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Abstract

On the first part of the paper the auth-
or has established the sight-line rotating
rate equations by means of Euler angles,
The sight-line rotating rate vector is pro-
jected first to the messile-body coordi-
nate system,then to the antenna coordinate
system.The antenna coordinate system is
obtained by rotating three Euler angles of

the missile body coordinate system.The

gyro preccession rate vector is projected
to the antenna coordinate-system too.The
total error equations and the error equation
of two channels of a homing head are
esteblished by comparison between the sight

1ine rotasting rate with the gyro preccession
rate  in the antenna coordinate.The phase

of the target image in the antenns coordi-
nates decides the distribu tions of the
error signals in the angle-tracking loop
and in two channels of the control system.
This mathematical model futher resolved
the channel coupling problem caused by the
refrence coordinate torsion,The phase pro-
blem of the control signals in the case of
defleetion or no deflection of the coor-
dinator,

In the second part of the paper the au-

thor has established missile-target equa-
tions,Under some suppositions the inter-

section direction of the missile to the
target may be decided.
In the third part of the paper two simpli-

fied mathematical models are established
under the supposition that the target ma-
neuvered in one plane, As an example,
using one of the simplified models, the au
thor analysed theguidance accuracy of the
homing missile and made some conclusions.

These mathematical models may be used
to analyse the dynamic errors of the con-
trol system in the case of an arbitrary
maneuver of the target, theinfluences of

the missile rotation, channel coupling and
unsymmetry of the parameters in two chan-

nels.Using these models the trajectory of
parameters may be given out to analyse the
kill-probability
tion,

during Space intercec-

1.Space sight-line rate wvector 7?

The solution of the rotating rate of a
line may be transfered in solution of the
instantaneous rate of rigid body.When this
line is perpendicularto the instantaneousro-
tating axis of the rigidbody,the both rota-
ting angular rates are equal, The rotating
rate of the rigid body may be presented
by three Euler angles of a Cartesian coor-

dinate system with respect to an inertial

coordinate system, From this point of view

we may establish a sight-line coordinate

e ‘
system OXg¥gZg 0Xg is the sight direc-

0¥, isthe direction of the deriva-
tive of a unit vector on the sight-line.

tion,

0Zg . OXS’ Oﬁs are according to right

hand rule. Three Euler angles of the sight
-line coordinate-system with respect to the
inertial coordinate system are

(Fig 1)

1053



Fig 1. The sight-line coordinate

system
Because of the properties of the estabi-
1ished coordinate system, the rate vector
of the sight-line iis on OZs direction, and
its components on the OXS OYs directions
are O,
From the Euler equations we have

— A e
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e

The components of the space sight-line
rate on three axes of the sight-line coor-
dinates are
@ms=i+¢msén%x (2)
Gmp =0 0 84 xC OS A+ S A (8)
@z 5=, 0 059 gSEnMtiye osNA)
Iz 5=0

5,, = —@Msdnq/u (6)

Thecomponets of .37 on three axes of
the inertial coordinate system may be ob-

tained by projecting ézs tothe inertial
coordinate system.They are

{5'735‘ E\ 0 \l

{
ﬁ.'/YE = ;A}

(4) is the transformation matrix consis-

ted of direction consines between two coor-
dinate systems,
The both sides of the equation ( 4 )
multiplied by cosx and using equation
(3) éys=0 will result:

@z e 0 Sﬁl:‘?"m (8)

The both sides of the equation ( 4 )

multiplied by sina ,using ( 3 ) §yg=0
will result:

Gz gsina=—gycosgy ()

The equation of space zr in the iner-
tial system may be obtained, using equa-
tions ( 6 ) and ( 7 ).

4, =~ 088Gy 06 ¢35 0P yTyt B 4 W@-N)i
+9032%N@ﬁf%(eos%M%N+sdn?Msin
Iycosgniude (@)

2. The sight-line rate vector in the
missile-body coordinate system

The missile-body coordinate system-

with respect to the inertial coordinate
system can be specified by three Euler
angles 1[/, z} y‘ .Using the direction con-
sines of the two coordinate systems may
obtain three components of the rotating
rate ix1,éy1,qz1 inthe missile-body coor-
dinate system.

.

R
¥yl = [B} Iy
é/z 1) \%/z E/

[B] is the transformation matrix con-
sisted of direction consines between two

coordinate systems,
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3. The sight-line rate in the anten-
na coordinate system

The antenna coordinate system is the
refrence system of tracking error angles,
with the center of the gimbals at the
origine,The missile-body coordinate system
is parallelly moved here.Suppose whenk

antenna gimbal angle $=0,antenna coordinate
system will be in coincidence with the

missile-body coordinate system. When ¢ X0,

the antenna coordinate system can be ob-

tained by rotating the missile-body cocor-
dinate system through three Buler angles

% .9, The antenna coordinate system
is represented by OXA YA ZA.
For no self rotating antenna, the ante-
nna coordinate system is fixed on the anten
na,The rotating antenna may be considered

as non-rotating,but antenna has its angu-
lar momentum,0X, will be the electre -

axis of the antenna,the relative motion
between the antenna coordinate system and
the missile-body coordinate systems only
will result in angle ¢ ,therefore vectorgf
is the rotating rate of the antenna coor-
dinate system with respect to the missile
body coordinate system. ?f'must be perpen-
dicular to OX,, That's why the projection
of _77 to OXydirection will be O. deduce

M= —PpSing, ©)

Using the direction cosines of these

two coordinate system, the components of
the sight-line rotaing rate on three axes

of the antenna coordinate system may be
obtained.

[C] is the transformation matrix con-
sisted of direction cosines between two
coordinate systems,

¢ =58~ /sl xR0 510002 9 582 0g 10

4, The gyro preccession rate in the
antenna coordinate system

It may be proved (see Fig.2 ), that the
gyro preccession is on the O Y1Z1‘plane
of the missile-~body coordinate system,

Fig. 2. the relationship between
T and 4,

The angular momentum of the magnet is
pointing at the opposite direction of OXpe«
E; is_zfe external moment of gyro precces-
sion, Gy is the rate vector of gyro pre-
ccession. T presents the target,at this
time the preccession current reaches its
positive max. Using the left hand rule,
the force undertaken by the wire is on the
longitudinal plane across the OX1.

The external preccession moment caused by
the opposite force of the magnet must be

on 0Y1Z1 plane across the point O and per-
pendicular to this longitudinal. Relation-
ships between the external moment and the
preccession angular rate, anguar momentum

are as follows:

ow— =—. —
M? :;:q'/AxH
PP SE— — "'." —
HXMg,: Hx (Q’/AXH)

We may deduce
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. 1
Fa= —o (HxM, )
. ¢

projected this vector to the antenna
coordinate system.
1

= g Yzg iy
Gza=— F Myg 02

Mya MZA may be obtained through two

components My and Mz1 of the external

moment 'ﬁ; inthe missile body coordinate
system. [c] is the transformation matrix
and the MY1 MZ1 are obtained from the

preccession current.

5. The total error angle

Consider angle between the sight-line
and the antenna electric-axis as the total
error angle., ( Fig. 3 )

%

relationships between { and

&t

Fig.3.

¢,and £, are the error angles with res-
pect to two channels.

’
i

t . ¢ o .
s =) gqdt = ((%ZSA“?ZA)GOSS?+
A o] [o) =

Q@vsquxA)simez]dt

= UzeA~VzeA a3

6. The phase problem in the control

signal

When ¢ =0, the antenna coordinate sys-

tem is in coincidence with the missile
body coordinate system, the position of
the target in the antenna coordinate sys-

tem determined the phase in dis tributing
the control signal to two control channels.
From Fig.3 we may deduce

-1 é3

&
2
Consider a four-guadrant problem, we
should add n®t to the main magnituded),

P =4

0 ,
n=i €220
ez<o

The total preccession current I°=j'(£ )
is given by test, and the preccession

current to two channels Iys Iza pay be
written,
Iys= ~Iosinlnn+dyg) 13
1zp=I gcos(an+¢g) 16

The components of the preccession
moment on the missile-body coordinates

oY ,OZ1 are

1
My 1=KIys
Mzi=KIlza

When ¢ =0 the components of the

external moment in the missile -body coor-
dinate system and in the antenna coordinate

system are equal,

. K
Gz p= EI o Stalan+dy) "
é"j’A'.::%I OGOS(WW+¢E) (18)

1056



K| %[
T 1 %4 A i" T
Z R RN
Zy &;? Z ipo
W \e .
M,, H}
%N = %%
% | 3
Z¢ f,lb / F+¢l Z, F ALY
& - ZA ¢E<°
T £<o 1‘ fi<o T

Fig. 4. A four-quadrant phase

problem

Using equations ( 17 ) and ( 18 )
from the Fig.4. you can see that the cal-
culated results will be true.

When 9)* O in this case the antenna
coordindte system is not in coincidence
with the missile-body coordinate system,

Suppose a plane consisted of instantan-
euos sight-line OXs and missile axis OX1
will across with the plane 0Y1Z1 with the
line OP, The antenna on the 0P OX1 plane
will result in angle 97because Of its tar-
get tracking. At thattime the antenna coor-

dinat
nate system OX YAZA will rotate around

the instantaneuos axis QAQZ moves around
qA and consists of a conic and angle with
c';A is the same o The angle between <PE and

generatingline of the conic ( i.e. the

phase angle ) is also not variable. When
0Xy makes preccession on a curved surface

the antenna coordinates also may transfer
from § =0 condition to the condition with
a no variable 4% .Only the axis of the

conic is not the instantaneos preccession

rate vector.

P/ Y%

Fig.b.

7. Refrence coordinate torsion

The torsion of the refrence coordinates

in decomposing error signals willresult
in the channel coupling. If the torsion

angle of the refrence coordinates is

the currents of the control signal to the

control loops may be written:
Illeosﬁm(nn+¢m—ﬂ) 19

vla——l 0% OSK"}%+¢E—ﬂ) QO)

Angle may be positive and negative, actu-
ally A4 is small, but through this angle
the influnce of the channel coupling may
be calculated,

8. The feedback problem of the
angle

The angle 9) is the angle between the
antenna axis and the missile axis, In or-
der to find 9619% you should find the
expressions of y s (j)

However So and f may be obtained by

projecting the space rotating Trate Q of
the missile axis and the space rotating

of
rate qA the antenna to (ﬁ (,0 direc-
tion,
Just as to deduce the expression of the
space-az we may write out the values of

QY1 and QZ1 in the iner tial coordinate
system and in the missile body coordinate
systenm,

Using the direetion cosines of the
antenna coordinates and the missile-body
coordinates,the three compenets éXA1

éYA1 éZA1 of gyro preccession rate in the
missile-body coordinate system may be
obtained.In the end we will get

(PZ“Q"U-AJ_ Q“‘/’" )
01“%ZA1@03@2+%”A18”n¢2
szJ.C’Os‘?z m)
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9. The space kinetic equations

According to the formula on velocity
of a point of the composite motion we may
obtain;

— i

5 4D -a)
— 23—-a
Vm..‘v 4 X D 1t C

s

Were VT is the target velocity vector,
"Vh is the missile velocity vector, @5 is
the rotating rate of the moving coordina-
tes OX’YEZ' ( Fig 1 ) with the respect to
the inertial coordinates and is equal to

&M.3313 the missile-target distance.
Project the relation ( 23-a ) to the se-
lected coordinates, We may write out?

ip[vmo 080 me os( W~y )~ Vo
ooseMcos(WMﬁwM)+Dsinqﬁ%N]
/C' OS’{/N . -'23)

Yy=57 3(Vpsd nam-—-vus:inem—-:osf, ncpm)

%M=57.S[Vmcosemsia(wm~%M)—Vﬁ

e 080y stn (W, ~Fy )] Deosgy

10. The space intersection equation

The space intersection angle is the ang-
le between the missile velocty vector
and the target velocity vector at the ins-
tant of missile-target collision,

Pig. 6. the relationship in the

case of space intersection,
From Fig. 6. we may deduce:
sﬁnncos[sin—l(sﬁneu—cosnsﬂmeT)

2 2

seinn)=((cosncos 9T+cos29M~

2cosneosgyeos(W~Ty))
(26)

Through iteration we may find space
intersection angle 7 .

11, The determination of the mis-
sile-target aspect at the ins-

tant of intersection.

In order to study the kill probabi-

1ity of the fuze-warhead system in the
condition of space intersection we should

know the azimuth and pitch angles of the
missile vhen it closes to the target.

( observe from the target coordinate sys-
tem )

Suppose the target velocity vector is
in coincidence with its axis, the motion
equation of the target center of gravity

may be written:

Vp=const &)
!ér—5’?*.5nYt1"7/VT =8
Y= ~57.5N20¢,/Vpco8gm )

While the relative velocity
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2
VE= (Bt Vg ~2Vy Vo oan ) @)
If the target load factors in the ver-
tical plane Dyn and in the horizontal
plane n,n are given, the target may
maneuver arbitrarily in space.

Nizg (€ ))

Three Euler angles Y}, 8, Y, of the tar-

get coordinates with respect to the iner—-

tialcoordinates. The relationship between
the relative velocity vector and the iner-
tial coordinates may use the equation (26)
to obtain V& , 0 ( see Fig.7. )

rig.7.
In the triangle I
\éi-k\ﬁé—ZNGAV}y:osei'==Vﬁ
L -1
o =¢os (V§'¢+V% -V%)/z‘IM Vi

£ =n-n—s'
If Vy VR Vp ] aregiven ! {3' may be
obtained. Ifd’p’ are known, using egua-

tion ( 26 ) we may solve the simultanegus
equations and obtain

sinxt'coe(sin"L(sing, ~0ax"
sing gl sine' ))=(coslal’
coslgRreos gM—zaosq'coseM
¢ os(Ug—Uydl
s&nﬂ'cos(sén“l(séueﬁfcosﬂ'
stagp)/sénf y=((cos2f'cos?

9m+coeza£72coaﬂ'cosaapos
O 9) ) =

Two unknown factors \H( . on may be sol-
ved with two equations, Then we may deter-

mine these components of the relative ve-

locity in the inertial coordinate system.

Using three Euler angles of the target
coordinate System with respect to the
inertial coordinate system three compo-
nents of the relative welocity in the tar-
get coordinate system th VRY VRZ may be
determined, Then at the instant of inter-
section the pitch angle and the azimuth
angle are:

9NT=séu"l(VRy/VR)
%ﬁ£=t9‘1(VRZ/va)

(3)

@0

When VRYL> 0, the missile intersects
pelow the target, When VRZ:> 0,the missile
intersects from the right side of the tar-
get, when VEX:7 O the missile intersects

from the rear part of the target.

12, Two simplified models and some

calculated results.

when the target maneuvers in one plane
and the control system worksin three
channels, two simplified models may be
obtained.,

The first simplified model:

The first simplified model is estab-
lished on the fact that the projection of
the vector 75 to the missile-body coor-
dinate system is the same as to the anten-
na coordinate system. Because in the case
of plane motion, for an example, on the
wvertical plane, then the directionsof ?;
and 'EL are the same.As the phase problem

proved before ( see Fig.5 ) in the course
of target tracking by the antenna,as o' is

not variable, the projections of 'Ez 1{
to the missile-body coordinate system and
the antenna coordinate system are the
same,

The second simplified model:
This simplified model is used to solve
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three Fuler angles §,, § ,6 N\, between

sight-line coordinate system and the an-
tenna coordinate system.

Because of the plane motion,'a is in
coincidence with -E;. The difference
between them is the relative rate of the
two coordinate system,

—:h —;b —
L4 .
== &

£ is the same as § and has its va-
lue only on Oz8 direction. The follow-~
ing expressions may be deduced:

i=i-dn )

N}

I

w

[
——

§1=Ecoshg
S'za osel=~—é 8‘51&32
5,2=-ézsin£ 1

P

Solve this simultaneous equations we
mey obtain £, 9,, ¢, &, Kz.é may be obtain-

ed using equation ( 4 ).Using the first
simplified model a calculation was made

for " a certain missile, " The dynamic
error influences were considered with dif-
ferent time costant, constant roll, chan-
nel coupling, unsymmetary of K etc.

The influences of angle tracking amp-
lification, time constant and the roll rate
to the miss distance are only given here
( Fig.8,9 )

d|m

5 Trﬂ}z T,=0.}
H=1oKm

44 D= |HO m
Ny =247

34 G T2 T =008

2-

1 -

Fig. 8. Relationships between miss-dis-
tance and angle-tracking amplication

It is obvious that enhancement of the
system rapidity will reduce the dynamic
error ( of course the enhancement of amp-
lification is limited because of noise ),

The relationship between miSS distance
and constant roll rate is: ifthe roll rate

is not large, it will have small effect

to the dynamic error, and if the roll rate
approaches the certain degree the inc-
rease of roll rate will strongly increase
the miss distance. At the same time we may
com€ to the conclusion that the enhance-

ment of the system repidity will permit
to have more roll rate,

d jtm)

H=10km

10 D, =3500m
Tgy= 2741
TTrnTi=02s
K'=3.65

%Tn‘}:'-l M
X

R

d |(m)

H=10Km
D,=16l0m
Mpy=-2147
104 InThT=0ls
K'=3.65

EK=i0
K=o
h 1

Ly
gy
-30-40 <30 20 <10 G [p 20 30 40 50 (JeJ/s)

Fig.9. The relationship between miss
distance and missile roll motion
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by A.A Leberjeiv and
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