, z directions respectively, a is
the local sound speed. If the x-axis lies
along the chord, then
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U3=N= ‘Pq,
here u, v, w are perturbation velocities,
and ¥ is the disturbed velocity potential.
a* may be obtained in terms of the pertur-
bation velocities from the energy equation
. Substituting in Eq. (1), dividing by a%
, we obtain
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where # is the ratio of specific heats. For
two-dimensional flow, under the above
assumptions, Eq. (2) becomes
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in which terms of second and higher order
in the coefficients of the derivatives of
the perturbation velocities have been
neglected. Note that under the condition
of weak shock the flow may be considered
irrotational,and that at the leading edge
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or in the neighbourhood of it u~-Ux, fulc
U. and everywhere else |u/Uxl<<1. So the
righthand side of Eq. (3) can be neglected
as compared with the lefthand side. Thus

Eq. (3) becomes
( \"Mt)‘P;‘,\ + L?yyac u')
where gtz 1F 2% e
s M:,M“ &
d ;= + 4 Hx P
an T =0+ g uao) O
From Eq. (4) we can see that as 17y |
221 and Mu~1, M*EMg A (T4 ) uMs /e » EQe (4)

becomes the small-perturbation equation.
On the other hand, as ¢, 2-U« (at the
leading edge and in the neighbourhood of
it), £ =-1/2 and M*=0, Eq. (4) becomes
taplace equation. So Eq. (4) is superior
to the small-perturbation equation. The
superiority of Eq. (4) lies in that:

The description of the flow field by
Eq. (4) is superior compared with that by
small-perturbation equation. At the blunt
leading edge Eq. (4) approximates to
Laplace equation. There the boundary con-
dition is compatible with Eq. (%), but
not with the small-perturbation equation,
So the main difficulty of small-perturba-
tion equation is overcome by Eq. (4).
However, same as for small-perturbation
equation, the axes of characteristic
cones are parallel to x-axis, and the
mixed schemes of finite difference are
used along x-direction only, so its
algorithm is not more costly than small-
perturbation equation in terms of storage
requirements and computer time,

3. The Boundary Condition on the Surface

The surface boundary condition at any
point is compatible with the potential
equation . In this paper the exact
boundary condition on the surface is
applied on the chord of airfoil and fitted
into the velocity potential difference
equations,

The boundary condition can be written
as, :
(@, + Usolosk ) Cos 01X )+ +Ua Sinel ) CosLn. P=o,
where n denotes the outward direction
normal to the surface. If cos(n,y)%0, then

Py( %, 10)= Uo cpsa(%z—" -1 ) + @y (%,29) ¢ c;:z ®)

If cos{n,y)=0, then
Px(x,0)==Uycose (7)

But the linearized small-perturbation
boundary condition is

y (8, £9) = U (et — o)
i.e, the %y is directly proportional to
dyyt /dx, Thus in the neighbourhood of
leading edge, an unrealistic supersonic
zone may exist. So the mesh or grid points
of numerical calculation must not lie on
the leading edge and the points where the
slopes of airfoil surface are too large in
the small-perturbation computation. But b
Eq. (4) and boundary condition (6) and (7
these difficulties have been overcome.

4, The Kutta Condition




The Kutta condition indicates the smooth
flow past the sharp trailing edge., It is
approximately satisfied by the following
equations:

B x>Xr, t0) = §p (K> Xr, -0) (8)

P> Xy, w0 )= FX>A7. )= 10)-Fxr 7€) ()
where x¢ denotes the x-coordinate of the
trailing edge.

The y~line relaxation is used behind
the airfoil. We fit Eg. (8), (9) into the
velocity potential difference equations
as follows: at y=+#0, y=0, y=-0 three y-~
direction mesh points ju, ja and jl are
arranged (see figure below;,
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at ja, qyis unknown and at ju, jl,y is
unknown,

5. The Boundary Condition for the
Far-field

According to the analysis of ref. (8),
for M«<1, only that part of the potential
which is associated with 1ift will be
used for the far-field representation for
lifting wings, since the other terms are
of higher order and may be neglected.
Thus we have
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For My>1, the disturbed potential for far-
field may be written as follows
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where M=4. . ~ Y4

I 1
iT denotes the x-direction station
of the mesh point at the trailing edge.

6., The Schemes of Finite Difference and
Relaxation Algorithm

The mixed schemes of finite difference
are used along x-direction only. When M<1
, central schemes are used
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where i, j denot the stations of the mesh
points in x and y-directions respectively.

The central schemes are used for the
partial derivatives along y-direction,
whatever M may be.

The boundary condition on the surface
is fitted into the difference equations

O (4R*),

+cmx2

of the perturbation velocity potential as
L suer e u

follows

B doga = 3 (950 ",?( o],
and €90, 50 =L Beqe - ﬂfé%‘—“iu 1
where ?; is cbmputed according to Eq. (6).
At cos(n,y)=0 Eq. (7) is fitted into the
difference equations of the perturbation
velocity potential in the following way:
%.5 is solved from Eq. (10) and Eq. (7),
to get € =F(%,;, %, , ), then substituted
in Eq. (11). -

On the airfoil surface (mainly at the
leading edge and in the neighbourhood of
it), in order to ensure the truncation
error to be of the first order accuracy
of step size when substituting differences
for partial derivatives in Eq. (4), scheme
of second order accuracy of step size for
Px must be used.

Along the chord-wise line from blunt
nose to far field, the salient feature of
flow due to perturbation is the decelera-
tion of the flow velocity, In order to
accelerate convergence x-line relaxation
algorithm is used along the line from
leading edge to far field and the y~line
relaxation is used for the remainder of
the field. For wing section NACA 0012,
angle of attacku =2°, M.=0.63, 17X13
meshes and |49 luux ={9: = ¢, =107 (n
denotes the iterative run, and both the
chord and U. are assumed to be unity), by
using the method described in the present
paper, the time of convergence is reduced
to about 10% of the time required when y-
line relaxation algorithm is used all over
the field. As for the other airfoils
computed in this paper |29 !lmx is reduced
to the order of magnitude 0.5X10°% after
iterative runsof 30~50, It can be seen
that the convergence is-accelerated
effectively by the method described in the
present paper.,

7. Numerical Examples

In the numerical examples in this paper
, both the undisturbed velocity and the
chord are assumed to be unity. The exact
Bernoulli formula is used in calculating
pressure coefficients on the surface
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where the partial derivatives are calculat-
ed by the central schemes,

Some airfoilsin ref., (3) and (7) were
calculated. The result of calculation of
airfoil with shock on it was compared with
experimental results in ref. (6).

The calculations show that denser
m§shes result in better accuracy (see Fig.
3).

The results of numerical examples are
shown in Figs. 1-7. It can be seen that
the accuracy of the method described in
the present paper is fairly satisfactory.

8. Concluding Remarks

An improved method of finite difference
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computation based on a simplified
potential equation is described in the
present paper. Small-perturbation equation
does not give a good fit at blunt nose of
the airfoil, but equation (4) does. The
potential equation and surface boundary
condition described in the present paper
overcome some of the difficulties enw
countered in small-perturbation theory and
improve the accuracy of pressure dis-
tribution calculations. Thus the method
described in the present paper is in the
author's opinion superior to small-pertur-
bation theory; moreover, the algorithm of
the method described in the present paper
is not more costly than that of the method
of small-perturbation theory in terms of
storage requirements and computer time.
But at the leading edge or in the neigh-
bourhood of it, at even not very large
angle of attack, the y-direction perturba-
tion velocity component may not be small
as compared with Us. It is the weakness
still existing when using Eq. (4).

In order to accelerate convergence, x-line
relaxation is used along the line from
leading edge to far field, and y-line
relaxation is used for the remainder of the
field. In this way the convergence is
effectively accelerated.

The numerical examples indicate that
the accuracy of the method described in
the present paper is fairly satisfactory
and denser meshes result in better accuracy
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