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ABSTRACT

The paper presents a method to design
compensated flutter suppression systems by
eigenvalue assignment. The compensator
is designed as a state observer by paral-
leling the Luenberger approach. The ei-
genvalues of the aeroelastic system and
compensator are obtained by imposing a
stationary value to a suitable norm of the
gains, under the constraint of satisfying
the aeroelastic eigensystem for assigned
stable eigensolutions, and without any
problem on the modeliing of the unsteady
aerodynamic forces. The compensator can
be used not only to reconstruct lacking
states, but also to insure insensitivity
to different flight conditions.

A method 1is presented to mechanize, and
possibly to reduce in order, the aeroela-
stic observer.

Some simple examples illustrate the use
of the method along with comments on the
stabilization of an aeroelastic system by
eigenvalue assignment techniques.

INTRODUCTION

Recent analytical development, wind
tunnel and flight test demonstrations show
that active flutter suppression is emer-
ging as an effective tool that can greatly
improve the stability characteristics of
an aircraft structure, without adding un-
due weight [1-61.

This technology can be helpful in widen-
ing the flight envelope, by insuring a wi-
der speed clearance for flutter troubled
configurations.

Since a flutter suppression system can
appreciably change the dynamic response of
an aircraft, it should be important to va-
Tidate its performances also from the
point of view of structural response and
load alleviation, and in fact the two as-
pects have to be integrated in the design
procedure.

Nevertheless, in evaluating candidate
control designs, one must be assured that
the scheme in hand is suitable to stabili-
ze the aercelastic system for widely chan-
ging flight conditions and/or configura-
tions, before any optimization could be
undertaken in view of load alleviation.
Thus effective design tools are needed
that can allow a fast screening of diffe-
rent flutter suppression system layouts,
in order to establish their suitability
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for the stabilization task. This is ge-
nerally done in order to obtain the best
compromise amongst designs that can dif-
fer in the number and location of sensors
and control surfaces, in the signal con-
ditioning adopted and in the controller
type, which can range from a simplie pro-
portional feedback to a complicated com-
pensator along with possible passive ele-
ments, i.e. tuning masses and dampers.

It is to be noted that, owing to the
wide spectrum of operating conditions, an
adaptive controller seems to be the most
appropriate solution. Even if test ap-
plications [71 of this concept are being
undertaken in research oriented applica-
tions, it is yet to be proved that an
adaptive controller can be generally su-
perior to an insensitive time invariant
control system configuration or to a
slightly more complicated gain scheduling
of simple mechanization, especially for
multi input-output systems.
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FIGURE 1 - Active flutter control scheme



Other aspects, such as excitation, a-
daption speed, disturbances, reliability
and control computers [8], seem to indica-
te that, following the experience of
flight control systems [91, fully integra-
ted adaptive flutter suppression systems
will emerge in the long run, after suffi-
cient experience will have been accumula-
ted in more conventional control systems,
possibly complemented by partially adap-
tive functions.

This paper attempts to develop a gene-
ral approach to active flutter stabiliza-
tion, that can provide the designer with
an efficient tool in the evaluation and
development of control strategies, capa-
ble to insure the full flutter clearance
over a wide range of flight conditions.
This aim is achieved by the use of simple
controllers with fixed or easily scheduled
gains, in order to produce effective de-
signs which result in the best tradeoff
with regard to the suppression system com-
ponents.

AEROSERVOELASTIC MODELLING

The model of the aeroservoelastic sys-
tem is described by a set of n generalized
coordinates {q}, which are representatijve
of all the structural degrees of freedom
and of all the states of the actuators,
sensors and signal conditioning systems,
which are assumed as known.

Then a fairly general way to represent
the system in the open loop mode in the
Laplace Transform domain is the following:

[sZ(EMfJ +EMp])+ S(LC,] +tcp3) +

1Tk + 3V LAGL, 11T {q(} (1)

+ ([K oV’

f
= [BI{u(s)}

in which

-[M1, [Cc] and LK1 are generalized mass,
damping and stiffness matrices, respecti-
vely;

-LAl is the transfer function of the aero-
dynamic forces;

- p is the air density;

- V is the asymptotic flow speed;

- b an aerodynamic reference chord;

- M the Mach number.

The [M1,C€] and [KI matrices are split
into the sum of two terms, denoted by the
suffices f and p, indicating that they are
related either to an unchangeable or to a
tunable part of the system. This tunable
part in the open loop mode allows what
will be referred to as passive control.:

It can be related to those parameters,
such as tuning masses, dampers, stiffnesses,
e]ements of the conditioning system, the
designer can use to improve the system be-
haviour, either with or without closing
the loop on the controller.

. A general way to synthesize Eq.(1) from
individual structural components, actua-
tors, sensors and signal conditioning tran-

sfer functions is presented in Ref.L101.

The main difficulty for the direct uti-
lization in the design of a control sys-
tem is related to the presence of the ae-
rodynamic matrix in Eq.(1). In fact the
aerodynamic matrix represents the aerody-
namic forces in an input-output form, ty-
pical of a transfer matrix, which contains
many hidden aerodynamics states. More-
over this transfer function is known only
at discrete values of sb/2V, and generally
only for an imaginary s.

This prevents the application to Eg.(1)
of the many powerful tools made available
by modern control theory.

Since the modern control approach is a
proved powerful tool in controller design,
stemming from early rationalization [11,12]
of subcritical flutter calculations with
harmonic aerodynamics, many approaches has
been developed [13-161 to identify an ap-
proximate modelling for the hidden aerody-
namics states. This can lead to an effi-
cient time invariant approximation of the
aerodynamic subsystem with an acceptable
number of aerodynamic states which can be
used for a stabilization by pole placement
techniques and for response optimization by
LQG design [61,[17-201,0231.

The result of these approaches to flut-
ter suppression system design is generally
a high order system. It will insure ap-
propriate stability obtainment only at a
single flight point and configuration, with
the hope that sufficient robustness has
been built into the controller in order to
maintain the actively controlled aeroela-
stic system well stable even far out from
the design point.

Then, despite of the "optimal control”,
many redesign cycles are needed. They
have to be complemented by extensive flut-
ter calculations to ascertain their beha-
viour at each flight condition and confi-
guration of interest.

A great problem in the practical adop-
tion of these approaches comes from the
need to adopt compensators of large dimen-
sions to cope with the incomplete measure-
ment [21-241 of the states, as complete
measurement is impractical for the servo-
structural system and impossible for the
retained aerodynamic states.

In view of the previous remarks there
has been a strong motivation to develop de-
sign methods for active flutter suppression
that were particularly suited to the pro-
blem formulation of Eq.(1)C25-291.

This paper aims to widen the approach
of Ref.[281 and[291 to include the design
of dynamic controllers,that can be of help
when simple algebraic feedback cannot be
able to produce acceptable stability mar-
gins at varying flight conditions.

Referring to Fig.(1), we see that the
aeroelastic system and compensator are ap-
propriately described in the open loop mo-
de by an augmented system of the type

mJ+Mm1 0
o [MC] A
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in which the suffix ¢ is used to indicate
the compensator related quantities and
the Es:lﬁ ESJq and £S] matrices are the

output matrices of the aerocelastic system
and they are related to the term of q or
its derivatives.

In Eq.(3) it is obviously implied that
the compensator states are completely
available.

It is important to note that the struc-
ture of Eq.(2) implies the need of a me-
chanization that must be tuned to the act-
ual flight conditions.

The system and compensator are coupled
by a gain law of the type
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In practice, with the use of a compen-
sator we are adding a dynamic system that
provides us with an increased number of
parameters, which can be determined in
order to hopefully insure the desired sta-
bility over the whole flight envelope.

It must be remarked that there is a cer-
tain degree of redundancy in the combina-
tion of Eq.(2),(3) and (4), as the direct
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compensator gains, i.e. the matrices E622]
because of the structure of Eq.{(3), add
straightforwardly to the [MCJ,ECC] and EKC]

matrices of the compensator. Moreover
the designer can suppress some coupling
terms, if they are not deemed necessary in
improving the controller performances.

Once the aeroelastic system has been
modelled and a compensator structure has
been chosen, we can design the whole system.
This will be done in the following by the
use of an eigenvalue assignment technique
and of a compensator predesign.

Many and 1mportant de51gn steps are ta-
ken for granted in Eq.(4),

- matrix [B] implies number and location
of control surfaces;
matrices [S1 implies number,
and type of sensors;
the order m of the compensator is assu-
med as given;
signal conditioning and actuator dyna-
mics are included in the model and they
can be modified only in those elements
placed in the passive part of the aero-
servoelastic model.

Since only partial and limited procedu-
res of integrated design of the previous
item plus controller are available [30,31],
the design relies on the experience of the
engineers and on repetitive modifications
of a certain layout, which showed itself
uncapable of satisfactory performances.
However this fact is present, whichever is
the design method used.

Tocation

EIGENVALUE ASSIGNMENT

The well
assignment,
theory, are

A method

established techniques of pole
developed in modern control

not adoptable to Eq.(1).

has then been developed [28 291
to directly cope with Eq.(1), and, since
this method is basic to this presentation,
it is briefly recalled for an easy referen-
ce.

We name {p} the vector of the parameters
corresponding to the passive parameters
and to the coefficients of the [G] matri-
ces that are available to be designed, ac-
cording to a control structure established
by the designer. Then, when the feedback
law of Eq.(4) is applied to Eqg.(2), for
each imposed eigenvalue s’., we have to sa-
tisfy a set of equations:

[F,(si.{p})1 {q}} = o

1a33 7%} =

(5a)
(5b)

in which the eigenvector {q%} is unknown
and it cannot be null, becalse of Eq.(5b).
Eq.(5 ) can be viewed as a set of n+l or
2n+2 real equations, according to the as-
signment of real or complex eigenvalues.

In the latter case complex conjugacy is as~-
sured by the properties of the aerodynamic
transfer matrix and by the fact that the
matrices are real.



‘Then the design parameters can be ob-
tained by minimizing an arbitrary norm of
the type

7= 3{p} w1 {p} (6)

with a number of constraints of the type
of Eq.(5) equal to the number of imposed
eigenvalues. In Eq.(6) [W] is a suitable,
generally diagonal, matrix employed for
scaling purposes or to appropriately weigh
the various components of {p}.

By the use of the Lagrange's multipliers
technique we are led to the imposition of
a stationary value to

1
7%= 3 ipr twa(pl+ %i(ii(%{q?}T{q:}-IH
T *
+0 1 0F (e} (7)

in which N is the number of assigned ei-
genvalues. For sake of conciseness Eq.(7)
is written for the case that all the as-
signed eigenvalues are real. The case of
compiex conjugate ones is conceptually
trivial, but somewhat cumbersome for the
presentation.

Thus we are led to the following set of
nonlinear equations
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which can be solved with the use of the
Newton-Raphson method, that implies the
iterated solution of a set of linear equa-
tions of the following structure
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In Eq.(9) the blocks suffixed with i
must be intended repeated for N times 1in
the appropriate order.

In view of the use of modal coordinates
and of the defined control law, the para-
meters {p} appear in matrices of the form:

[M1 = [XJLGILY] (10)

in which [X1 and L[Y] can be the input-out-
put matrices or the modal shapes. Thus
the derivative 3F/3{p} can be easily com-
puted by means of a decision matrix, de-
scribing the topology of the unknown para-
meters in the acceleration, speed and dis-
placement gain matrices [G1,,[6].,[6] ,
and in the unreduced passivg ineﬁtia,qdam—
ping and stiffness matrices.

For higher order systems, {p} vector
and many eigenvalue assigned, the system
implied in Eq.(9) can be very large, but
it is symmetric and it consists of many
diagonal blocks, coupled only by the
aF/3{p} terms. These features allow a ve-
ry effective solution both in processing
time and core requirements, that, together
with the good convergence features of the
Newton-Raphson method, make it possible to
solve Eq.(8) in a quite effective and sta-
ble way.

This effectiveness and stability can be
further improved by setting Eq.(8) and (9)
in a continuation form, and moving gradual-
1y from a given starting eigensolution,which
satisfies Eq.(5), to the desired s* and {q}}.

A basic assumption of this ap&roach i's
that the hidden eigenvalues of the [AJ ma-
trix are well stable and that they cannot
appreciably be changed during the imposi-
tion of the new eigenvalues. This assum-
ption is simply taken for granted, as no
proof can be given for it. It is only
heuristically proved by the long experien-
ce in flutter analyses and by the fact
that, when appropriate augmentation of sta-
tes has been used to describe the aerody-
namic component of Eq.(1), the related ei-
gensolutions have always shown to be in-
sensitive to the control law used for flut-
ter suppression.

Another important thing to note is that,
when there is no convergence to a solution
for Eq.(8), it is impossible to establish
the reasons of the trouble, as the constraint
equations (5) are only necessary conditions,
but they don't give any indication about
the requirements under which they can be
satisfied. However, even in the case of
time invariant linear systems, no general
conditions for the pole assignment under
arbitrary controller structure are establi-
shed.

It may now be noted that in this approach
we need only a good interpolation method
to calculate [AJ for arbitrary reduced fre-
quencies and Mach numbers. Such interpo-
lation can be afforded by fitting rational
function of sb/2v to each term of [A].
Even the so called rough p-k approximation
£321, or an improved causal interpolation
[331, which operates directly on harmonic
data, can profitably be used [28].
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COMPENSATOR DESIGN

In general we tend to achieve accepta-
ble stability over a whole set of flight
conditions in the simplest way, that is
with as reduced measurements, control for-
ces and controller, as possible.

The simplest possible controller is a
simple algebraic feedback law, but, if
this is incapable to satisfy the design
objective, a gain scheduling technique or
the use of dynamic compensation, either
tuned or untuned to flight conditions, can
be taken into consideration.

The utilization of the eigenvalue as-
signment technique, previously described,
allows the design of a compensator as that
presented in Eq.(2),(3) and (4), beginning
from any suitable initial trial solution,
provided that it couples the system and
the compensator.

This approach can be successful, but,
for large order systems, it can be exhau-
sting and it can require a large number of
trials in order to provide an acceptable
solution.

A more systematic approach can be de-
veloped by paralleling the Luenberger ap-
proach [213 to observer like compensator
design. This approach consists in de-
signing separately, through eigenvalue as-
signment, two algebraic control laws for
Eq.(1). The first one is obtained by as-
suming complete measurement, i.e. all the
[s] matrices are identity matrices, and
[81 as input matrix; it gives a set of
gain matrices [L1, with n columns and a
number of rows equal to the inputs of the
system, The second one assumes an jden-
tuty matrix for [BJI, i.e. there are n in-
dependent control forces, and the actual
structures of the [S]1 matrices; it leads
to a set of matrices [H1, with n rows and
as many columns as the related measurements.

A compensator of order n to be tuned
to the aerodynamic transfer function can
be given by

M1 = Medem ] (11a)
[C 1 = rCel+c)] (11b)
K1 = EKfJ+[Kp] (11c¢)
[A.1 = [A] (11d)
and
[611](ﬁ,é,q) =0 (12a)
61270, = Mg, q.0 (12b)
013 a0 = Mg, (12c)
EGZZJ(d,d,q) = —EB][L](q’q’q)+ (12d)
[H](d,d,q>[33<§,d,q>

It can be easily shown that the substi-
tution of Eq.(11) and (12) into Eq.(2),
(3) and (4) leads to a compensated aero-
servoelastic system that has the same ei-
genvalues of the two systems produced by
the separated complete measurement and
complete input designs.

An important requirement in the design
of observer like compensator for time in-
variant systems is that these are control-
lable and observable. These two proper-
ties are difficult to be established on
the structure of Eq.{(1) or (2). Neverthe-
less, important, even if not rigorous,
checks of these properties can be easily
performed on rational approximations of
Eqg.(1), possibly carried out as in Ref.[32]
in order to remain within the same frame-
work utilized in eigenvalue assignment.
These checks can be also helpful in eva-
luating a posteriori the goodness of sensors
and control forces type and location.

Even if the system can be made observa-
ble by a single measurement, in the com-
plete input design we cannot freely assign
all of its eigenvalues, because we have
constrained the compensator to maintain
the structure of Eq.{(1), which requires at
Jeast two measurements in order to make
available the minimum number of parameters
required to arbitrarily assign all of its
eigenvalues.

This is not believed to be a drawback,
because the eigenvalue placement procedure
shown need not to place them either all
together or at the same speed.

Full advantage of this feature can be
even taken in order to make the two basic
designs the more insensitive as possibile,
at changing flight conditions.

MECHANIZATION

Two main problems are posed by the me-
chanization of Eg.(11) and (12) realiza-
tion of the aerodynamic term and possible
order reduction.

The latter is often mandatory unless
the designed compensator is related to a
suitable system of reduced order, but,
since it requires an appropriate wiring of
the aerodynamic terms, it is left to later
comment.

If we are ready to accept a compensator
which needs a tuning to actual flight con-
ditions, the aerodynamic matrix can be sim-
plified to

[ACJ=(%pbzsztma(M)]+%prsECa(M)]+

+%pV2[Ka(M)]) {q} (13)

by approximating the aerodynamic matrix
LAl over a range of reduced frequencies of
interest [333.

Even if the approximation of Eq.(13) is
a rather crude one, it is expected that no
significant change is produced with respect
to the original design and that it can pos-
sibly be corrected by applying an appro~-
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propriate set of eigenvalues again.

Eq.(73) still contains a Mach number
tuning, that can be obtained by interpola-
tion or simply by discrete switching over
predermined values of M with a continous
tuning on the p and V terms only.

An untuned mechanization can be produ-
ced by fixing p,V and M after the previous
step has been undertaken, but, in this ca-
se, the aeroelastic system and its compen-
sator will produce the desired performan-
ces over a reduced range of flight condi-
tions. Its behaviour outside this range
has to be ascertained and eventually the
produced controller has to be modified in
order to cope with unwanted instabilities.

As previously stated, especially for
large order aeroelastic models, the com-
pensator now at hand must be looked as a
suitable predesign, over which we can work
to reduce 1its order in some systematic way,
without starting with randomly choosen
first temptative designs. A natural way
that can be adopted to reduce the order of
the compensator is that of eigenvalue
matching between the original and the re-
duced order design. This matching can be
obtained in an easy way in the continued
solution of the eigenvalue assignment pro-
cedure. In this case the solution is
started from the given eigenvalues and the
structure of the compensator is reduced to
the wanted one, while maintaining the set
of given eigenvalues, possibly at diffe-
rent speeds.

In this process it is useful to produce
direct feedback 1inks, that did not appear
in the original design, i.e. [G,,1%0.

The procedure is suitable bo%% for the
tuned and for the untuned compensator, and
it can be well applied to a tuned version,
after which the compensator of reduced or-
der obtained can be put in the untuned ver-
sion.

Other known methods, such as simple
truncation, residualization and frequency
response matching [231,[35], [361, can be
applied. Not all of them are suitable
for an easy reduction of the tuned compen-
sator; in particular, while plane trunca-
tion can be carried out quite easily in the
case of a tuned compensator, the residua-
1ization approach will be rather difficult
to apply. Frequency response matching
can be able to cope with a tuned design
only if a suitable fit can be obtained by
taking simultaneously into account the
matching at different flight conditions in
the performance index.

Whichever method is adopted, the final
reduced system produced can be taken as a
starting design, which can be perfected by
reapplying the eigenvalue assignment, till
an acceptable flutter suppression is pro-
duced.

It must be pointed out that, even if the
number of available measurements and con-
trol forces allows a simple, algebraic, sta-
bilization without any dynamic compensator,
the adoption of this can be of some help
in producing a controller capable to afford
larger stability margins at critical con-
ditions.

PROS AND CONS

It is believed that the use of a pole
placement-compensator technique to design
a flutter suppression system, in the ap-
proach presented here and in the related
references, offers many advantages over
the procedure of augmenting the system
with some aerodynamic states, in order to
produce a time invariant system to which
apply the usual pole placement technique
of the modern control theory.

These advantages are

- no state augmentation;

- possibility to make use of a simple me-
thod of interpolation to model the ae-
rodynamic matrix;

- mantainment of the second order structu-
re of the system;

- possibility to disregard the modes that
are insensitive to the controller ac~-
tion and that have to be retained for
good modelling;

- the eigenvalues can be assigned at dif-
ferent speeds, even for a single mode,
in order to try to insure a certain
adaptativity, even without tuned gains;

- arbitrariness in defining the control
structure with the possibility to de-
sign acompensator;

- a mix of passive and active flutter sup-
pression can be obtained within a sin-
gle design method.

The drawbacks of this approach are not
related to the method here presented, but
to the eigenvalue placement technique it-
self [371]. They are mainly due to the
fact that during the design process no con-
trol exists upon the actuators efforts and
on the quality of the response, which has
been afforded by the controlled aeroelastic
system to dynamic enviroment encountered
in flight, i.e. gusts and manoeuvres.

The imposition of the minimization of
the cost function of Eq.(6) can be viewed
as a way to try to reduce actuators acti-
vity, while the availability of the eigen-
vector in constraint equations (5) could
be exploited to control response qualities,
but a practicable way to do it has not been
found yet.

Moreover, for larger order systems, the
design and the tuning of a temptative sys-
tem, augmented by the compensator dynamics
in order to obtain a controlled aeroelastic
system adapted to all the flight conditions,
can be an exhausting task. This task can
be successfully undertaken only in the case
when just a few modes are responsible of
the critical conditions and they can be ma-
de sensible to the control activity, while
the others only improve the modelling of
the system.

Even in this case some trials are requi-
red in order to ascertain which eigensolu-~
tions, and at what speeds, must be imposed,
and which instead can be left free. In
this process the designer is helped by the
availability, in the continuation solution,
of the parameter derivatives with respect
to each eigenvalue shift, and he must con-
tinously loop between eigenvalue placement
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and flutter analyses to verify the beha-
viour of the design at hand at different
flight regimes.

A1l these facts seem to demonstrate
that the cons outnumber the pros of acti-
ve flutter suppression system design, with
or without dynamic compensators, by means
of an eigenvalue assignment technique.

It has been already stated in the in-
troduction, that, if the design for sta-
bility, response quality and load allevia-
tion has to be integrated in order to pro-
duce a unique and effective design, the
capability to insure wide stability mar-
gins over a wide set of flight conditions
is a clear prerequisite of any temptative
design. And it is just in the phase of
definition and evaluation of such basic
characteristics, as the number and the lo-
cation of sensors and control surfaces,
the choice of control law, with or without
a dynamic compensator, with or without a
flight tuning of the controller parameters
that the eigenvalue placement can be very
useful in choosing the most promising so-
Tution, by the help of a CAD like interac-
tive procedure. Then the design refine-
ment and the detailed evaluation can be
carried out only on the few most promi-
sing solutions emerged from the previous
phase.
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FIGURE 2 - Typical section with trailing
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NUMERICAL EXAMPLES

The numerical procedure of eigenvalue
assignment above outlined has been imple-
mented as a module of the computer program
AIACE (An Interactive program for the de-
sign of Active Control flutter suppression
systems by Eigenvalue assignment), and it
has been applied to the typical section of
Fig.(2) in incompressible flow, with the
section parameters of Tab.(1).

o =100 8 u=40 x = .2
o -1 o
wh = 50 S a =~.4 xB = 0125
g = 300 s~ e = .6 né = .25
=, 2 .00625
CB 0 kB = .00625}

TABLE 1 -~ Section parameters

The open loop s-V plots of this three-
degrees-of-freedom section are reported in
Fig.(3): even if this numerical example is
deliberately simple, it performs its duty
of demonstrating the usage of the design
procedure here proposed, because of its
inherent difficulty to be controlled [191.

In practical applications more structu-
ral modes and more complicated actuator
dynamics could be taken into account, but
in general only few modes affect the flut-
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FIGURE 3 - Open loop s-V plots. (s=o+iw)
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ter mechanism, while the other ones can be
rather insensitive to it.

Assuming first the availability of the
displacement and of the velocity of the
pitch coordinate, a full order tuned com-
pensator has been designed, and the resul-
ting s-V plots for the original system,
augmented by the compensator, is shown in
Fig.(4).
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FIGURE 4 - Closed loop s-V plots of the
flutter suppression system with
full order tuned compensator.

It can be seen that an appreciable in-
crease in flutter speed has been achijeved.
Further trials to simplify the compensator
structure and/or to reduce the order of the
controller were unsuccessful, because of
the poorer designs produced.

This example can be taken as a typical
application in which it is wanted to adopt
a compensator in order to alleviate the
lack of sensors. In fact, Fig.(4) results
from the plane tuned combination of the two
basic designs produced by assuming the avai-
lability of all of the states and of the
complete input. Thus the first case can
be used by itself to produce the same sta-
bilization, with a simple algebraic law.

Since the previous design has shown
that the compensator can alleviate only the
lack of sensors without improving the sta-
bility margins of the full state design, a
first order untuned compensator has been
combined to the full state measurement, in

order to try to improve the stability be-
haviour.

After some trials to synthesize a redu-
ced order compensator from the previous
one, the adopted controller layout has
been perfected by the eigenvalue assign-
ment technique and the behaviour shown in
Fig.(5) has been obtained. It can be seen
that now no flutter is present and that
the stability margins are more considerable.

These examples, even in their simplici-
ty, are representative of some types of
the problems which can be faced in deci-
ding a flutter suppression system structu-
re.

The work done during the development of
these control laws has confirmed the re-
marks made in the previous paragraph.
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FIGURE 5 - Closed loop s-V plots of the

flutter suppression system with
first order untuned compensator.

CONCLUDING REMARKS

The eigenvalue assignment and compensa-
tor design methods, presented in this.pq-
per, can be a valuable tool in a prelimi-
nary design phase of active flutter sup-
pression systems, because they can be )
straightforwardly applied to the mode11}ng
used in typical aeroservoelastic stability
analyses.

In particular, the application of the
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whole design procedure to some simple nu-
merical examples has demonstrated some of
the possibilities provided to the designer
by the use of some types of compensator.

Nevertheless, the limitations of the
eigenvalue placement technique in produ-
cing a final design that properly takes
into account the integration of the yiel-
ded active flutter suppression system in
the improvement of the aeroelastic system
response, have been emphasized.
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