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Abstract

In the present theoretical investigations
Pitot-inlets are studied in subsonic and super-
sonic flow. Several theoretical methods have been
developed. They have in common that the full time—
dependent Euler equations written in integral-con—
servation form are solved applying a finite-volume
approach. Two—dimensional, axisymmetric and three-
dimensional configurations are treated. For sub-—
sonic flow the computational grids are stationary,
however, for supersonic free stream the grids are
time-dependent and aligned to the bow-shock shead
of the inlet. Several space and time discretiza-
tion techniques have been applied and analyzed in
detail, e.g. MacCormack and Runge-Kutta-time
stepping. Some results are shown and compared to
other theoretical results and to experimental
data.

L. Introduction

The efficiency of modern aircrafts depends to
a large extend on the engine characteristics,
which are essentially influenced by the inlet per—
formance. The purpose of the inlet is for a broad
spectrum of flight conditions to recompress the
free stream to a prescribed pressure in the com-
pressor entrance plan. An optimal inlet should
yield maximum pressure recovery, minimum drag-in-
cluding spillage drag—~, and minimum flow distor-
tion in the compressor entrance plane for the de-
sign situation. In addition, in "off-design'-
maneuvers the air-intake system should provide
good pressure recovery and flow quality. The so-
called Pitot-inlets show some favourable proper-—
ties, also with respect to fabrication and opera-
tion. Therefore, this type of inlets has been cho-
sen for detailed numerical and experimental in-
vestigations. The computational methods presented
have been developed within the past five years
with the definite purpose to support the inlet de~
signer in his difficult work and to avoid serious
mistakes as early as possible. The theoretical
investigations have started with the development
of computational methods for two-dimensional or
axisymmetric supersonic inlets. After some ex-
periences these methods have been extended to
three-dimensional cases. At present, the related
work for inviscid three-dimensional subsonic air-
intakes has been completed. The time-dependent
Euler equations written in integral—conservation
form are solved by the finite-volume approach,
thus avoiding special treatment of flow discon-—
tinuities (e.g. shocks) and allowing computational
grids which need not be differentiable. Since the
studies concentrate on the detailed properties of

* The investigations have been partially supported
by the German Ministry of Defence under RiiFol
contracts.
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the inlet-1ip region, only isolated inlets have
been treated in the past, i.e. the presence of
fuselage, splitter plate etc. is neglected or
sometimes replaced by an appropriate symmetry
condition. Related examples will be presented be-
low. Ongoing efforts include the actual fuselage
shape and wing.

1I. Computational domain and mesh generation

The boundary of the computational domain has
to be chosen in such a manner that accurate bound-
ary conditions can be formulated on each segment
of the boundary. Naturally, the body surface and
the exit cross-section of the inlet channel are
parts of the boundary. For special cases (e.g.
axisymmetric flow) the symmetry axis of the
flow is a further part of the boundary. The com-
putational domain is closed by the far-field
boundary, its location depending fundamentally
on the free-stream condition:

Subsonic free stream

The far-field boundary has to be located far
away from the body. The computational mesh is
constructed on the basis of the complex Maxwell-
transformation (1)

(1)

a W
= (wtit+e")

= (2)

u + iv

with z = x + iy, w

The curves u const and v const are shown
in Fig. 1 for the case of an inlet with zero
thickness. The three-dimensional mesh is composed
by a set of two-dimensional grids of Maxwell
type. The two-dimensional grid generation is per-—
formed as follows:

Discretize the body contour, the exit section
and the x—axis in an appropriate manner and com-
pute the related values w by an iterative inver-
sion of equ. (1); discretize u and v (stretching)
in the intervalls u {(body) to u (axis) and v
(body) to v (axis) and get thus the transformed
grid u(i,j), v(i,j); the grid points are counted
by indices i,] forming the integer space. Improve
the transformed grid by solving a set of geometric
Poisson-equations in the transformed plane w and
transform back to the physical plane z using
equ. (1). A sample of the final grid is depicted
in Fig. 2. This provides a "high-quality" compu-
tational grid for inlet-flow calculations.

Remark: This method for grid generation seems
to be new and can analogously be applied to other
configurations (e.g. blunt-body flow ete.). For
clarity it is noted that this procedure has noth-
ing in common with conformal mapping.



Supersonic free stream

The far-field boundary has to enclose the
subsonic flow region. It is build up by the inner
part of the bow-shock surface (inflow boundary)
and a plane downstream of the outer subsonic
flow region . The mesh is again composed by a
series of sectional grids which are constructed
by interpolation of a family of ray (i = const)
from the body surface to the shock and - for the
channel region - from the body to the axis
(Fig. 3). Since the mesh is shock-aligned, it is
changed with time according to the travelling of
the shock wave. The spatial location of the rays
is changed only for those rays which hit the x-
axis. At the beginning of a flow computation some
skill is necessary to construct an initial grid
which will enclose the subsonic flow for all times.

III. Basic equations in integral—-conservation form

The Euler equations inecluding the energy
equation may be written in brief notation for a
mass-attached control volume V(t) (see e.g.
Ref. 3):

>

Ji—ﬁdV+JﬁdS=O (3)
s(t)
6 is a formal vector and i a formal flux

tensor. The finite-volume method works on the
basis of a cartesian coordinate system:

>

S tor: ei_+yei_+zed
pace vector r o= xei 4y 1y zei, (L)
->

v it tor: = uei_+vei_+wei
elocity vector g = uitv 1y wei (5)

Then the formal vector 6 and the formal flux

tensor H becone

>
p peq
-+ .
pu pusq+p+l
b'e
> = > .
U= oV |, H= pveq+pel (6)
> v
pw pwegtpel
Z
>
e (e+p)eq

Nomenclature: t = time, V = volume, S = sur-
face of V, dV = element of V, dS = outer area vec-—
tor of surface element dS, p = density, p = pres-—
sure, e = total energy per volume unit.

The set of basic equations is completed by an
equation of state (ideal gas):

p=(y=1) + [e = 2o« (uZv2ei?)] (M

with vy = ratio of specific heats.

This system of equations holds also for con-—
trol volumes fixed in space.

For control volumes neither mass—attached nor

fixed in space (i.e. general time-dependent volu-
mes) equ. {(3) has to be replaced by

4 T av + F a3 - Tex a8 =0 (8)
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Here, X is the shift-velocity vector of dS.
These general equations are simply reduced to
two-dimensional cases, however, the axisymmetric
formulation shows some differences{(4):

d > > > > > <>
Fre U av + Ue(q-1) dsS + J P ds +
v(t) s(t) s(t)
+ j Eav=o0 (9)
v(t)
with
o 0 p
Jd=|pu |, B = p-ix , E=]pu? (10)
A pei, puv,
(v, = radial component of E, ir = pradial unit
vector).

The flow computations for supersonic inlets
have been performed taking advantage of the
reasonable assumption of total enthalpy hmp being
constant with time(4). The energy equation is
omitted and the pressure is calculated from

p=Xl.,. [hT—%(u2+v2+w2)] (11)

Y

and .= ;%T po/pO + %—(ué+v§+wé) (12)
Index o indicates free-stream conditions. The
assumption hp = const is justified for the pre-
sent class of flow problems in which only the
steady state is of interest ignoring the transi-
torial behaviour. The computational expense is
reduced remarkably, however, during the studies

of three-dimensional supersonic inlet flows one
disadvantage of the assumption hgp = const became
apparent: The compatibility relations (charac-
teristic relations), which can be used to calcu~
late the bow-shock velocity, switch over to a very
complicated form() (in contrast to the related
form without hyp = const which remains very simple,
even in the three-dimensional case).

IV. Initial— and boundary conditions

Initial conditions

Subsonic free stream:

The computation is started from scratch, i.e.
in the whole computational domain the undisturbed
flow quantities are prescribed.

Supersonic free strean'?)

For brevity the two-dimensional case is
outlined. First step: Calculate the flow quanti-
ties behind the bow-shock (cblique stationary
shock) for each cell of the shock surface. Second
step: On the rays i = const between shock sur-—
face and body surface the density p is set equal
to the density pg(i) behind the shock; the velo-
city is interpolated linearly in j on the rays
i = const whereby the condition of zero normal
velocity on the wall is incorporated. The pressure
field is calculsted from the density- and velocity
fields using the condition of constant total



enthalpy, eq. (11). Third step (chamnel region):
at the exit plane parallel outflow is assumed

(v =0, w=0); the pressure is interpolated line-
arly in i between shock and channel exit. The den—
sity is computed from the pressure field assuming
isentropy. Finally the velocity field is approxi-
mated taking into account the condition hp = const
and again the condition of zero normsal velocity

at the wall.

Boundary conditions

Improper treatment of boundary conditions
can lead to serious errors and perhaps instabili-
ty(6). The fundamental idea how to formulate pro-
perly posed boundary conditions is based on the
analysis of disturbance propagations at the boun-
daries, i.e. on the distinction between incoming
and outgoing characteristies. For instance, nume-
rical "error waves" should be absorbed at a bound—
ary or they should travel out of the computational
domain instead of being reflected. These princip—
les are strictly taken into account in the numeri-
cal methods for inlet~flow analysis, see referen-
ces (2), (4), (6), (7). Instesd of going into
details we restrict ourselves on two special
points:

Boundary conditions at channel exit:

All calculations have been carried out for
subsonic flow condition at the channel exit. Pa-
rallel stream is assumed and the static pressure
Pex 1s prescribed. The flow quantities are then
calculated by solving locall¥ the basic flow egqua-—
tions in conservation form(2).

Bow=-shock veZocity(2)’(7):

In principal there are two possibilities to

calculate the velocities of the bow-shock panels:

(a) 8)

(b) extrapolation of appropriate flow quantities
(e.g. pressure) from inside of the computational
domain to the rear side of the shock surface and
local application of the usual shock relations.

implementation of characteristic relations(

For two-dimensional or axisymmetric cases both
versions have been applied and the results were
nearly identical. For three-dimensional configura-
tions the characteristic relations become very
complicated due to the condition hp = const.
In principle, it is evident how to incorporate
these relations to calculate the shock velocity,
however, some studies have shown that the version
(a) would become very expensive (note that one
has to work in four-dimensional space). Therefore
version (b) has been chosen, and the related re-
sults were quite satisfactory.

V. Numerical solution of the basic eguations

During the development of the computatiocnal
methods for inlet-flows continuous efforts have
been spent on improvement of the algorithms with
respect to accuracy, convergence rate and stabili-
ty limits. Instead of describing this evolution by
the related finite-difference equations it seems
preferable to characterize verbally the stages of
numerical algorithms used. Details may be found in
the references cited. In chronological sequence
these stages are:
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(a) Supersonic two-dimensional or axisymmetric

inlet flow

Method: explicit time-splitted predictor-cor-
rector of MacCormack(9), This well-known method
has been applied formerly for instance by Rizzi
and Inouye(3) for blunt~body calculations.

(b)
1. Method: no success with method (a)

Supersonic three-dimensional inlet flow

2. Method: explicit predictor-corrector without
time-splitting (i.e. without subsequent sweeps
in the coordinate directions i,j,k) after
MacCormack(9) . The method worked satisfactori-
1y for the present case, but with poor conver-
gence rate.

. Method: explicit three-stage two—level Runge-
Kutta time-stepping scheme(6), The method
uses central approximations to compute the
fluxes at the volume faces (in contrast to
MacCormack's schemes which use a sequence of
one-sided approximations). The three-stage
method is more accurate in time and faster
than method (b.2), since it is stable for
CFL < 2 (CFL = Courant/Friedrich/Lewy number).
In addition numerical dissipation is added by
a Shuman-type filter which preferably removes
high-frequency numerical disturbances.

(¢) Subsonic three-dimensional inlet flow

Method: explicit four-stage two-level Runge-Kutta
local time-stepping with filtering and enthalpy
forcing term(6), further improvement of method
(b.3). Since the mesh does not change with time,
the computational expenditure is reduced remark-
ably in comparison with case (b).

VI. Results for supersonic free stream

Axisymmetric configurations

Some of the results have already been pub-
lished(4). For the NACA-inlet IC the computed
wall pressure is shown in Fig. L and is compared
with a numerical solution of the full potential
equation written in non-conservative form In
spite of the relatively coarse grid used for the
present method the results compare well with both
the %rediction of Arlinger(lo) and the experi-
ment 11). For the same inlet the bow-shock dis—
tance vs. mass—flow ratio 1s presented in
Fig. 5. The predicted distances are slightly
smaller than the measured ones and the discrepan-
cy decreases with increasing mass-flow ratio.

For additional results see references (2) and (k).

Three-dimensional kidney-shaped inlet

A front view of the inlet EMT(Z) is shown in
Fig. 6 together with the sections A through G,
where pressure measurements have been perform-
ed(12),(13) | The numbers 1 through 17 indicate
the sections k of the three-dimensional computa-—
tional mesh. Since AG is a symmetry plane most of
the calculations have been carried out for a "half
inlet" imposing symmetry conditions along AG. For
a free—steam Mach number of Mo 1.46, incidence
a = 0 and pressure ratio Pex/po = 2.30 the nume-
rical results (wall pressure, computational mesh,
sonic line) are shown in Fig. 7. Fig. 8 presents
the cross—-flow in the fictitious channel-exit
plane (internal boundary). A reasonable comparison
with experimental results(12),(13) 3g only pos-—




sible in the lower range of the inlet, since the
theoretical prediction neglects the fuselage (iso-
lated inlet body). The theoretical and experimen-—
tal pressure distributions are compared for the
side section D (k = 5) (Fig. 9.a) and for the low—
est lip section G (k = 9) (Fig. 9.b). There are
only minor differences between theory and experi~
ment which may be ascribed to the assumption "iso-
lated inlet".

VII. Results for a subsonic three—dimensional
inlet

For the inlet depicted in Fig. 10 a series of
flow computations has been performed. Some results
for two cases are discussed below:

- = n° —
(a) M = 0.80, a = 0, pex/pO = 1.3270,

ey, = 0.60220
(v) M, =0.80, a = 6°, Po,/P, = 1.3270,
ey, = 0.66700

Herg ey, is the mass-flow ratio with respect
to the high-light ares AHL: €yp, = AO/AHL. Note,
the egp~values are not prescribed but are computed
from the final result of the flow calculation.
Again, an isolated inlet is assumed and the fuse-
lage respectively the splitter-plate is replaced
by a symmetry condition. A part of the grid in
this symmetry plane is shown in Fig. 10. The
three-dimensional grid is composed by 17 two-di-
mensional grids of Maxwell-type; wall pressures
are measured in 5 sections, see Fig. 171.

Experimental cases for comparison with (a)
and (b):

= ° -
0.75, a = 07, yr, = 0.606

60

(o) M

i}
it

(B) M

0.80, «
o

€yp, = 0.652

The computational results (e.g. wall pressure)
are stored in the volume centers; therefore a di-
rect comparison is possible only for

- numerical results for k = 6 with experiments
at station 2,

- numerical results for k = 12 with experiment
at station L.

A similar comparison at the remaining pressure-
hole sections would need a three-dimensional inter-
polation of the theoretical values; that is a dif-
ficult task for the present geometry and has not
been done here. Hence, the comparison with experi-—
mental values at stations 1, 3 and 5 is more or
less of qualitative nature. An additional diffi-
culty stems from slight differences in the values
for MO and EHL'

Case {a) is compared to experiment (a) in
Fig. 12 and (b) to (a) in Fig. 13.

Discussion

In all cases the experimental pressure dis-—
tributions are predicted fairly well in the chan-
nel region and near the inlet nose. This fact is
not remarkable since the predicted mass-flow ratio
and the experimental one are nearly the same. How—
ever, a pronounced discrepancy is observed for the
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side sections of the inlet, e.g. at k = 6,9,12,
Here the suction peaks are underpredicted by the
computation. This can be explained by the in-
fluence of the fuselage of the wind—tumnnel model
on the flow in front of the inlet. The fore-body
has a conical shape, approximately, and distorts
the free stream to a divergent flow. Hence, in
contrast to the numercial analysis, the inlet body
experiences an inhomogeneous oncoming flow field
similar to a yaw angle, i.e. at the side sections
of the inlet a lateral incidence is induced by the
fore-body. A qualitative evidence of this expla-
nation will be given below:

The evaluation of a numerical potential—-flow so-
lution of the three-dimensional wing-~body combina-
tion at My = 0.76 and o = 0° indicates, that the
fore-body displaces the stream lines by about

5 degrees in lateral direction corresponding to
the position k = 9 of the inlet. If the above
explanation would hold, the suction-peak diffe-
rences should vanish in the comparison of the
theoretical pressure distributions with related
experimental data measured at a yaw angle

g = -5°, Unfortunately, no experiments for

B = =57 are available. Therefore, an experimental
result for B = +50 is taken:

= _ ,C _ O _
(v) MO = 0,75, a=6, B=75, €qp, = 0.648

Since in (y) the yaw is just in the opposite
direction it is expected that the suction-peak
differences shown in Fig. 13 will be duplicated
at the side sections whereas these differences
remain approximately unchanged for the inlet sec-
tions near the fuselage. This conjecture is in-
deed substantiated, see Fig. 14. So this last
study has proven the explanation given above: The
mentioned pressure-peak discrepancies between
theory and experiment (shown in Fig. 12 and Fig.
13) are caused by the fore-body of the wind-tun-
nel model which induces & yaw effect upon the
air-intake; obviously, this can't be modelled by
the present calculation for an isolated inlet.

The inlet body has been designed under the
constraint that the flow should be shockless in
the design situation. Imspection of the theoreti-
cal results shows that this goal has been achiev-
ed, i.e. the supersonic regions depicted in Fig.
15 and Fig. 16 are not terminated by a shock.

Evidently a lot of further results, e.g. iso—
and cross—flow plots, vector plots etec., could be
presented to give more insight into the flow
field; however, this is impossible within the
frame of this paper.

VIII. Final remark

It has been outlined that the numerical me-
thods to analyze subsonic and supersonic inviscid
flows around isolated inlets are a useful tool
for the design engineer. Meanwhile, from the
comparisons with experimental data it is recommen~
ded to extend the investigations presented here to
more complicated configurations, e.g. inlet with
forebody, ramp, fuselage etc. including viscous
effects. Related studies are now under work.
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FIG. 1Y:

COMPARISON OF WRLL-PRESSURE DIS-
TRIBUTION WITH EXPERIMENTS AT
TRW=0 AND YAW=5 FOR EXPLANATIGN
OF SUCTION-PERK DIFFERENCES AT
SIDE~SECTIONS OF THE INLET
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Gt h e

SUPERSONIC FLOW REGION ON INLET SURF!?CE, ALPHA=0.
SUPERSONIC FLOW REGION ON INLET SURFACE, ALPHA=6.0"
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