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Abstract

As part of the development of a program for super-
sonic flow around realistic aircraft configura-
tions a method is presented for the computation of
strictly supersonic flow around single wings or
two-wing configurations of arbitrary shape.

The method is based on the steady Buler equations
which are solved in a streanwise marching proce-
dure using a shock-capturing finite volume formu-
lation. As solution algorithm an explicit predic-
tor-corrector scheme of MacCormack type is used.

A variety of numerical applications of the method
is presented including canard configuration cases,
and comparisons are made with other theories and
test data confirming versatility and reliability
of the method.

1. Introduction

Various methods exist today for the computation of
three-dimensional steady supersonic flow, ranging
from panel methods to finite difference and charac-
teristic methods. The panel methods are based on
linear theory and are in many cases clearly in-
sufficient tools even when improved by higher-—
order corrections (!

Among the finite difference methods for supersonic
flow, the majority are based on the Euler equa-
tions to get rid of limitations on shock strength,
etc. However, for low supersonic Mach numbers where
the shock waves are relatively weak, the transonic
finite difference programs developed for the non-
linear potential equation can be a good alternative
after some modification to improve the convergence.
In this speed regime where subsonic regions still
exist, the marching Euler codes can not be used

and the time-dependent Euler codes are much more
time-consuming than the potential programs.

Also for higher supersonic speeds a non-linear po-—
tential method has proven very effective(3), provi-
ded the Mach number normal to all shock waves is
less than around 1.4.

However, for strictly supersonic flow, methods
based on the steady Euler equations seem to be the
best candidates for a flexible and cost-effective
tool for the aerodynamicist. The existing finite
difference methods of this type could be subdivided
in two groups depending on the treatment of shock
waves. For rather simple configurations (e.g. simi-
lar to a smoothed space shuttle) accurate solutions
to the steady Euler equations can be obtained using
a shock fitting technique where grid surfaces in
the mesh are forced to coincide with shock sur-
faces (4r2) | On the other hand, more generally app-
licable codes could be written based on shock cap-
turing technique, but to the cost of degraded re-
solution of the discontinuites of the flow. Methods
of the latter type(6_ ) have been applied to

various configurations, however still rather simple
compared to typical aircraft shapes.

Although codes based on the equations written in
characteristic coordinates can give very accurate
shock wave predictions, they lack the versatility
and computational efficie?8¥ of shock-capturing
finite difference methods‘'”’.

The present work is part of an effort to develop a
program for marching solution of the steady Euler
equations applicable to realistic aircraft confi-
gurations. Shock capturing technique was therefore
chosen and the computational grid should be adap-
table to wings and bodies of various shapes. As a
first step the computation of the flow around
three-dimensional wings without a body has been
studied and is presented here. The chosen grid is
simple and can be extended to suit also bodies.
The solution is advanced between planes normal to
the free stream direction using a predictor-correc-
tor scheme of the MacCormack type( for a finite
volume formulation of the steady Euler equations.
The maximum allowable step size is controlled by
the Courant-Friedrichs-Lewy stability criterion.

Because the grid is not aligned with the leading
or trailing edges, the program is very general and
can handle any type of wing planforms and combina-
tion of wings, provided the flow speed in the
marching direction is supersonic everywhere. Wings
with any degree of leading edge bluntness can thus
be handled as long as M_ sin“a>1, wherea is

the leading edge sweep angle. For lower Mach numbers
or sweep angles the method works as long as the
typical bluntness scale is only a minor fraction
of the mesh height. To get higher resolution in
these cases a small modification to local wedge-
like leading edges is very effective, and has only
a local influence on the pressure distribution.

The computational results presented here show good
agreement with linear theory for small disturbance
cases, and with non-linear methods and experiments.
The versatility of the method is illustrated by
computations for single wings and canard configu-
rations both with forward and backward swept wings.

2. Mathematical formulation

The equations expressing the conservation of mass
and momentum are, written in Cartesian coordinates
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where F, G and H are the column vectors
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Here u,v,w are the velocity components in the X,y
and z directions, and p and o are the pressure and
the density.

In steady flow the energy conservation equation
may be integrated to
LE.FM:}] (3)
y=1 0 2 o

where y is the specific heat ratio and is the
stagnation enthalpy, constant in the whole flow
field for uniform upstream flow.

For strictly supersonic flow the five equations(1)
and (3) constitute a hyperbolic system of first
order partial differential equations for the five
unknowns u,v,w,p and o , which is solved by march-
ing in the x-direction.

The finite volume formulation used for the numeri-
cal solution of Egs. (1) is based on the integral
form of these equations, obtained by applying
Gauss' theorem,

ffﬁ'- ds =0 (4)

where T is the second order tensor (F,G,H), dS is
the surface element vector, normal to the surface,
and the integral can be taken over any closed
surface in the flow. For instance, the surface can
be the six faces of a cell of arbitrary shape which
maps to a cube in_a transformed space spanned by
the coordinates x1, x2, x”, Denoting the surface
element vector of each face by asm, EJ. (4) ob—~
viously becomes

6
> S[ T-a8" = 0 (5)
m=1
Using standard tensor formalism this equation can
be retransformed into the differential form

IJ —L 2 g E.ghav = o 6)
V9 axd

where the volume integral is taken over the ghy i-
cal cell. \g is the Jacobian 3(x,y,z)/3(x ,x°,x7),
gl is the contravariant base vector grad x1,
dv is the physical volume element and repeated
indices are summed. The integrand in Eq. (6) is _
the expression for the divergence of the tensor T
in an arbitrary curvilinear system, as it should
be. The mathematical identity between Egs. (5) and
(6) should be recalled when comparing integral and
differential formulations on curvilinear grids, as
pointed out alsc by Rizzi et al(8).

3. Numerical procedures

Computational grid

Because the present wing program will be developed
further towards a general program applicable to a
variety of aircraft configurations, the grid system
chosen for the wing problem is simple and general.
The solution is advanced between planes normal to
the free stream direction, which coincides with

the x-axis. In these planes the vertical grid lines,
parallell to the z-axis, are uniformly distributed,
and the other grid lines adapt to the wing sur-
faces as illustrated in Fig. 1. The leading and
trailing edges of each wing always lie in a grid
surface, and in the present form the wing tips have
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to coincide with planes of constant y.
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Fig 1. Type of grid used for a wing configuration

The wings can have any type of thickness, camber
and twist distribution, and for each marching step
the length of which is determined by a stability
condition, the grid in the new y,z plane is gene-
rated and defines, together with the grid in the
previous plane, the cells used in the finite volume
algorithm,

The extension of the computational region in the
y and z directions is chosen for each case so that
unwanted signal reflections from the grid outer
surfaces are avoided.

Marching algorithm

The mass and momentum flow equations (5) are appli-
ed on an elementary volume with plane end surfaces
normal to the x-axis and with the nodes in the
middle of these, Fig. 2. For generality the 4 side
surfaces are assumed non-planar although in the
present program two of them are plane and parallell
(y=constant). Denoting the surface vectors of the

4 side surfaces as indicated in Fig. 2, Egq. (5) can
be discretized according t? the following two-step
scheme of MacCormack type( 0), where, for clarity,
the bars on F and T have been omitted,
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Fig 2. The computational cell

The subscripts j and k are cell indices in the y
and z directions respectively, while r and s are
chosen equal to 1 or 0, The latter indices control
the 4 possible asymmetry combinations in the
MacCormack scheme, and are free to choice by the
program runner. The areas of the two end surfaces
are S1x and Syx, lying in the x-planes indicated
by the superscripts n and n+1, and each surface
vector of the cell side surfaces has the area pro-
jections in the x,y and z directions as components.

As follows from applying Eq. (6) to a uniform grid
in the x*-space and from the identity between Eq.
(5) and Egq. (6), the difference scheme (7) is sec-
ond order accurate., This holds for an arbitrary
curvilinear grid that maps smoothly to a uniform
grid in the transformed space, provided the nodes
on the physical elementary volumes map to the mid-
points of the corresponding surfaces of the cubes
in the transformed space.

The application of the predictor-corrector scheme
(7) yields the F field at level nt1, from which
the five physical quantities and G and H are ob-
tained by combining the definition of F in Eq. (2)
and the energy equation (3). Denoting the 4 compo-
nents of F by F; the relations are
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Viscosity

Writing the modified equation for the MacCormack
scheme applied to a simple scalar equation, shows
that the leading extra terms (for Courant numbers
< 1) are a second ordeﬁ6dispersive and a third
order dissipative term ). This indicates the pos—
sible need for an extra dissipative term to damp
oscillations. Thus, a case with pressure fluctua~
tions close to a leading edge led to the introduc-
tion of an artificial viscosity term in the march-
ing algorithm as an option. It is applied only in
the corrector step, Eq. (7b), to which the follo-
wing term is added on the right hand side

AXAY - N n n n _,.n
" 700 F1, k051, k7F g ke P k-7 )
where u is a viscosity coefficient and A4x and Ay
are the cell dimensions in the x and y directions.

If a uniform quadratic grid is thought of in the
v,z plane the modified algorithm solves the equa-~
tion

Values of u found to be effective without too much
smoothing of shock waves were of the order 0,05 L/
AY, with L as a typical spanwise dimension, say

half the wing span.

Most cases were run with good results keeping u=0.

Stability

The marching step size has to be smaller than a
limit set by the Courant-Friedrich-Lewy criterion.
Applying the formulation that the finite difference
domain of influence at least must include the con-
tinuum domain of influence yields the following two
conditions on #4x:

AX £ (u2+w2—c2)Ay/{ky(u2+w2—c2)—uv—vwkZ
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where q2=u2+v2+w2 and ¢ is the local speed of sound.

In deriving these conditions the cell is approxi~
mated by a parallellepiped with rectangular cross
section of measure Ay times Az and with a slope
relative to the x-axis defined by the vector (1,

kg Kg)s

At present a simplified version of Egs.(9) is used
in the program, obtained by setting w and k, equal
to zero in the first equation and v and k,, equal to
zero in the second, corresponding to a twOo-dimen~
sional stability analysis in the x,y and x,zplanes.
Recalling that ky is equal to zero in the present
grid the actual expressions used are

(u2—c2)Ay

=AX
22,172 P,y

bxs (10a)
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Fach new marching step is computed from the rela-
tion

Ax = C min{Ax

m,y’' " m,z an

where the minimum for the whole of the latest y,z
plane is sought for. A suitable value for the
constant C was found to be about 0.8.

Boundary conditions

Wing surface

At a cell side coinciding with a wing surface the
no-flow condition implies that_the corresponding
terms in Egs. (7) of the type T-S, are reduced to

0

2zx
2y

Szz

Py (12)

where py; is the wing surface pressure and the sur-
face area vector S; is
S, =

[Sgxr Szyr Szl (13)

Thus pé] and §Wn+1 are needed in the predictor and

corrector respectively for a cell adjacent to a
wing surface. Because there are no nodes on the
wing surface, these pressure values have to be

calculated from the flow field variables at the
nodes half a cell height from the surface.

Here a characteristics relation is used for this
calculation. A general three-dimensional compati-
bility relation in a plane containing the velocity
vector may be written
3p pu'2 3
3t 3E

oc
B

w' av'
GT) + rrule 0 (14)
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where £' and & are the two bicharacteristics in
the plane, n denotes a direction normal to theplane,
u' and w' are any two orthogonal velocity components
in the plane, v' is the velocity component in the
normal direction n_and_ thus equal to zero in the
plane, and =[(u'2+W'2)/c2—1]1/2. The two bi-
characteristic directions have the slopes

u'w'tsc2
2 2
u'“-c
relative to the u' direction.

For the present purpose an x,z plane through the
relevant nodes is considered, see Fig. 3a. If, for
simplicity, the normal derivative term of Eg. (14)
is neglected, a finite difference relation along
the & characteristic may be written as

ou'

Py =Py * 8 (15)

where subscripts W and A refer to the corresponding
points in Fig. 3a, and the u' direction is chosen
parallell to the surface slope in the wall point W.
The location of point A and the physical state there
can be determined in an iterative sequence utiliz-
ing the points N and N+1 and the slope of the &7
characteristic.

\
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Bicharacteristics for compatibility
relation close to wing surface

a, §N+1 plane for finite difference
formulation of compatibility relation

It was found, however, that improved results, in

the form of clearly reduced pressure oscillations
after abrupt changes in contour slope, were obtain-
ed if the state at point N+1 was used in Eg. (15)
instead of point A. This is equivalent to the
assumption that the £t characteristics are simple
waves, implying the same physical state at point B
and M1, and thus replacing the point A with the
point B along the same characteristic.

The latter version of boundary condition was chosen
for the present §rogram and is in a sense similar
to the Abbett (12) method applied to grids with
nodes on the wall.

The actual difference relation used is written for
the plane defined by the surface unit normal @i in
the wall point and the velocity vector g in the
point N+1, see Fig. 3b. With the u' direction as
the surface tangent in the wall point the relation
obtained from Eq. (14) without its third term is

2 2
og cos” A0

Py = Pyer ~ g £980 g (18)

where the difference in flow direction between the
points N+1 and W, 46, is obtained from

A

Gygpq R =1y | 8En 20 (7

Ieading and trailing edge regions

In the leading and trailing edge regions of a wing
there are cells the bottom or top surfaces of which
contain both wing surface and area open to flow. The
corresponding terms in Eys. (7) of the form T+S,
then are divided in a flow part and a wing surface
part indicated by subscripts F and W respectively,

resulting in
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The area vector éz is thus replaced by the two area
vectors
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For the flow variables mean values are used between
the node values above and below the cell surface,
and also a spanwise interpolation is made depending
on the amount of sweep of the wing edge. When com-
puting the pressure py at the wing surface part,
the procedure based on a compatibility relation,
presented above, is used with some modifications.
For example, the local surface normal is taken at
the center of gravity of the wing area part.

Outer surfaces

A computational box is determined before running
the program by prescribing the top and bottom
values of z and the maximum spanwise coordinate
y. The boundary conditions applied at these sur-
faces imply zero normal gradients of all physical
variables.

The cells that are processed at each marching step
normally do not cover the whole computational area
until after a certain x distance, because the pro-
gram only considers those cells that fall within
the wing-generated Mach cones plus some margin.

At the plane y=0 image nodes are used on the nega-
tive y side with symmetrically assigned values of
the pressure and density and the velocity vector.

4. Computational results

A great number of very different configurations
have been run with the present program.

First some two—dimensional calculations are pre-
sented to get clear and simple comparisons with
exact and linear theory results. Thus Fig. 4 shows
the computed pressure distribution for a 15 % thick
double wedge at M_ =2.0. The agreement with exact
theory is perfect, and the pressure discontinui-
ties are captured quite well.

In Fig. 5 computed wave drag values are presented
for two series of double wedges at M_=2.0. The
drag values for the 1 % thick double wedge is seen
to agree very well with linear theory, while the
results for the 15 % thick double wedge illustrate
the non-linear thickness effects on drag.

Most wave drag calculations for three-dimensional
configurations are based on linear theories. To
get a comparison of drag results from the present
method with an established linear drag curve, a
swept wing with a parabolic arc profile was calcu-
lated. Fig. 6 presents the thickness-scaled wave
drag as a function of Mach number, where the linear

theory curve (13) has the typical peak value for
sonic leading and trailing edges at M_ =1.8. To get
a good comparison with linear theory, “calculations
were made with the present method for a 1 % thick
version of the wing with a grid having ay and az
equal to 2.5 3%of the root chord. The resulting
drag values are seen to be in good agreement with
linear theory for supersonic leading edge cases,
but the sonic leading edge value is lower and the
results for subsonic leading edge cases are higher
than linear theory. The difference in peak value
is due partly to insufficient resolution in the
grid of the large pressure gradients close to the
leading edge, but also to the fact that linear
theory is not valid locally at the leading edge in
case this is sonic. It gives a pressure that tends
to infinity with the inverse square root of the
distance to the leading edge. For a subsonic lead-
ing edge case the pressure singularity in linear
theory is weaker (logarithmic in the distance to
the leading edge), but for Mach numbers approaching
1 the relative importance of the neglected non-
linear terms increase.

Computations made with the same grid for a 10 %
thick version of the wing are seen to give almost
no drag peak when passing from subsonic to super-
sonic leading edge.

Some linear theory pressure distributions are pre-
sented in Fig. 7 for a single-wedge delta(14), illu-
strating the pressure singularities at the leading
edge for subsonic and sonic leading edges. The
present method results for a wedge slope of 0.5 %
show good agreement with the linear theory.

To illustrate a simple lifting case Fig. 8 shows
two spanwise pressure distributions for a thin
planar swept wing at Mach number 1.5. The angle of
attack, 3°, is sufficiently high to give a weak
asymmetry in the upper and lower side pressure
curves, and also a small suction peak at the tip
due to crossflow around it.

A case with strong non-linear effects can be ob-
tained when the flow is transonic normal to the
leading edge for a lifting configuration. In Fig.

9 a spanwise pregsure distribution for such a case
is shown. The 70° swept delta has a NACA 65A003
profile, and for M, =2.0 and a=6° a cross-flow
shock wave stands close to the leading edge. This
case has been calculated by Grossman and Siclari
using their non-linear potential method, which has

a grid with very high resolution in the leading

edge region. The present method, which has an essen-
tially uniform grid, is seen to give results in
close agreement with the cited method except for a
small suction peak that is not captured by the pres-
ent grid.

The oscillations behind the shock are typical for
Euler equation solutions with the MacCormack scheme,
and they can be effectively suppressed by giving

the viscosity coefficient p a suitably high value.
In the present case a p value of around 3 was suffi-
cient to damp out the wiggles, but u=1 was chosen

in the calculation shown here to avoid the accom-
panying shock smearing effects.

The asymmetry indices r and s in Egs. (7) are also
known to have some effect on oscillations in con-
nection with shock waves. The r value of 1 used
here (s=0) gave slightly weaker oscillations than
r=0, which seems to be in accordance with previous
observations (6),
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A comparison with wind tunnel results(15) is shown
in Fig. 10 where pressure distributions are given
for a 70° swept delta with a 6 % thlck circular
arc airfoil at My =1.465 and o= 2 . The agreement
between theory and experiment is quite good apart
from the outboard suction peak in the experimental
pressure, which probably is due to a leading edge
vortex.

To illustrate the flexibility of the present method
some results for a canard configuration similar to
that of Saab 37 Viggen are given in the next two
figures. The canard is located above the main wing
plane and is set at a positive angle of incidence
relative to it. In Fig. 11 pressure dlstrlbutlons
are shown for the case M_ =1.4, o= 2, calculated
with the present method and w1th a transonic small
perturbation potential method (TSP) modified to
work also for supersonic free stream flow(16), For
the present method calculations the inner part of
the main wing was modified smoothly over the first
15 % of the local chord to get a wedge-like air-
foil nose instead of the original blunt nose. This
was done to avoid getting too many subsonic points
in the calculations at this relatively low Mach
number. The program does not stop for a subsonic
point (it is skipped over in the marching step cal-
culation), but the result will be more or less in-
fluenced locally. In the relatively coarse grid
used here to match the potential solution (ay and
4z=3.8 % of the main wing root chord), 1 subsonic
point was obtained for the modified geometry and
12 for the original.

Disregarding the minor difference in the geometry
used by the two methods, and the fact that one of
the conditions for the validity of the TSP equa-
tion is that the Mach number is close to 1.0, the
results may be compared and are seen to agree quite
well. A characteristic difference seems to be a
slight suction peak in the Euler method results
close to the leading edge, which is not seen in

the potential method pressures.

A run made with the same grid but at M =2.0, o= *
and for the unmodified geometry, is presented in
Fig. 12.

Finally, some results are given for a canard con-
figuration with a forward swept wing, designedonly
as a computational test object. The airfoil thick-
ness distribution for both wings is a NACA 65A004
with a smoothly modified nose over the first 15 %
of the chord to a wedge with half angle 8° at the
nose. A NACA mean line with a=0.5 was used for
cambering the airfoils.

In Figs. 13 and 14 pressure distributions for the
case M_ =1.8, a=2° are shown for both the canard-
wing and wing alone configuration. The canard is
seen to slightly decrease the loading on the inner
part of the wing and increase it just outside the
canard tip.

Figs. 15a-c illustrate the computed pressure fields
in three planes normal to the flow for the case in
Fig. 13. One detail seen in these patterns are the
two distinct pressure maximas above and below the
wing in Fig. 15c. They are the result of interfer-
ence between the two wave surfaces generated by
the leading edge parts inside and outside of the
corner.

The mesh used in all calculations for the forward
swept wing had a 4y=1.78 % of the main wing root
chord and a az varying slightly around the same
value. The added viscosity term was kept small by
using u=1.

As example of running times the case in Fig. 13
required 25.7 CPU minutes on a VAX 11/780 using
around 0.70¢10° grid points (maximum 11520 points
were used in each y,z plane and 125 marching steps
were required). For the same number of grid points
a fully converged solution of the time-dependent
Euler equations would have required orders of mag-
nitude more computer time ( ~100-1000 times more),
illustrating the effectiveness of the marching
technique in strictly supersonic flow.

5. Concluding remarks

By using a simple, almost uniform grid that adapts
to the wing surfaces but not to the wing planform
in the form of aligning or refinement close to the
wing edges, a very flexible program has been ob-
tained for the computation of strictly supersonic
flow around arbitrary wing configurations. The
somewhat decreased resolution of flow details close
to leading edges compared to more specialized and
restricted methods has only local effect. In fact,
the very high cost-effectiveness of marching meth-
ods compared to iterative methods for the Euler
equations favours the use of very fine grids giving
a high resolution in most areas. Grid stretching

in the y and z directions in the outer part of the
computational region also simplifies the econimiz-
ing of grid points.

The next step along the development line started

by the present method is a marching program for
bodies of arbitrary shape. That work is just recent-
ly completed yielding very good results. The pres-—
ent wing program will next be developed to suit

the body program grid in order to have a general
wing-body code for real aircraft configurations.
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